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Abstract: Bridges are important infrastructure for highways. Monitoring their status is of great 

significance to ensure safe operations. In this work, a novel integrated technique from wavelet 

packet energy curvature difference (WPECD) and artificial intelligence (AI) for bridge damage 

identification is established. Initially, the damages are simulated in the bridge decks by 

changing the material stiffness reduction levels of bridge elements by three levels (5%, 10%, 

15%) to study the effect of damage on the bridge response. Then the WPECD maps are plotted 

from vibration response before and after damage to the bridge for each stiffness reduction level. 

Unfortunately, given the nonlinearity of damage geometry, it is not easily feasible to use 

WPECD maps for damage identification accurately. Therefore, the (WPECD) maps are used 

for training a new architecture of recurrent neural networks with long short-term memory 

blocks (RNN-LSTM) for bridge damage identification by predicting the wavelet functions and 

wavelet decomposition layer effect of each node in the bridge. The effectiveness and reliability 

of the proposed approach were confirmed by numerical and experimental results. The 

performance of the proposed technique achieved high scores of accuracy, regression, and F-

score equal to 93.58%, 90.43% and 88.17% respectively indicating the applicability of the 

proposed method for use on other important highway infrastructure. 

Keywords: structural health monitoring (SHM); artificial intelligence (AI); wavelet packet 

energy curvature difference (WPECD); recurrent neural network with long short-term memory 

blocks (RNN-LSTM) 

1. Introduction 

Many highway infrastructures such as bridges are built through mountains and 

across water. The geographical environment, geological conditions, topography, and 

landforms are Complex, when natural disasters such as floods and heavy rains occur, 

it is straightforward for the highway infrastructures to collapse and generate complete 

or partial failure in highway flow. Safety problems in highway infrastructure generally 

do not occur suddenly and have symptoms [1]. 

It can timely monitor the environmental input, structural status parameters, and 

diseases of the bridge, integrate various monitoring data, regular measurement 

information, and analysis results, conduct an overall evaluation of the structural safety 

and usage status, and evaluate the working performance of the overall bridge and its 

main components. In this way, we can effectively control the operating status and 

development trend of the bridge, detect the dangerous conditions faced by the bridge 

structure itself and driving as early as possible, issue early warnings in the budding 

stage of danger in the bridge structure, and effectively avoid the occurrence of major 

accidents [2,3]. In this regard, there is much research that deals with different and 
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effective methods for establishing applicable SHM systems [4], including using AI 

algorithms [5] and other techniques [6–10]. 

The signal of the bridge structure can be locally analyzed or in space, at any time 

which is one of the big advantages of the wavelet method. The wavelet analysis can 

discover the hidden features in bridge signals that are considered to be the 

characteristics of the bridge structure. So the wavelet transformation method is the 

common method for structural damage identification [11–13]. However, the wavelet 

method analysis accuracy is low in the high-frequency domain, Therefore, the 

WPECD-based damage identification becomes a highly impacted research point [14–

16]. Ding et al. [17] utilized the WPECD theory for predicting structural damage with 

experimental verification. Ouyang et al. [18] used symplectic geometry WPECD 

theory as a damage identification method for the arch bridge. Pouyan and Hosein [19] 

investigated on detection and quantification of damage location and severity for steel 

structures using wavelet packet transform for denoising the initial signals, in 

combination with a peak picking technique. Barbosh and Sadhu [20] proposed a 

damage visualization approach by leveraging the classical signal decomposition 

capabilities of Wavelet Packet Transformation (WPT) and the classification abilities 

of the Gaussian Mixture Model (GMM). Han et al. [21] confirmed experimentally for 

damage identification via WPECD theory. The most recent researches on structural 

damage identification via WPECD theory are achieved theoretically stage research 

because the experimental verification is very complicated, this stems from the 

complexity range of damage analysis of bridge structures in real situations rather than 

laboratory conditions. 

Recently, models based on deep learning have been utilized in the data-driven 

approach [22]. In many platforms, the appropriate application of the models based on 

deep learning has been verified when dealing with large amounts of data [23]. Deep 

learning algorithms are classifiers that separately extract optimal characteristics from 

large amounts of datasets registered by sensors and simultaneously determine the 

health status of the structure [24]. The detection models based on deep learning need 

characteristics extracted from datasets to classify and determine the health status of 

the structure [25]. The suitable structural damage detection is based significantly on 

the characteristics extracted/selected. The feature extraction of damage depends on the 

structural characteristics, geometric, boundary conditions, and damage types, this 

damage may vary over time. In addition, considering the operation and environmental 

effects, the function of more sensitive damage to the environmental changes is 

extracted [26]. Sun et al. [27] integrated between WPECD approach and neural 

networks for damage identification in structures and they confirmed the effectiveness 

of their proposed method. 

A typical stiffness-reduction model relates the degradation of modulus to the 

fraction of life expended at a given stress amplitude, assuming that the residual 

stiffness decreases monotonically as the number of load cycles increases. This 

research is a novel integrated technique from the WPECD theory with RNN-LSTM 

for bridge damage identification. As we will mention later, three levels of damage 

index by apply the stiffness reduction of modulus 𝐸𝑥 , and 𝐸𝑦 by (5%, 10%, 15%) 

selectively in some elements of the finite element model of the bridge, and then the 
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WPECD maps for each level that is used for training the designed RNN-LSTM. RNN-

LSTM architecture is used for predicting the wavelet functions and wavelet 

decomposition layer effect of each node in the bridge. The effectiveness and reliability 

of the proposed approach were confirmed by numerical and experimental results. The 

performance of the proposed technique achieved high scores of accuracy, regression, 

and F-score that indicates the applicability of the proposed technique for use on other 

important highway infrastructure. The schematic description of the bridge proposed 

identification system is shown in Figure 1. 

 

Figure 1. The schematic description of the bridge proposed monitoring system. 

2. Methodology 

2.1. WPECD overview 

The WPECD method is a damage detection technique that utilizes the wavelet 

packet transform to analyze structural vibration signals, identifying potential damage 

locations by comparing the curvature differences in energy distribution between a 

healthy and damaged state across different frequency components of the signal; 

essentially, it highlights areas where significant changes in energy distribution occur 

due to damage, allowing for damage localization as we will explain later. This is a 

signal processing technique that decomposes a signal into multiple frequency 

components at different scales, providing detailed information across the frequency 

spectrum. The advantage of WPECD, it has High sensitivity and localization 

capability, is Non-invasive, and is considered a multiple-resolution method, which can 

have a table and the local characteristics of the signal in the time-frequency domain. 

Although the resolution of each wavelet decomposition layer is not similar, the sub-

bands taken in each layer are stationary, and they are only decomposed in the part that 

has low frequency. So, for the resolution band that has high frequency, it also has the 
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flaws of a bad, so it only applies to certain features of waves. In each layer, sub-bands 

are divided into two parts and then transferred to the after layer to decompose both 

frequencies (low, and high). Another limitation of WPECD is the complexity intensive, 

especially for large datasets, the parameter selection can impact the accuracy of 

damage detection, and the curvature calculation sensitivity by the signal noise.  

Each layer of subbands covers the frequency occupied by the original signal, but 

the resolution of each layer is different, as shown in Figure 2. The efficiency of 

WPECD in-signal analysis is high and it can be utilized as a multi-resolution. The 

parts that have high frequency and unsatisfactory analysis will be further decomposed, 

it can be analyzed according to the information of the analysis signal features, to 

modify the resolution of high-frequency, it can be selected the corresponding 

frequency band to identify the signal spectrum. 

Usually, the WPECD function is presented by 𝜓𝑗,𝑘
𝑖

 
, where 𝑖, 𝑗, 𝑘 are the factors of 

the wavelet such as scale, translation, and modulation factors respectively, the function 

is evaluated as [28]: 

𝜓𝑗,𝑘
𝑖 (𝑡) = 2𝑗 2⁄ 𝜓𝑖(2𝑗𝑡 − 𝑘), (𝑖 = 1,2, ⋯ ) (1) 

The wavelet function repetition relationship 𝜓𝑖  is: 

𝜓2𝑖(𝑡) = √2 ∑ ℎ(𝑘)∞
−∞ 𝜓𝑖(2𝑡 − 𝑘)  (2) 

𝜓2𝑖+1(𝑡) = √2 ∑ 𝑔(𝑘)∞
−∞ 𝜓𝑖(2𝑡 − 𝑘)  (3) 

 

Figure 2. Schematic of wavelet packet transform. 

At Equations (2) and (3), 𝜓 is the mother function of the wavelet, ℎ(𝑘), 𝑔(𝑘) are 

the scale functions and are associated with the mirror filter parameters, it is a small 

integral at any signal by wavelet mother function. 𝑗𝑡ℎ  is called the repeated 

relationship order, and 𝑗 + 1𝑡ℎ is the WPECD decomposition in horizontal order: 

𝑓𝑗
𝑖 (𝑡) = 𝑓𝑗+1

2𝑖−1(𝑡) + 𝑓𝑗+1
2𝑖 (𝑡)  (4) 
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𝑓𝑗+1
2𝑖−1(𝑡) = 𝐻𝑓𝑗

𝑖 (𝑡)  (5) 

𝑓𝑗+1
2𝑖 (𝑡) = 𝐺𝑓𝑗

𝑖 (𝑡)  (6) 

where: 𝐻  and 𝐺  coincided with the operators of the filter of ℎ(𝑘)  and 𝑔(𝑘) 

respectively, evaluated: 

𝐻{∙} = ∑ ℎ(𝑘 − 2𝑡)∞
𝑘=−∞   (7) 

𝐺{∙} = ∑ 𝑔(𝑘 − 2𝑡)∞
𝑘=−∞   (8) 

After the decomposition of the wavelet packet at the 𝑗 level, the beginning signal 

𝑓(𝑡) is expressed as: 

𝑓(𝑡) = ∑ 𝑓𝑗
𝑖 (𝑡)2𝑗

𝑖=1   (9) 

Wavelet packet component signal 𝑓𝑗
𝑖(𝑡) can be computed as a wavelet packet 

linear function collection: 

𝑓𝑗
𝑖 (𝑡) = ∑ 𝑐𝑗,𝑘

𝑖 (𝑡)𝜓𝑗,𝑘
𝑖 (𝑡)∞

−∞   (10) 

The computation formula for wavelet packet coefficient (WPC) is: 

𝑐𝑗,𝑘
𝑖 = ∫ 𝑓(𝑡)

∞

−∞
𝜓𝑗,𝑘

𝑖 (𝑡)𝑑𝑡  (11) 

Between them, the orthogonal state of the WPC is satisfied: 

𝜓𝑗,𝑘
𝑚 (𝑡)𝜓𝑗,𝑘

𝑛 (𝑡) = 0, 𝑚 ≠ 𝑛 (12) 

The decomposition of the wavelet packet is often utilized in energy detection. 

The energy signal of the Wavelet Packet Energy is described as: 

𝐸𝑓 = ∫ 𝑓2(𝑡)
∞

−∞
𝑑𝑡 = ∑ ∑ ∫ 𝑓𝑗

𝑚(𝑡)𝑓𝑗
𝑛∞

−∞
2𝑗
𝑛=1

2𝑖
𝑚=1 (𝑡)𝑑𝑡  (13) 

By replacing Equation (10) with Equation (13), and utilizing the orthogonal state 

of Equation (12), we get: 

𝐸𝑓 = ∑ 𝐸
𝑓𝑗

𝑖
2𝑖
𝑖=1   (14) 

where wavelet packet component energy 𝐸
𝑓𝑗

𝑖  can be considered as stored in the 

component signal 𝑓𝑗
𝑖(𝑡) energy of: 

𝐸
𝑓𝑗

𝑖 = ∫ 𝑓𝑗
𝑖 (𝑡)2∞

−∞
𝑑𝑡  (15) 

where 𝐸𝑓 is the signal energy 𝑓(𝑡). 

Equation (14) can be analyzed as the signal total energy and it is specified by 

adding the WPECD energies of corresponding components to various bands of 

frequency. 

The energies of the components are sensitive to vary in signal characteristics and 

can be utilized to reveal and detect the signal features. The signal response is affected 

by the damage to the structure. When the frequency of certain signal components 

decomposed by the WPECD. It is measured via a change in the signal energy 

distribution with the frequency for diagnosing structural damage. 



Sound & Vibration 2025, 59(2), 2372.  

6 

2.2. RNN-LSTM configuration 

As we mentioned previously, the bridge damage will be identified by integrating 

the WPECD technique with RNN-LSTM for bridge damage identification by using 

the data extracted from WPECD for training the RNN-LSTM algorithm to identify the 

damage features. 

RNNs deeply analyze the time series data by applying the feedback loops to the 

original ANN [29]. The biggest disadvantage in RNNs is known as the vanishing 

gradient problem, where during the backpropagation process, the error signal used to 

train the network exponentially decreases the further you travel backward in RNN, so 

sometimes use computational nodes known as LSTM to relieve this problem as shown 

in Figure 3. The data feature extraction is done from the first layers of ANN. These 

layers are responsible for extracting significant information from the input data. 

LSTM is a special type of RNN with a gating mechanism and memory cells, 

which greatly improve the performance of RNNs. There are three types of gates within 

each LSTM cell: input gate, forget gate, and output gate, and these gates define the 

state of each memory cell by using sigmoid as the activation function to cause 

information to be transmitted selectively. The memory cell that retains the long-term 

state 𝑐𝑡 is the key architecture of each LSTM cell. The internal architecture of a single 

LSTM cell is shown in Figure 4. 

 

Figure 3. A 5 × 5 filter rolls around an input volume and generates an output [29]. 

The basic form of LSTM can be derived from: 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  (16) 

�́�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)  (17) 

𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀�́�𝑡  (18) 

ℎ𝑡 = 𝑜𝑡⨀ tanh(𝑐𝑡)  (19) 

where 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑐 , and 𝑊𝑜   define the weight matrices of LSTM; 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑐 , and 𝑏𝑜 

represent the bias vector of LSTM; 𝑓𝑡 , 𝑖𝑡, and 𝑜𝑡  her forget gate, input gate, and output 

gate vectors at timet; 𝑐𝑡−1 and �́�𝑡 mean, respectively, the previous cell condition and a 
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new candidate value. 𝜎(𝑧)  and 𝑡𝑎𝑛ℎ(𝑧)  are used as the activation functions, as 

indicated below: 

𝜎(𝑧) =
1

1+𝑒−𝑧  (20) 

𝑡𝑎𝑛ℎ(𝑧) =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧  (21) 

 

Figure 4. A single block diagram in an RNN-LSTM [30]. 

3. Case study 

3.1. The experimental work 

To evaluate the effectiveness of the WPECD Technique, an experimental work 

on a truss bridge was established. The sensors were installed on each bridge deck and 

excited using a random load on the decks as presented in Figure 5. As shown in the 

Figure, the bridge’s geometric specifications are 4 m long, and 1 m high, and the 

bridge’s structural specifications are 𝐸 = 210 GPa  elastic modulus, 𝐺 = 10.64 GPa 

Shear modulus, 𝜐 = 0.3 Poisson coefficient, and 7860 kg/m3 density. The sensor type 

used in this research is a wireless intelligent vibration sensor, which is one of the 

Lightweight Wireless sensors, as shown in Figure 6, the sensor performance 

indicators are presented in Table 1. Figure 7 presents the excitation load applied to 

the bridge model is random excitation (−3000 ~ 3000 kN ± 20 N) in the x-axis direction 

and simultaneously, the vibrations of specific decks were measured. The Vibration 

tests were conducted to bridge before and after damage for three damaged cases, where 

noises and measurement errors were considered to be present. The damage was 

simulated as changing the material stiffness reduction levels (5%, 10%, 15%) on the 

bridge deck element. The vibrational signals were extracted from sensors for each of 

the examined decks.  
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Figure 5. Sensors install configuration on the bridge. 

 

Figure 6. Wireless intelligent vibration sensor. 

Table 1. Sensor performance indicators. 

Gear Acceleration Small Speed Medium Speed High Speed 

Sensitivity V. s/m: 0.3 23 2.4 0.8 

Acceleration (m/s2) maximum range: 20 - - - 

Speed (m/s): - 0.125 0.3 0.6 

Displacement (mm): 20 200 500 - 

Passband Hz, +1/−3dB: 0.25 ~ 80 1 ~ 100 0.25 ~ 100  0.17 ~ 100 

Output load resistance (kΩ): 1000 1000 1000 1000 

Acceleration (m/s2) resolution: 5 × 10−6 - - - 

Speed (m/s) resolution: - 4 × 10−8 4 × 10−7  1.6 × 10−6  

Displacement (mm) resolution: - 4 × 10−8  4 × 10−7 1.6 × 10−6 

size and weight: 63 × 63 × 80 mm, 1 kg 

Temperature environment: −35 ℃ ~ +70 ℃ 

Humidity environment: ≤ 90% RH 
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Figure 7. Random excitation. 

The sensor type used in this research is a wireless intelligent vibration sensor, it’s 

one of the Lightweight Wireless sensors.  

The following steps were followed to extract the natural frequency of the 

experimental bridge model: 

1) The model was stimulated by a random excitation (−3000 ~ 3000 kN ± 20 N) in 

the x-axis direction and simultaneously, the vibrations of specific decks were 

measured. 

2) To calculate the natural frequency of a structure using the Fast Fourier Transform 

(FFT) method, you first need to acquire a time-domain vibration signal from the 

structure, then apply the FFT algorithm to transform the signal into the frequency 

domain, where the peaks in the spectrum correspond to the natural frequencies of 

the structure; essentially, you are identifying the frequencies at which the 

structure exhibits the most significant vibration amplitude. 

3) Finally, the physical model natural frequency was obtained. The procedure of 

extracting free vibration from the experimental model of the bridge is presented 

in Figure 8. Figure 8a presents an example of the vibration signal measured from 

the 2nd deck of the bridge. As seen in the Figure the noise is very clear during 

the measuring. Figure 8b indicates the natural frequency contained in the FFT 

function of the signal, which is equal to (28.2 Hz).  



Sound & Vibration 2025, 59(2), 2372.  

10 

  
(a) (b) 

Figure 8. (a) The acceleration diagram associated with the 2nd deck; (b) the free vibration frequency of the bridge in 

the x-axis direction (experimental model). 

3.2. Numerical simulation of bridge 

Figure 9 presents the truss bridge numerical simulation model by ANSYS 

software using the same geometric and structural specifications that are used in the 

vibration test. The element type selection is Link1 element is used in the material 

model 𝐸𝑋 210000 modeling structure, and the mesh size selection was done based on 

sensitivity analysis. 

 

Figure 9. The numerical simulation details of the truss bridge. 

3.2.1. Stress analysis 

Figures 10 and 11 show bridge deformation and maximum stress respectively. 

As seen in the figures the maximum stress of the bridge is about 98.468 MPa, and the 

maximum deformation is 15.918 mm. 
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Figure 10. Displacement. 

 

Figure 11. Von mises stress. 

3.2.2. The numerical model validation 

In this research, the numerical results were used to estimate the WPECD index 

and damage detection, thus, the numerical model validation should be done by 

comparing the natural frequency of the bridge in experimental and numerical models, 

as presented in Figures 8 and 12. To study the influence of the noise on the responses 

of the sensors, the Signal-to-noise ratio (SNR = 10) will be added to the numerical 

signal before comparing, then the FFT function was used to transfer the vibration 

signal from the time to frequency domain and encode it into MATLAB. Finally, the 

numerical model’s natural frequency was obtained as shown in the Figures the error 

in the natural frequency is 1.45% between the experimental model (28.812 Hz) and 

the numerical model (28.4 Hz), which is an acceptable accuracy in validation of the 

numerical model results. 
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(a) (b) 

Figure 12. (a) The acceleration diagram associated with the 2nd deck; (b) the free vibration frequency of the bridge in 

the x-axis direction (numerical model). 

3.3. The damage model 

As we mentioned the bridge is loaded by random excitation, and divided into 85 

and 64 for a total number of nodes and elements respectively, i.e., 4 × 16 elements and 

5 × 17 nodes at 𝑥 and 𝑦 beam respectively as shown in Figure 13 and Table 2. The 

damage cases (𝐷1 , 𝐷2, 𝐷3, 𝐷4) in this work as shown in Figure 13 are considered as 

changes in stiffness reduction levels at the x and y beam axis by 5%, 10%, and 

15% respectively and the damage location has been markered using a different color 

in FEM. 

 

Figure 13. The damage location. 
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Table 2. The number of the elements and nodes at the x and y axis for each case of 

damage. 

Damage Case Element number (𝒙 − 𝒚) Node range at the x-axis Node range at the y-axis 

𝐷1  3 − 2  3 − 4  2 − 3  

𝐷2  2 − 7  2 − 3  7 − 8  

𝐷3  3 − 12  3 − 4  12 − 13  

𝐷4  2 − 15  2 − 3  15 − 16  

3.4. WPECD index specifications for bridge 

In this work, we selected the 2nd deck of the bridge to study due to it having a 

high value of deformation and the sampling frequency used in this case study is 28 Hz 

as shown in Figure 12. The corresponding WPECD index curves of the 2nd deck of 

the bridge at beam-x and beam-y for stiffness reduction levels 5%, 10%, and 15% are 

plotted in Figures 14 and 15, respectively. As shown in the Figures, for three levels 

of damage equal 5%, 10%, and 15%, the value of the WPECD index for both beam-x 

and beam-y at the damage element has a sudden change, this indicates the extent of 

sensitivity of WPECD index to damages even with the low level of damage 5%. To 

investigate the influence of sparse measurement points on the damage identification 

results, a total of 5 measurement points were selected from nodes 1, 2, 3, …, and in 

each beam in the 2nd deck. As shown in Figures 14 and 15, for example, the 

information of damage level 5% in elements 2 and 3 is submerged, while the 

information of damage level 10% in element 4 was still identified, and the damage 

becomes more identified at the higher damage levels. It can be seen that the 

measurement points are too sparse and have a greater impact on the smaller degree of 

damage. Therefore, in the experimental work, the measurement points should be as 

dense as possible for the parts where damage may occur. 

  
(a) 5% (b) 10% 
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(c) 15% 

Figure 14. WPECD index superposition in the beam-x. 

  
(a) 5% (b) 10% 

 
(c) 15% 

Figure 15. WPECD index superposition in the beam-y. 
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3.5. The bridge damage identification via WPECD and RNN-LSTM 

As we mentioned, the main goal of using the RNN-LSTM model is predicting the 

wavelet functions and wavelet decomposition layer effect of each node in the bridge 

from the WPECD index at each damage stiffness reduction level. Figure 16 presents 

the flowchart of the damage identification process using the WPECD technique and 

RNN-LSTM. For bridge damage identification by predicting the wavelet functions 

such as 𝐷𝑏15 wavelet and 𝐶𝑜𝑖𝑓5 wavelet functions and wavelet decomposition layer 

effect of each node in the bridge are employed by training the RNN-LSTM model with 

WPECD maps of the 2nd deck of bridge at beam-x and beam-y for stiffness reduction 

levels 5%, 10%, and 15%. 

The three operating conditions of each node’s response are constrained by 

WPECD. The decomposition layers number is equal to 7, the Wavelet function is 

Wavelet 𝐷𝑏15 , and 27 = 128 components and energies of WPECD coefficients, 

WPECD under two levels of damage. 

Figure 17a,b show the 𝐷𝑏15 wavelet function effect of the 2nd deck of bridge 

nodes components, where superposition from five components at beam-x and beam-y 

respectively. As shown in Figure 17a,b, the wavelet function 𝐷𝑏15, indicates that the 

damage difference under the conditions of the beam-x is suddenly greater at node 2, 

and the damage position is obvious, while the damage in beam-y conditions, the 

suddenly greater change is at node 3. We can notice that the wavelet function 𝐷𝑏15, 

has a good effect on the damage location identification. 

Figure 17c,d present the results of damage identification utilizing the coif5 

function effect. Through comparison between Figure 17a,b, and Figure 17c,d, we 

can notice the variance between the two functions of wavelet. Check the impact of 

many decomposition layers on the results of the wavelet recognition, and we can better 

see that the recognition effect occurs when the number of decomposition layers of 

WPECD increases.  

Figure 17e,f present the results of damage identification utilized by the wavelet 

𝐷𝑏15 function with several decomposition layers equal to 8. Through comparison 

between Figures 17a,b,e, and Figure 17f we can notice that both figures have similar 

results of identification at almost double calculation time equal 101 s and the value of 

the amplitude is slightly lower. 
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Figure 16. The Proposed approach for the damage identification process. 
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(a) beam-x (b) beam-y 

  
(c) beam-x (d) beam-y 

  
(e) beam-x (f) beam-y 

Figure 17. The damage identification results of the 2nd deck of bridge nodes components: (a,b) 𝐷𝑏15 effect; (c,d) 

𝐶𝑜𝑖𝑓5 effect; (e,f) decomposition layer effect. 
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3.6. The RNN-LSTM training performance 

Table 3 gives the values of mean square error (MSE) (see Figure 1) of RNN-

LSTM predicted data of damage identification of the 2nd deck of bridge at beam-x and 

beam-y for 𝐷𝑏15, wavelet and 𝐶𝑜𝑖𝑓5 wavelet functions and wavelet decomposition 

layer effect. To obtain the best performances of the present RNN-LSTM. Figure 18 

presents the training and test MSE loss using supervised mode. The training key 

parameters are presented in Table 4. The steps of MATLAB code of RNN-LSTM 

training and evaluation are presented in Algorithm 1. 

Table 3. Mean square error (MSE) values. 

Wavelet functions Direction MSE 

𝐷𝑏15  
beam-x 0.6034  

beam-y 0.3213 

𝐶𝑜𝑖𝑓5  
beam-x 0.1835 

beam-y 0.2552 

Decomposition layer 
beam-x 0.0935 

beam-y 0.1024 

Table 4. RNN key parameters. 

Training Time Gauge Training Rate Attenuation Factor 

53 sec 48 10−4 10−6 

 

 

Figure 18. Proposed RNN-LSTM Training and testing MSE loss. 
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Algorithm 1 Training and evaluating of RNN 

1: algorithm RNN 

2: input: P: 𝑝𝑡,𝑖dataset, t: time  𝑐𝑡,𝑖 dataset, 𝑤𝑡,𝑖, 𝑆𝑡  W: Network parameter matrix weight 𝑤𝑖𝑗 and bias 𝑏𝑗 

3:    output: score of DNN trained model on test dataset to estimate bridge displacement 𝛼𝑡,𝑖 for various 𝜀, EPD 

4:    let f be the feature set 3d matrix 

5:    for i in dataset do 

6:     let fi be the feature set matrix of sample I 
7:     for j in i do 

8:       vj ← vectorize 
(j, w)

 

9:        append vj to fi 

10:      append fi to f 
11:    ftrain,  ftest, ltrain, ltest ← split feature set and prediction into train subset and test subset 

12:     M ← DNN (ftrain, ltrain)  

13:     score ← evaluate (I, ltest, M) 

14:     return score 

15:  end for 

16:  end for 

3.7. Proposed method accuracy and reliability evaluation 

In this subsection, a comparison between the current method more explicitly with 

existing techniques using other algorithms of AI to detect the damages in bridges is 

presented. The performance of AI algorithms can be calibrated according to the 

following: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑟𝑎𝑡𝑒 (𝑃%), =
𝑇𝑃𝑅

𝑇𝑃𝑅+𝐹𝑃𝑅
× 100  (22) 

𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝑅%) =
𝑇𝑃𝑅

𝑇𝑃𝑅+𝐹𝑁𝑅
× 100  (23) 

𝐹 𝑠𝑐𝑜𝑟𝑒 (𝐹%) =
2𝑇𝑃𝑅

2𝑇𝑃𝑅+𝐹𝑁𝑅+𝐹𝑃𝑅
× 100  (24) 

where FNR is false negative rate, FPR is false positive rate, TNR is true negative rate, 

and TPR is true positive rate. Tables 5 and 6 present a comparison between the current 

algorithm RNN-LSTM and other two algorithms used in literature to detect the 

damages in bridges such as convolutional neural networks (CNN) by Teng et al. [31], 

and Support vector machine (SVM) by Bao et al. [32]. 

From Table 6, In general for all indexes (𝑃%, 𝑅%, 𝐹%, and Training Time), using 

CNN over the input datasets obtains a lower average accuracy than the SVM 

configuration, present approach RNN-LSTM achieves better results than the SVM and 

CNN. As a general conclusion, the proposed approach RNN-LSTM consistently 

outperforms the SVM, and CNN with all indexes. 

Table 5. Identification performance results for RNN-LSTM and other algorithms 

used in literature. 

Indexes CNN SVM RNN-LSTM 

TPR 21.34% 35.67% 48.4% 

TNR 26.78% 36.36 48.34% 

FPR 2.22% 2.64% 2.66% 

FNR 6.25% 3.75% 2.5% 
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Table 6. Comparison of the test results of the RNN-LSTM and other algorithms used 

in literature. 

Performance CNN SVM RNN-LSTM 

P% 90.58% 93.11% 94.79%  

R% 89.66% 90.74% 91.34% 

F% 86.35% 88.21% 89.16%  

Training Time (sec) 112 206 53 

4. Conclusion 

In this research, a technique of the WPECD theory with RNN-LSTM for truss 

bridge damage identification was integrated. Three levels of stiffness reduction in 

selected bridge elements were inserted (5%, 10%, 15%), and then the WPECD maps 

before and after damage for each level were plotted. The wavelet functions and 

wavelet decomposition layer effect of each node in 2nd deck of the bridge were 

predicted using RNN-LSTM architecture. We found that the different wavelet 

functions such as  𝐷𝑏15, and 𝐶𝑜𝑖𝑓5 have excellent abilities in the location of the 

damage identifying, the more layers of the wavelet decomposition of the damaged 

position, the more time consumption and comprehensive inspection of the required 

and extensive inspection. The effectiveness and reliability of the proposed approach 

were confirmed by numerical and experimental results. Considering identification 

effect and calculation efficiency RNN-LSTM achieved high rates of P%, R%, and F% 

equal to 93.58%, 90.43%, and 88.17% respectively. Results indicated the effectiveness 

of the approach provided, which confirms its applicability to other important highway 

infrastructure. 

Conflict of interest: The author declares no conflict of interest. 
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