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Abstract: This paper introduces a universal framework for understanding the vibration 

responses of systems subjected to harmonic excitation. By examining a simplified cylinder-

spring-damper model, the study refurbishes traditional scaling methods for the excitation 

frequency ratio and critical damping ratio. The findings indicate that in damped systems, the 

maximum amplitude of vibration does not align with the natural frequency. This observation 

leads to the introduction of a new scaling method for reduced frequency. This new approach 

aligns resonance peaks at the new reduced velocity of 1.0 across different damping ratios, 

providing a consistent characterization of vibration behavior. A new critical damping ratio of 

0.707 is identified for an excited system as opposed to the traditional damping ratio of 1.0 for 

an unexcited system. Key properties such as maximum amplitude, phase lag, bandwidth, and 

quality factor are analyzed, demonstrating that the proposed reduced frequency and critical 

damping ratio effectively capture the dynamics of both damped and undamped excited systems. 

The findings offer significant insights for practical applications in engineering and various 

scientific fields. 

Keywords: damped vibration; excited system; frequency ratio; damping ratio; maximum 

amplitude 

1. Introduction 

All structures in nature and engineering possess mass, elasticity, and damping to 

some extent. They may, therefore, undergo vibration when subjected to harmonically 

excited forces (Figure 1). A harmonically excited system is susceptible to vibrating at 

the same frequency as the excitation. Harmonic excitation may be in the form of force 

or displacement of some points in the system. These excitation forces can arise from 

unbalanced rotating machines, reciprocating machines, the movement of a machine 

itself, earthquakes, bumps in the road, wind loading or Karman vortex shedding from 

a bluff body in a flow (Figure 1). The structural vibrations caused by these excitations 

essentially have the same fundamental physics governed by stiffness, damping, and 

excitation force [1]. While pure harmonic excitation is rare compared to periodic or 

other types of excitations, understanding how a system responds to harmonic 

excitation is essential for assimilating its response to various types of excitations. The 

vibration of a system is primarily influenced by the natural frequency of the system 

and the excitation frequency of the forces. The former remains approximately 

invariant, with minimal impact from damping [2]. In contrast, the excitation frequency 

of the excitation forces typically varies from low to high [3,4]. For example, when a 

car engine is started, the excitation frequency (engine rotation) increases from zero to 

about 16 Hz (1000 rpm), surpassing the natural frequency (1−2 Hz) of a car [5]. Most 
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washing machines have a drying speed of 800−1400 rpm (13−23 Hz), significantly 

higher than their natural frequencies. The frequency of vortex shedding from a bluff 

body increases almost linearly with increasing flow velocity [6,7]. Vortex-induced 

vibration often involves a “lock-in” phenomenon, where the vortex-shedding frequency 

synchronizes with the vibration frequency, known as resonance. In the lock-in regime, 

the vibration frequency may not necessarily match the natural frequency. For a low 

mass-damping ratio, the vibration frequency may be smaller or larger than the natural 

frequency when the excitation frequency is smaller and larger, respectively [3,4]. 

 

Figure 1. Structures undergo vibration when subjected to harmonically excited forces: (a) Unbalanced machines; (b) 

rotor or whirling shaft; (c) wind turbine tower and blades; (d) building subjected to earthquake; (e) automobile on 

road; (f) vibration sensor (piezoresistive accelerometer); (g) bluff-body subjected to flow; (h) magnetic resonance 

imaging (MRI) scanner; and (i) ultrasound imaging. 

High-rise buildings and wind turbine towers or blades are no exception to the 

potential for large amplitude vibrations when the wind excitation or seismic 

(earthquake) frequency coincides with their natural frequencies. For example, when 

crossing a bridge, a marching army is often instructed to ‘breakstep’ so that each 
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soldier is out of step with the others to generate a much higher excitation frequency 

than the natural frequency of the bridge deck. This results in lower vibration 

amplitudes compared to all soldiers marching together in step. Understanding 

mechanical vibrations, fluid dynamics, fluid-structure interaction, and equipment 

involved is crucial in addressing these vibration problems. Failure to comprehend the 

vibration mechanism has led to many catastrophic events and futile vibration control.  

Given the prevalence of excited oscillations in our daily life, from structural 

oscillations of suspension bridges or wind turbine blades/towers to the neural 

oscillations for perception (in brains), there is a critical need to study harmonic 

oscillations for pupils, teachers, and researchers in the fields of biology, chemistry, 

mathematics, physics, and engineering. As such, forced oscillations have been 

extensively studied and are generally well understood [8,9]. Yet, there may still be 

room to expand the fundamental knowledge on the topic. 

A bluff body subjected to fluid flow undergoes fluctuating lift force because of 

alternate Karman vortex shedding from the bluff body (Figure 1g). The frequency of 

the fluctuating lift force matches the frequency of vortex shedding. The fluctuating lift 

force acts as the excitation force and the vortex shedding frequency as the excitation 

frequency. All these oscillations, driven by forces, can be classified as force 

oscillations. 

Previous research has investigated the optimization of damping in mechanical 

systems and the effects of parametric excitation on system stability. Tomljanovic [10] 

developed an optimization approach for damper placement and viscosity selection in 

structures, aiming to maximize displacement decay. Their method accommodated both 

internal damping and multiple dampers with varying viscosities, using average 

displacement amplitude as the optimization criterion. In a different study, Arkhipova 

and Luongo [11] investigated how damping influences the parametric excitation-based 

stabilization of statically unstable linear Hamiltonian systems. Their analysis covered 

various resonance scenarios, including 1:1, 1:2, 2:1, and combination resonances (sum 

and difference). They discovered that while small amounts of damping could enhance 

control system performance, this benefit was limited to non-resonant conditions. 

Earlier works by Yabuno and Tsumoto [12] and Arkhipova et al. [13] revealed a trade-

off in using parametric excitation for stabilization. While this approach can effectively 

stabilize an unstable mode, it simultaneously poses a risk to initially stable modes, 

potentially causing their destabilization through classical mechanisms. 

Various methods exist for the estimation of structural damping, each with its 

own approach and applications. The classical Rayleigh model, employed by Scalzo 

et al. [14], offers one approach to characterizing damping behavior in test specimens. 

The half-power bandwidth method, utilized by Medel et al. [15] and Samimi et al. [16], 

involves applying harmonic forced vibrations to the structure and analyzing the response 

amplitude in the frequency domain. This technique provides a frequency-based 

assessment of damping characteristics. Perhaps the most straightforward approach is 

the logarithmic decrement method, as demonstrated in studies by Palmieri et al. [17] 

and He et al. [18]. This method operates under free vibration conditions, where the 

structure is initially displaced or given a velocity, and no external forces are applied 

during the measurement. The damping ratio is then determined by measuring the decay 
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rate of the structure’s free response. The simplicity of this method makes it particularly 

attractive for practical applications. 

Damped vibrations have diverse applications in medicine, including diagnostic 

imaging (ultrasound, MRI), medical devices, tissue engineering, and biomechanics 

(Figure 1h,i). Harnessing damping properties advances medical technology, diagnosis, 

and therapies [19,20]. For example, elastography uses damped vibrations to assess tissue 

stiffness, aiding in the diagnosis of conditions like liver cirrhosis and breast tumors. 

Biomechanics research analyzes damping in joints, bones, and soft tissues to improve 

rehabilitation, understand injuries, and optimize orthopedic implant design. 

2. Problem definition and objective 

The forced oscillation of a structure can be represented by a simplified system 

comprising a cylinder of mass m, a spring of stiffness k, and a damper of damping c 

(Figure 2a). Before applying the excitation force, it is assumed that the mass is in its 

static equilibrium where the upward spring force balances the downward gravity force. 

The displacement is measured from this static equilibrium. The cylinder is then excited 

by an external force F = Fosin(t + ), where Fo is the force amplitude,  is the circular 

frequency (rad/s), t is the time and  is the phase lag between the excitation force and 

the cylinder displacement (Figure 2a). Assume that the excitation force F = Fosin (t 

+ ) results in the steady oscillation. 

y = yosint (1) 

where yo is the amplitude of the cylinder displacement y. At time t measured from the 

static equilibrium position (y = 0), the free-body diagram of the cylinder is presented 

in Figure 2b, which leads to the following equation of motion. 

𝑚𝑦̈ + 𝑐𝑦̇ + 𝑘𝑦 = 𝐹𝑜sin(𝜔𝑡 + 𝜙) (2) 

This equation is well-studied in textbooks on structural dynamics. 

From Equations (1) and (2), we can get 

𝑦o

𝐹o/𝑘
= 𝐴 =

1

√(1 − 𝑟2)2 + (2𝜁𝑟)2
 (3) 

and 

𝜙 = tan−1
2𝜁𝑟

1 − 𝑟2
 (4) 

where  (= c/2mn) is the damping ratio, r (= /n) is the reduced frequency, also 

known as a frequency ratio, and n (= √𝑘/𝑚) is the natural frequency. Equations (3) 

and (4) are well-known in textbooks. The r = /n is the standard normalization of the 

excitation frequency. The maximum amplitude, however, does not necessarily occur 

at r = 1.0 but at r < 1.0 when  > 0 (Equation (3)). It does not correspond to the 

definition of resonance, suggesting that something is missing behind the normalization 

of the reduced frequency. The 
𝑦o

𝐹o/𝑘
= 𝐴 is the dimensionless oscillation amplitude on 

the scale of the spring deflection 𝐹o/𝑘 caused by the force 
o

F  applied statically. In 

other words, the A is a function of r and . Several questions pop up: why does the 
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maximum A not correspond to resonance (r = 1.0)? Are the reduced frequency and 

damping ratio incongruously scaled or normalized? What is missing behind the scales? 

Although a structure with  < 1.0 is said to be underdamped, does it remain 

underdamped under excitation force? Does a peak in the A−r graph appear for all 

values of  < 1.0? If not, why not? 

 

Figure 2. The forced oscillation of a structure: (a) Viscously damped cylinder 

system with harmonic excitation; and (b) free-body diagram of the cylinder. 

We aim to provide a deeper understanding of the fundamentals of vibration 

responses of a forced damped system. Here, we introduce universal definitions of 

frequency ratio and critical damping ratio. It will be beneficial for teaching and 

learning the mechanics of a damped system undergoing excitation force. There is no 

doubt that this content is imperative and indispensable for pupils, teachers, 

researchers, engineers, and militaries. 

3. Relationship between amplitude and reduced frequency 

Figure 3a,d displays the relationship of A with r and , as described by Equation 

(3). The frequency at which the amplitude peaks is called the resonant frequency. 

Resonance occurs at a critical reduced frequency rc = r = 1.0 when  = 0, resulting in 

A reaching infinity. As  increases, the peak in A becomes small and shifts to the left, 

i.e., rc < 1.0 for  > 0. In other words, the resonant frequency differs from the natural 

frequency when    0. For example, the maximum (resonance) values of A are 5.02 

(not visible in the figure), 3.37, 2.55, 1.75, 1.36, 1.15, 1.04, and 1.01 for  = 0.1, 0.15, 

0.2, 0.3, 0.4, 0.5, 0.6, and 0.7, respectively, occurring at rc = 0.989, 0.977, 0.959, 0.905, 

0.824, 0.707, 0.529, and 0.141. The higher the , the smaller the rc. This observation 

contradicts the definition of resonance, which requires rc = 1.0. This implies that r is 

not appropriately scaled in this case. For   0.8, no peak emerges as A is less than 1.0 

for r > 0. When  ≤ 0.7, A first increases from A = 1.0 at r = 0, peaks, then rapidly 
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declines to A = 0.11–0.19 at r = 2.5 and A = 0.05–0.06 at r = 4.0 depending on . As r 

becomes very large, A tends to die down to zero for all values of  (Figure 3c). The 

impact of  on A is minimal when r is sufficiently large (r > 4.0) where the vibration 

amplitude is only 5% of the static deflection by the force amplitude. In other words, 

no damper is required if the system has r > 4.0.  

 

Figure 3. The relationship of A with r and : (a) Steady state vibration amplitude A of an elastically mounted cylinder 

undergoing forced vibration; (b) zoomed-in view of (a); (c) vibration amplitude A for large r values; and (d) contour 

plot of amplitude A on r− plane. 

Note: (a) As a function of excitation frequency ratio r and damping ratio ; (b) There are peaks in A for 

  0.7 where the value of r corresponding to the peak A decreases with increasing ; (c) showing 

negligible influence of  on A; (d) the purple-dashed and blue-dashed lines mark the peak A (Amax) and A 

= 1.0, respectively, for each  value. 

Typically, in engineering applications, a small or zero amplitude is desired. To 

achieve this, one should choose a large  value at small r < 2.5 and/or a large r > 4.0 

where damping does not matter. The latter scenario requires that the excitation 

frequency significantly exceed the natural frequency. Although A at a high r is not 

highly affected by , A crosses the A = 1 line at different r values depending on ; the 

higher the , the smaller the r. Given that the resonance peak and crossing point 
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heavily both rely on , an appropriate scaling of the excitation frequency is necessary 

to appropriately characterize the resonance and align amplitude peaks on a vertical 

line for various  values. Here, we fish out a way to appropriately scale the excitation 

frequency. 

Let us understand the relationship between  and rc first. For a given , the A is 

maximum when the denominator 𝐷 = (1 − 𝑟2)2 + (2𝑟)2  in Equation (3) is 

minimum. 

To find the condition of r for a minimum D, we can set 

    
𝑑𝐷

𝑑𝑟
= 0 

⇒ 2(1 − 𝑟2)(-2r) + 8𝜁2𝑟 = 0 

⇒ 4𝑟(𝑟2-1 + 2𝜁2) = 0 

i.e., r = 0 

(5) 

and/or 

    𝑟2-1 + 2𝜁2 = 0 

⇒ 𝑟2=1-2𝜁2 

⇒ 𝑟 = 𝑟𝑐 = √1 − 2𝜁2 

(6) 

As shown in Figure 3 and as Equation (5) indicates, the slope of A is zero at r = 

0 regardless of , although r = 0 does not necessarily represent the maximum. On the 

other hand, Equation (6) indicates that D may be minimum (expected) or maximum 

for 𝑟 = √1 − 2𝜁2. To confirm whether D is maximum or minimum at r = 0 and 𝑟 =

√1 − 2𝜁2, we can get the second derivative of D, i.e., 

𝑑2𝐷

𝑑𝑟2
= 12𝑟2 − 4 + 8𝜁2 (7) 

For r = 0, we can find that 

𝑑2𝐷

𝑑𝑟2
= −4(1 − 2𝜁2) (8) 

It gives that 
𝑑2𝐷

𝑑𝑟2 = −𝑣𝑒 for 0 < 𝜁 < 1/√2 and 
𝑑2𝐷

𝑑𝑟2 = +𝑣𝑒 for 𝜁 > 1/√2. 

This suggests that there are two sets of curves originating at r = 0: one with 

positive curvature of D (i.e., negative curvature of A) and the other with negative 

curvature of D (i.e., positive curvature of A). The latter, with a positive curvature of A 

at r = 0, displays a peak at r = rc but the former does not (Figure 3a). Let us fish out 

this mathematically. 

For 𝑟 = √1 − 2𝜁2, we can find that 

𝑑2𝐷

𝑑𝑟2
= 8(1 − 2𝜁2) (9) 

Equation (9) gives 
𝑑2𝐷

𝑑𝑟2 = +𝑣𝑒 (i.e., resonance or peak in A) only when 

1 − 2𝜁2 > 0 
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⇒ 𝜁 < 1/√2; i.e., 𝜁 < 0.707 (10) 

Again, there are two sets of curves: ones with 𝜁 < 1/√2 display a peak at 𝑟 =

𝑟𝑐 = √1 − 2𝜁2 and the others with 𝜁 > 1/√2 have no peaks, where A monotonically 

declines with increasing r. For 𝜁 = 1/√2, we get 
𝑑2𝐷

𝑑𝑟2 = 0, which indicates a stationary 

inflection point at r = 0. 

That is, 𝜁 = 1/√2 = 𝜁𝑐 is a critical damping ratio that separates the resonance 

with a peak in amplitudes (A > 1.0) from the no resonance (A < 1.0). The 𝜁 > 𝜁𝑐 (=

1/√2)  essentially signifies that the system is overdamped. This should not be 

confused with the underdamping 𝜁 < 1.0 , critical damping 𝜁 = 1.0 , and over-

damping 𝜁 > 1.0; all of which refer to an unexcited system. Here, we propose a 

universal critical damping ratio of 𝜁𝑐 = 1/√2 for excited systems including damped 

and undamped systems. 

It is worth understanding the origin of this universal critical damping ratio 𝜁𝑐 =

1/√2. We know that a system with damping has a smaller damped natural frequency, 

i.e.,  

𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 (11) 

Since the damped natural frequency 𝜔𝑑  is smaller than the 𝜔𝑛 , the critical 

damping of the damped system is reduced to 

𝑐𝑐𝑑 = 2𝑚𝜔𝑑 = 2𝑚𝜔𝑛√1 − 𝜁2 = 𝑐𝑐√1 − 𝜁2 (12) 

where 𝑐𝑐 = 2𝑚𝜔𝑛 is the critical damping of the unexcited system, where the vibration 

is applicable for a damping ratio less than one, i.e., an underdamped case. As such, the 

critical damping ratio  = 1.0, which is based on 𝑐𝑐 = 2𝑚𝜔𝑛, is not valid anymore for 

an excited system with damping, because  becomes larger than one when the critical 

damping of the damped system is taken into account. Considering the critical damping 

of the damped system, we can write the damping ratio of the damped system as 

𝜁𝑑 =
𝑐

𝑐𝑐𝑑
=

𝑐

2𝑚𝜔𝑛√1 − 𝜁2
=

2𝑚𝜔𝑛𝜁

2𝑚𝜔𝑛√1 − 𝜁2
=

𝜁

√1 − 𝜁2
 (13) 

To have resonance, 𝜁𝑑 < 1 (underdamping), viz., 

𝜁

√1 − 𝜁2
< 1 

⇒ 𝜁2 < 1 − 𝜁2 

⇒ 2𝜁2 < 1 

i.e., 𝜁 < 1/√2 

(14) 

In other words, there is no resonance (no peak) for 𝜁 > 1/√2 but is for 𝜁 < 1/√2 

(Figure 3). The excitation fails to excite vibration when 𝜁 > 1/√2. It can, therefore, 

be said that 𝜁𝑐 = 1/√2 is a new critical damping ratio distinguishing the occurrence 

of resonance from the no resonance. 



Sound & Vibration 2025, 59(2), 2600.  

9 

Figure 4 shows the dependence of rc on  (Equation (6)). The rc declines rapidly 

from 1.0 to 0 for 𝜁 < 1/√2 = 0.707 while it remains zero for 𝜁 > 1/√2 = 0.707. 

The new critical damping ratio 𝜁𝑐 = 1/√2 = 0.707. 

 

Figure 4. Dependence of the new critical reduced frequency rc on damping ratio . 

4. Scaling of reduced frequency 

Figure 3 demonstrates that the resonance does not coincide with r = 1.0 for all  

values except  = 0. In addition, it has been shown above that adding damping to the 

system modifies the natural frequency of the damped system. Therefore, the modified 

natural frequency of the damped system should be considered to scale the excitation 

frequency. Given that the damping ratio of the damped system is 21
d

/= −   , 

one can find the new damped natural frequency. 

𝜔𝑑𝑛 = 𝜔𝑑√1 − 𝜁𝑑
2 

     = 𝜔𝑛√1 − 𝜁2√1 − 𝜁2/(1 − 𝜁2) 

     = 𝜔𝑛√1 − 2𝜁2 

i.e., 𝜔𝑑𝑛 = 𝜔𝑛√1 − 2𝜁2 

(15) 

We can now find the new reduced frequency as 

𝑟𝑑 =
𝜔

𝜔𝑑𝑛
=

𝜔

𝜔𝑛√1 − 2𝜁2
=

𝑟

√1 − 2𝜁2
=

𝑟

𝑟𝑐
 (16) 
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The rd is now appropriately scaled reduced frequency. The relationship of rd with 

r for different  values (Equation 16) is graphed in Figure 5. The rd is a linear function 

of r with a steeper slope for a higher . The impact of  on rd is small for  < 0.2, with 

rd increasing 4.2% only between  = 0 and 0.2. On the other hand, the impact is more 

significant for larger  (> 0.2) values. 

 

Figure 5. Relationship of the new reduced frequency rd with the classical reduced 

velocity r and . 

To see the potential of rd to act as the appropriately scaled frequency, the 

amplitude curves in Figure 3 are now plotted against rd in Figure 6a. The peaks are 

now aligned at 𝑟𝑑 = 1.0 for all values of  (< 0.707), and all intersections for A < 1.0 

converge at 𝑟𝑑 = √2 = 1.414. This implies that the excitation frequency should be 

scaled as 𝑟𝑑, rather than as r. The newly proposed reduced frequency rd brings in the 

occurrence of the resonances at 𝑟𝑑 = 1.0  for all  values below the new critical 

damping 
c

  = 0.707. The newly defined rd is, therefore, said to be universal reduced 

frequency. Figure 6b displays a contour plot of log-transformed A data presented in 

Figure 6a. The location of peak A is indicated by a purple-dashed line, while A = 1.0 

(log(A) = 0) is represented by a blue-dashed line for each  value. At a given rd value, 

A declines and grows with increasing  when 𝑟𝑑 < √2 and 𝑟𝑑 > √2, respectively. This 

suggests that a smaller  is more favorable for suspending a structure when 𝑟𝑑 > √2. 

Notably, the highly curved Amax and A = 1.0 lines observed in the r− plane in Figure 

3d appear as straight vertical lines in the rd− plane in Figure 6b. This transformation 

highlights the potential, significance, and universality of the newly defined rd for both 

excited and unexcited systems. 
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Figure 6. The relationship of A with r and , with rd acting as the appropriately scaled frequency: (a) Steady-state 

vibration amplitude A of an elastically mounted cylinder undergoing forced vibration as a function of the new reduced 

frequency rd and damping ratio ; (b) Contour plot of amplitude A on the rd− plane.  

Note: (a) The resonance peaks in A for   0.7 are now on a vertical line rd = 1.0, and all crossing points 

collapse into rd = 1.414; (b) the purple-dashed and blue-dashed lines mark the peak A (Amax) and A = 1.0, 

respectively, for each  value. 

Let us see how the vibration response equation looks when the 𝑟𝑑 is introduced 

in Equation (3). From Equations (3) and (16), we can write 

𝐴 =
1

√{1 − 𝑟𝑑
2𝑟𝑐

2}2 + (2𝜁𝑟𝑑𝑟𝑐)2

 
(17) 

Using Equation (16), it can further be expanded as 

𝐴 =
1

√{1 − 𝑟𝑑
2(1 − 2𝜁2)}2 + 4𝜁2𝑟𝑑

2(1 − 2𝜁2)

 

 =
1

√1 − 𝑟𝑑
2(1 − 2𝜁2){2 − 𝑟𝑑

2(1 − 2𝜁2) − 4𝜁2}

 

=
1

√1 − 𝑟𝑑
2(2 − 𝑟𝑑

2)(1 − 2𝜁2)2

 

i.e., A = 1/√1 − 𝑟𝑑
2(2 − 𝑟𝑑

2)(1 − 2𝜁2)2 

(18) 

Equation (18) reflects that, regardless of , the A is maximum at 𝑟𝑑 = 1.0 while 

A < 1.0 for r > √2 (crossing point). Equation (18) and Figure 6 further reflect that A 

= 1.0 for 𝑟𝑑 = 0 and 𝑟𝑑 = √2= 1.414. 

Ibrahim [21] investigated the impact of nonlinear spring behavior on forced 

vibration amplitude through a comprehensive parametric study. His findings revealed 
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notable distinctions in the system’s response compared to systems with purely linear 

springs. Specifically, the introduction of a nonlinear component resulted in a shift of 

the system’s resonance frequency, deviating by approximately ten percent from the 

linear case. Furthermore, a qualitative change in the system’s response curve was 

observed; the nonlinearity caused the curve to bend over at high amplitudes, 

effectively limiting and forcing down the system’s response. This behavior was 

attributed to the nonlinear spring’s influence, leading to resonance peaks occurring at 

higher frequencies compared to a linear system. A thorough validation of the new 

scaling method’s applicability across diverse nonlinear scenarios is essential for future 

investigations. 

5. Novelty and advantages of the new critical damping ratio and 

reduced velocity 

Traditional methods like the Rayleigh damping model [14] and the half-power 

bandwidth method [15] rely on classical reduced frequency r (= /n) and damping 

ratio ζ for resonance characterization. However, these methods fail to align resonance 

peaks accurately across different damping ratios. This paper introduces a new reduced 

frequency 𝑟𝑑 = 𝜔/(𝜔𝑛√1 − 2𝜁2), which consistently aligns resonance peaks at 𝑟𝑑 = 

1.0 and the crossing points A = 1.0 (beyond resonance) at 𝑟𝑑 = √2, regardless of ζ. 

This refinement offers a more accurate characterization of vibration behavior, 

particularly for damped systems. 

Techniques like the logarithmic decrement method [17] and parametric 

excitation-based stabilization [11] are effective but limited to specific scenarios, such 

as free vibration or non-resonant conditions. The new scaling for reduced frequency 

and critical damping ratio is universally applicable, capturing the dynamics of both 

damped and undamped excited systems. This makes it suitable for a broader range of 

engineering applications, from mechanical systems to biomechanics and medical 

imaging [19], where damping properties play a critical role. While methods like 

damper optimization [10] and vibration fatigue analysis [17] are practical, they often 

require complex calculations or experimental setups. The framework simplifies the 

characterization of the resonance by collapsing peaks at a consistent reduced 

frequency (𝑟𝑑 = 1.0). This reduces computational complexity and enhances practical 

implementation in real-world systems, such as automotive suspensions, structural 

engineering, and medical devices. 

For unexcited systems, stability is classified as underdamped (ζ < 1.0), critically 

damped (ζ = 1.0), or overdamped (ζ > 1.0). However, this classification does not 

account for the presence of external excitation forces. Our new critical damping ratio 

𝜁𝑐 = 1/√2 serves as a threshold for resonance in excited systems. Firstly, for  < c, 

the system is underdamped and resonant, exhibiting a peak in the amplitude-frequency 

response at 𝑟𝑑 = 1.0 for all values of  < c. Secondly, for   c, the system is non-

resonant, with no peak in the amplitude-frequency response. The amplitude-frequency 

curve monotonically declines, which is critical for applications like vibration isolation 

systems or shock absorbers, where minimizing amplitude at all frequencies is desired. 

This behavior is crucial for designing systems where resonance must be avoided, such 
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as aerospace structures, bridge engineering, vibration isolation systems, and shock 

absorbers. 

The new critical damping ratio can be used to optimize damping in car 

suspensions. For instance, when  < c, the suspension system can absorb road 

vibrations without excessive oscillations, improving ride comfort. Conversely, when 

  c, the system ensures that oscillations are minimized, enhancing stability at high 

speeds. In the cases of wind turbine blades, suspension bridges, or ocean risers, c can 

help determine the damping required to prevent resonance caused by vortex-induced 

vibrations. By adjusting ζ to be slightly above c, the mentioned structures can operate 

efficiently without excessive resonant oscillations. In ultrasound imaging or 

elastography, ccan be applied to design transducers that achieve optimal damping, 

ensuring accurate imaging without distortion from resonant vibrations. In seismic 

design, ccan guide the selection of damping materials to ensure that buildings remain 

stable during earthquakes. For  < c, structures can absorb seismic energy, while  

 c can completely prevent resonance-induced damage. By further exploring the 

impact of the new reduced velocity and critical damping on system stability and 

frequency response and illustrating their application through practical case studies, 

the theory can be solidified as a fundamental tool for vibration analysis across 

diverse engineering disciplines. This would not only enhance the theoretical 

framework but also bridge the gap between theory and practical implementation.  

6. Properties of response curves 

Four predominant properties feature the vibration responses in Figure 6: 

maximum vibration amplitude 𝐴max , phase lag  between force and displacement, 

sharpness or bandwidth (𝛥𝑟𝑑)𝑏 = 𝑟𝑑2 − 𝑟𝑑1 of the responses, and quality factor Q. 

The 𝐴max and  are easily understood while the (𝛥𝑟)𝑏 is the width of r corresponding 

to the amplitude of 𝐴max/√2 representing power or root-mean-square of displacement 

at the resonance. The quality factor, also known as the Q factor, is the ratio of the 

initial energy stored in the resonator to the energy lost in one radian of the oscillation 

cycle, indicating the degree of damping of an oscillator or resonator [22]. It is 

alternatively defined as the ratio of the resonance frequency to its bandwidth when 

subjected to an oscillating driving force. These two definitions are numerically similar 

at small damping but differ at high damping. A higher Q indicates a lower rate of 

energy loss, and the oscillations die out more slowly. In other words, resonators with 

high-quality factors have low damping [23]. All three are essentially a measure of the 

damping in a system.  

Maximum amplitude: We have found that maximum vibration amplitude 𝐴max 

occurs at 𝑟𝑑 = 1.0. Plugging 𝑟𝑑 = 1.0 in Equation (18), we can get 

𝐴max =
1

2𝜁√1 − 𝜁2
 (19) 

The dependence of 𝐴max on  is illustrated in Figure 7. The 𝐴max  is highly 

sensitive to  for  < 0.4 where 𝐴max plunges from  to 1.75 with  increasing from 0 

https://en.wikipedia.org/wiki/Radian
https://en.wikipedia.org/wiki/Oscillator
https://en.wikipedia.org/wiki/Resonator
https://en.wikipedia.org/wiki/Bandwidth_(signal_processing)
https://en.wikipedia.org/wiki/Damping_ratio
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to 0.3. On the other hand, when  is increased from 0.3 to 0.7, the 𝐴max decreases 

much less, from 1.75 to 1.0 only. When  is small, the maximum amplitude can be 

reduced to 

𝐴max =
1

2𝜁
 (20) 

Equation (20) indicates that 𝐴max declines hyperbolically with increasing  (see 

the inset of Figure 7). 

 

Figure 7. Dependence of maximum amplitude Amax on damping ratio . 

Note: The inset is a zoomed-in view; The amplitude declines rapidly for  < 0.3 and mildly for  > 0.3. 

Phase lag at maximum amplitude: It is known that  = 90 at the resonance 

(maximum A) when  is small. Is it true when  is large? It is thus worth finding the 

dependence of  at the maximum amplitude (𝑟𝑑 = 1.0) on  , as shown in Figure 8. 

With increasing  from 0 to 0.6, the phase lag corresponding to the resonance 

(maximum amplitude) decreases from 90 to 41.4. This implies that the phase lag is 

not necessarily 90, but less than 90, at the resonance for a high damping ratio. In 

classical flow-induced vibrations of a bluff body, it is a well-accepted argument that 

 < 90 and  > 90 in the initial/upper and lower branches of the vibration response 

curve, respectively, with 𝐴max corresponding to  ≈ 90 [4,24]. Figure 8, nevertheless, 

reflects that the case of  < 90 and  > 90 in the initial/upper and lower branches, 

respectively, may be true when the damping ratio is as small as  < 0.05. The lower 

branch or a part of the lower branch may have  < 90 when the damping ratio is large. 
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Figure 8. Dependence of phase lag  at maximum amplitude Amax on the damping 

ratio  (< 0.7). 

Bandwidth and quality factor: Putting the value of 𝐴 = 𝐴max/√2 =
1

2√2𝜁√1−𝜁2
 

in Equation (18), we can get 

1

2√2𝜁√1 − 𝜁2
=

1

√1 − 𝑟𝑑
2(2-𝑟𝑑

2)(1-2𝜁2)2

 

⇒ 8𝜁2(1 − 𝜁2) = 1 − (2𝑟𝑑
2 − 𝑟𝑑

4)(1-2𝜁2)2 

⇒ 8𝜁2 − 8𝜁4 = 1 − 2𝑟𝑑
2(1-2𝜁2)2 + 𝑟𝑑

4(1-2𝜁2)2 

⇒ 𝑟𝑑
4(1-2𝜁2)2 − 2𝑟𝑑

2(1-2𝜁2)2+1-8𝜁2 + 8𝜁4 = 0 

⇒ 𝑟𝑑
4 − 2𝑟𝑑

2 +
1-8𝜁2 + 8𝜁4

(1-2𝜁2)2
= 0 

It leads to two solutions 𝑟𝑑1 and 𝑟𝑑2 of 𝑟𝑑, i.e., 

𝑟𝑑1 = {1 −
2𝜁√1 − 𝜁2

1-2𝜁2
}

1/2

 (21a) 

𝑟𝑑2 = {1 +
2𝜁√1 − 𝜁2

1-2𝜁2
}

1/2

 (21b) 

From Equation (21),  
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    𝑟𝑑2
2 − 𝑟𝑑1

2 =
4𝜁√1 − 𝜁2

1-2𝜁2
 

⇒ (𝑟𝑑2 + 𝑟𝑑1)(𝑟𝑑2 − 𝑟𝑑1) =
4𝜁√1 − 𝜁2

1-2𝜁2
 

   ⇒
(𝑟𝑑2 + 𝑟𝑑1)

2
(𝑟𝑑2 − 𝑟𝑑1) =

2𝜁√1 − 𝜁2

1-2𝜁2
 

(22) 

Considering each curve is symmetric about 𝑟𝑑 = 𝑟𝑑𝑐  =1.0, we can write (rd1+ 

rd2)/2 = 1.0 which makes Equation (22) as 

   𝑟𝑑2 − 𝑟𝑑1 =
2𝜁√1 − 𝜁2

1-2𝜁2
 (23) 

which is the bandwidth of the response. 

The quality factor is defined as  

𝑄 =
𝑟𝑑𝑐

𝑟𝑑2 − 𝑟𝑑1
  =

1-2𝜁2

2𝜁√1 − 𝜁2
 (24) 

Equations (19) and (24) echo that the larger the , the smaller the Q and 𝐴max. 

If  is small, the 𝑟𝑑1, 𝑟𝑑2 and Q can be reduced to 

𝑟𝑑1 = {1 − 2𝜁}1/2, (25a) 

𝑟𝑑2 = {1 + 2𝜁}1/2, and (25b) 

𝑄 =
𝑟𝑑𝑐

𝑟𝑑2 − 𝑟𝑑1
  =

1

2𝜁
 (25c) 

All these features for small  are reflected in Figure 9. Equations (20) and (25c) 

both are with an assumption of small , yielding Q =Amax= 1/(2), i.e., Q essentially 

equals 𝐴max at small . It is, nevertheless, not the case when  is large. To assimilate 

the quantitative difference between Q and 𝐴max for large values of , Q /Amax= 1−22 

is presented in Figure 10, which reflects that Q ≈ 𝐴max  for  < 0.05 while Q is 

progressively smaller than 𝐴max for  > 0.05. That is, with increasing , the Q decays 

more rapidly than the 𝐴max, the former being only 2% of the latter at  = 0.7. 
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Figure 9. Shape function for a vibration mode and its features. 

 

Figure 10. Ratio of Q and Amax for different  values. The Q/Amax ≈ 1.0 for  < 0.05 

while it decreases parabolically for  > 0.05. 

7. Conclusions 

The paper explores the fundamental principles of vibrations in systems subjected 

to harmonic excitation. The study models a forced oscillation using a cylinder-spring-

damper system. Key questions include why maximum amplitude does not align with 

resonance and how damping and frequency are scaled. The goal is to provide a 

universal understanding of damped systems under excitation. 

The amplitude A of vibration depends on the damping ratio (ζ) and the reduced 

frequency (r). The impact of  on A is insignificant for r > 4.0 but significant for r < 

2.0. The so-called resonance occurs at r = 1.0 only for undamped systems (ζ = 0). For 

damped systems, the resonance (peak amplitude) shifts to r < 1.0 for 𝜁 < 1/√2 and 

the resonance is absent for 𝜁 > 1/√2. This study imparts a new critical damping ratio 

of 𝜁 = 𝜁𝑐 = 1/√2 for an excited system becoming underdamped for 𝜁 < 1/√2 and 
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overdamped for 𝜁 > 1/√2, respectively, as opposed to ζ = 1.0, < 1.0 and > 1.0 for an 

unexcited system, respectively. The study suggests that the traditional scaling of 

frequency is inadequate to define the resonance. A new scaling method for reduced 

frequency, denoted as 𝑟𝑑 = 𝜔/(𝜔𝑛√1 − 2𝜁2) = 𝑟/√1 − 2𝜁2 , is proposed. This 

method aligns the resonance peaks at 𝑟𝑑 = 1.0 = 𝑟𝑐  for different damping ratios, 

offering a more accurate characterization of vibration responses. 

Four key properties—maximum amplitude, phase lag, bandwidth and quality 

factor—are discussed. The maximum amplitude decreases with increasing ζ as  

𝐴max = 1/(2𝜁√1 − 𝜁2). The phase lag at the resonance is not necessarily 90, rather 

decreasing from 90 to 41.4 with increasing  from 0 to 0.6. The bandwidth of the 

frequency range is inversely related to damping. The relationship between quality 

factor Q decreases more rapidly for higher  values. 

The paper concludes that the new definitions for critical damping ratio and 

reduced frequency provide a more universal framework for understanding and 

predicting the behavior of excited damped systems. Validation studies should be 

conducted across a range of applications to ensure the robustness and generalizability 

of the findings. 
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