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Abstract: Highly nonlinear oscillators are examined in their capacity to simulate intricate 

systems in engineering, physics, biology, and finance, as well as their diverse behavior, 

rendering them essential in the development of resilient systems and technological 

advancement. Therefore, the fundamental purpose of the current work is to analyze He’s 

frequency formula (HFF) to get theoretical explanations of many types of very nonlinear 

oscillators. We investigate, in both analytical and computational, the relationship between 

elastic forces and the solution of a specific oscillator. This oscillator exhibits significant 

nonlinear damping. It is assumed that the required quantity of trigonometric functions 

matches the solution of a strong nonlinear ordinary differential equation (ODE) that explains 

the motion. The novel approach definitely takes less processing time and is less complex than 

the traditional perturbation methods that were widely used in this field. This novel method, 

which is essentially giving a linearization of the nonlinear ODE, is known as the non-

perturbative approach (NPA). This procedure produces a new frequency that is similar to a 

linear ODE, much as in a fundamental harmonic scenario. Readers will benefit from an in-

depth account of the NPA. The theoretical findings are validated by numerical examination 

using Mathematical Software (MS). The theoretical and numerical solution (NS) tests yielded 

fairly similar findings. It is a well-established principle that classical perturbation methods 

trust on Taylor expansions to approximate restoring forces, therefore simplifying the current 

situation. When the NPA is used, this vulnerability does not present. Furthermore, the NPA 

enables a thorough assessment of the problems’ stability analysis, which was a not possible 

using prior conventional methodology. Consequently, the NPA is a more appropriate 

responsibility tool for examining approximations in extremely nonlinear oscillators in MS. 

Keywords: non-perturbative approach; analytical solutions; nonlinear oscillators; numerical 

solutions 

1. Introduction 

Rapid expansion of nonlinear science appears to be motivating interest among 

scientists and engineers in analytical asymptotic techniques for nonlinear problems. 

While it has been easier recently to solve linear systems through numerical 

simulations, addressing nonlinear issues analytically is still very difficult. The 

Duffing oscillator (DO) is one of the most well-known instances of a Hamiltonian 

system. However, there has not been much research done on simple generalizations 

of these oscillators, such as cubic-quintic DO. In numerous fields, both linear and 

nonlinear ODEs are employed to describe issues relevant to mathematics, physics, 

biology, chemistry, and engineering. Unlike nonlinear ODEs, which are traditionally 
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thought to have approximate solutions via many perturbation techniques, the 

solutions of a linear ODE may be easily obtained using recognized approaches. 

Furthermore, nonlinear oscillations have attracted the attention of a growing number 

of scientists. Because scientific and technical phenomena regularly took the form of 

nonlinear kinds, the nonlinear ODE is therefore highly helpful in explaining them. 

The nonlinear ODEs were therefore essential in mathematics, applied physics, and 

engineering [1]. Emphasizing the significance of mathematical calculations in 

various research works and publications pertaining to nonlinear ODEs that emerge in 

various scientific and engineering domains was imperative [2]. Few nonlinear ODEs 

have direct solutions, even if many have numerical approximations. The literature 

has used a variety of approximate analytical techniques to determine the relationship 

between the nonlinear oscillators’ frequency-amplitude. The most multipurpose 

method in evaluating non-linear engineering problems was the perturbation 

technique, which was widely utilized to derive approximate analytical solutions to 

nonlinear ODEs [3–5]. The past twenty years have seen an unbelievable growth in 

the nonlinear sciences, which has sparked an increasing interest in analytical 

methodologies in nonlinear difficulties among scientists and engineers. It was 

developed to examine the behavior of these nonlinear ODEs using both numerical 

and non-numerical approximation techniques [6–12]. A number of novel techniques 

have recently been developed in analytically solving the nonlinear ODEs. 

Consequently, several researchers developed a few special methods. In order to 

realise analytical responses that closely approximate the exact solutions, many 

researchers have explored numerous innovative and unique methods. It was done 

using the Lindstedt-Poincaré process [13]. The homotopy perturbation method (HPM) 

is one of these techniques [14,15]. A multitasking grapheme electromagnetic 

detecting device utilizing second harmonic generation was presented [16]. The 

generalized forms of these non-equilibrium work theorems, applicable to dissipative 

transformations involving simultaneous mechanical work and pressure-temperature 

or volume-temperature variations, were presented [17]. A multifunctional device was 

developed, capable of passive multiplication and division, along with high-

performance sensing of multiple physical quantities. This was achieved through a 

design integrating optical Tamm states, the inherent absorption properties of liquid 

crystals, and nonlinear optical effects [18]. Precise soliton solutions of certain novel 

changing nonlinear coefficients were derived [19]. The profile characteristics of the 

evolution wave functions, contingent upon the composite functions, were obtained. 

These solutions possess potential applicability in molecular physics. Gaussian 

solitary wave solutions were derived for a specific class of logarithmic non-linear 

Schrödinger equations incorporating a conventional harmonic oscillator potential 

[20]. The behavior of the Gaussians was depicted and the relationships of the 

pertinent parameters were analyzed.  

The approximations of the analytical responses are valid throughout the solution. 

To address the limitations of traditional perturbation methods, alternative approaches 

are employed, often combined with mathematical tools like variational theory, the 

homotopy perturbation method (HPM), and iterative techniques. It is necessary to 

expeditiously estimate a nonlinear oscillator’s periodic characteristic for engineering 

applications. Moatimid et al. [21–23] employed HPM to examine various problems 
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in Fluid Mechanics and Dynamical Systems. A nonlinear ODE can be made almost 

linear by using the frequency approach. A review was conducted on some recent 

advancement in asymptotic techniques in powerfully and weakly nonlinear systems 

[24]. Some of the more straightforward techniques for nonlinear oscillators that were 

covered were the HPM, the max-min approach, and the HFF [25]. The HFF was 

explained mathematically, and the frequency of projected accuracy was increased by 

adding the weighted average. A severely nonlinear oscillator was studied using an 

available and straightforward technique [26]. The simplest calculation can be used to 

rapidly determine its frequency quality. The outcome demonstrated that the approach 

provided a rationally accurate response. The nonlinearity of a vibration system was 

reflected in the link between frequency and amplitude. For nonlinear oscillators with 

arbitrary initial conditions (ICs), our work offered a simple frequency prediction 

method [27]. The results from the HPM and the ones from the study agreed fairly 

well. To quickly and precisely understand the nonlinear vibration of the system 

parameters, a very helpful technique is developed. A discussion of periodic qualities, 

unstable features, and a spinning pendulum ensued regarding the use of the HFF. 

Studying the characteristics dynamic of a pendulum attached to a solid rotational 

frame with an unchanged angular velocity, the vertical axis that goes through the 

pendulum’s pivot point was considered. The controlling nonlinear ODE of an 

analytical solution was created using the HFF since linear problems frequently have 

perfect solutions. The linearized equation, also referred to as a quasi-exact solution, 

depicts an almost accurate solution to the nonlinear ODE. No matter what, solving a 

linear problem was easier than solving a nonlinear. In order to address the damping 

nonlinear oscillator, a developed HFF was constructed. By linearizing a nonlinear 

oscillator using its conservative restoring force, a frequency component arising from 

the odd nonlinear damping was revealed. The amplitude-frequency formulation for 

nonlinear oscillators elucidates the crucial mechanism of pseudo-periodic motion 

and identifies that the quadratic nonlinear force contributes to the pull-down 

phenomenon in each cycle of periodic motion. When the force attains a threshold 

value, pull-down instability ensues [28]. The periodic motion of the micro-electro-

mechanical system, influenced by a singularity that complicates the determination of 

an accurate solution and the comprehension of its dynamic features, was analysed 

[29]. It was discovered that when the amplitude attains a threshold value, the 

periodic motion transitions to pull-in instability. A survey of the periodic properties 

of micro-electro-mechanical systems was conducted using the HPM, variational 

iteration method, variational theory, HFF, and Taylor series method [30]. The HPM 

is a common technique for nonlinear oscillators; however, the results are only 

relevant in cases of weak nonlinearity. Alternative analytical techniques, such the 

variational iteration approach and the HPM, can produce an acceptable approximate 

solution; however, each technique requires the execution of numerous calculations. 

A one-step frequency formulation for nonlinear oscillators was recommended, with 

this part 1 concentrating on odd nonlinearity [31]. An early Babylonian procedure 

for computing the square root of 2 was revealed, and the possible connection 

between this rudimentary technology and an ancient Chinese method was examined 

[32]. Subsequently, the approach was innovatively expanded to address algebraic 

equations. The fundamental HFF for non-linear oscillators was presented and 
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validated, and a variation was proposed [33]. A fractal vibration within a porous 

medium was investigated, and its low-frequency behavior was characterized using a 

frequency-based formulation. Nonlinear oscillation is a progressively significant and 

highly intriguing subject in engineering. A straightforward method introduced by 

Prof. He and effectively formulates a fractal un-damped DO utilizing the two-scale 

fractal derivative in a fractal space was reported [34]. The numerical outcome 

indicates that HFF is an exceptional instrument for fractal equations. The variational 

principle and frequency formula of the fractal non-linear equation are derived using 

straightforward methods presented by Professor He. A fractal adaptation of the non-

linear oscillator in a porous basis vibration was established [35].  

The practical applications of each of the following problems are: 

1) Micro-electromechanical systems (MEMS) are extensively utilized in sensors, 

actuators, and microelectronics. They are utilized in accelerometers for airbag 

activation, gyroscopes for navigational systems, pressure sensors in medical 

apparatus, and microfluidics for lab-on-chip technologies. MEMS technology 

facilitates the miniaturization and integration of mechanical and electrical 

systems, resulting in high-precision, cost-effective devices. 

2) Nonlinear systems derived from the natural oscillation of a conservative 

oscillator: These systems are examined to mimic and analyze real-world events, 

including pendulums, vibrating molecules, and energy transmission in 

mechanical systems. Useful applications encompass the creation of energy 

harvesters, the analysis of chaos in mechanical systems, and the optimization of 

oscillatory systems in engineering. 

3) A rigid rod oscillating on a circular surface without slipping serves as a model 

for comprehending contact mechanics and stability in rocking structures. 

Applications encompass the earthquake-resistant design of monuments, the 

analysis of toys such as rocking horses, and mechanical systems where stability 

under periodic stresses is essential. 

4) The motion of a particle on a rotating parabola has both experimental and 

theoretical implications for comprehending stability and equilibrium in rotating 

systems. It simulates phenomena in astrophysics (e.g., motion within gravity 

wells), particle dynamics in electromagnetic traps, and rotational dynamics in 

mechanical and robotic systems. 

It is clear that for the situations stated previously, the current approach produces 

findings that are more accurate than comparable approximations. As seen, the NPA 

has an allowance of promise and can be used to handle more significantly nonlinear 

scenarios. The NPA addresses multiple real-world scenarios when combined. 

Previously, various popular analytical techniques that had been previously included 

in the literature were used to resolve these real-world problems. However, 

employing our current methodology yields better outcomes more quickly. Though, 

compared to other analytical techniques, the calculations with MS aid are 

significantly simpler when utilizing the NPA, and the methods for figuring out the 

analytical solutions are well demonstrated. Some computation techniques were time-

consuming to employ or required an allocation of work to analyze the result. In light 

of the unique approach used or notable findings, the following facts should be 

highlighted: 
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1) An alternative comparable linear ODE generated by the approach is identical to 

the existing non-linear one. 

2) When employing this method, these two ODEs are completely matching one 

another. 

3) When restoring forces are present, all traditional techniques employ Taylor 

expansion to simplify the situation. This weakness has been addressed in the 

current plan. 

4) The NPA offers an advantage over conventional methods by enabling us to 

analyze the stability of the problem. 

5) The new approach seems like an intriguing, useful, and simple-to-use tool. It 

can be applied to the analysis of various nonlinear oscillators. 

To crystalize the presentation of the paper, its remainder will be organized as 

follows: The current work is divided into five sections that aid in making its 

presentation more understandable. In § 2, we illustrate and briefly recapitulate the 

NPA description. In § 3, some real-world nonlinear ODEs are analyzed with the 

NPA. An overview of the present study’s dissections is provided in § 4. Finally, § 5 

offers a synopsis of the closing thoughts. 

2. A brief explanation of NPA 

Let us consider a highly nonlinear ODE in the following form:  

𝜂″ + 𝐹(𝜂, 𝜂′, 𝜂″) + 𝐺(𝜂, 𝜂′, 𝜂″) = 𝐻(𝜂, 𝜂′, 𝜂″) (1) 

where 𝐹(𝜂, 𝜂′, 𝜂″) and 𝐺(𝜂, 𝜂′, 𝜂″) are third-order functions. In addition, 𝐻(𝜂, 𝜂′, 𝜂″)
 

is a quadratic function.  

The above functions can be expressed as follows: 

𝐹(𝜂, 𝜂′, 𝜂″) = 𝑎1𝜂′ + 𝑏1𝜂𝜂″𝜂′ + 𝑐1𝜂2𝜂′ + 𝑑1𝜂′3 + 𝑒1𝜂″𝜂′2,

𝐺(𝜂, 𝜂′, 𝜂″) = 𝜔2𝜂 + 𝑏2𝜂′𝜂2 + 𝑐2𝜂𝜂′2 + 𝑑2𝜂3 + 𝑒2𝜂″𝜂2,

𝐻(𝜂, 𝜂′, 𝜂″) = 𝑎2𝜂𝜂′ + 𝑏2𝜂′2 + 𝑐2𝜂2 + 𝑑2𝜂′𝜂″ + 𝑒3𝜂𝜂″,

} (2) 

where 𝑎𝑗, 𝑏𝑗, 𝑐𝑗 , 𝑑𝑗, 𝑒𝑗(𝑗 = 1,2,3) are constant, and 𝜔 denotes the natural frequency of 

the structure.  

As previously proven in the traditional perturbation approaches [3–5], the third 

quadratic function does not yield any secular terms, but the first two terms do. 

Currently, the NPA’s primary purpose is to generate a replacement linear ODE. 

Three constants will be determined in order to form the required linear ODE. To do 

this, in accordance with Ismail et al. [9], a guessing (trial) solution of the specified 

nonlinear ODE has the form: 

�̃� = 𝐴 𝑐𝑜𝑠 𝛺 𝑡 (3) 

The ICs are as follows: �̃�(0) = 𝐴 and �̃� ′(0) = 0, 

where 𝛺 refers to the total frequency, which will be calculated later. 

One possible design of the essential linear ODE is as follows: 

𝑥″ + 𝜎𝑒𝑞𝑣𝑥′ + 𝜔𝑒𝑞𝑣
2 𝑥 = 𝛬 (4) 

As well-known, the HFF used a combination of the HPM and an averaging 

technique to estimate the frequency of nonlinear oscillators. It provides an analytical 
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framework that specifies the relationship between oscillation frequency and 

amplitude, especially beneficial in systems demonstrating moderate nonlinearity. 

The NPA employs the system's periodic properties by integrating across a complete 

period. The oscillatory motion completes one cycle in certain duration, and 

integrating over this period ensures that the frequency estimation corresponds with 

the system's inherent dynamics. Integrating over a complete period offers the 

following benefits:  

1) The nonlinear effects are thoroughly documented.  

2) The total energy or action is conserved.  

3) The response function includes higher-order nonlinearities.  

Physical interpretation 

Nonlinear Frequency Alteration  

The frequency of a nonlinear system deviates from the linear case due to 

amplitude dependence. This method enables the estimation of this frequency without 

requiring series expansions, making it advantageous even amongst considerable 

nonlinearities.  

1) Viewpoint on Energy Conservation  

2) External Perturbation Theory  

3) The HFF in integral form accurately balances kinetic and potential energy, 

ensuring that the frequency estimation aligns with the complete energy 

distribution over a full cycle.  

Outstanding Perturbation Theory  

Unlike conventional approaches that assume modest modifications within a 

linearized framework, the NPA inherently incorporates substantial nonlinear 

elements, making it suitable for systems displaying high amplitudes or hard/soft 

stiffness characteristics. Therefore, the NPA, based on HFF and thorough evaluation 

over A, provides a robust method for analyzing highly nonlinear oscillators, avoiding 

the limitations of perturbation theory. 

As previously demonstrated [31–35], the aforementioned three parameters can 

be assessed as follows:  

𝜎𝑒𝑞𝑣 = ∫ �̃�′𝐹(�̃�, �̃�′, �̃�″)
2𝜋/𝛺

0

𝑑𝑡/ ∫ �̃�′2
2𝜋/𝛺

0

𝑑𝑡 = 𝜎𝑒𝑞𝑣(𝛺) (5) 

Take into consideration the equivalent frequency that can be ascertained as 

follows in terms of a function of the total frequency: 

𝜔𝑒𝑞𝑣
2 = ∫ �̃�𝐺(�̃�, �̃�′, �̃�″)

2𝜋/𝛺

0

𝑑𝑡/ ∫ �̃�2
2𝜋/𝛺

0

𝑑𝑡 = 𝜔𝑒𝑞𝑣
2 (𝛺) (6) 

The non-secular component can be solved using the quadratic formula. 

Therefore, the even non-secular function will be replaced by the following to 

compute the inhomogeneity: 𝜂 → 𝑘𝐴, 𝜂′ → 𝑘𝐴𝛺, and 𝜂″ → 𝑘𝐴𝛺2 . It was 

demonstrated that the parameter k can be described as follows: 𝑘 = 1/2√𝑛 − 𝑟 : 

where n = 2 denotes the system’s degree of freedom and r = 1. Therefore, in this 

instance, after which the value of becomes k = 1/2. The value of the quadratic (a non-
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secular term) follows. As a result, the inhomogeneity part 𝛬 will be calculated by 

substituting: 𝜂 →
𝐴

2
, 𝜂′ →

𝐴𝛺

2
, and 𝜂″ →

𝐴𝛺2

2
.  

For additional convenience, Equation (4) may be stated in an appropriate 

normal form by applying the substitution: 

𝑥(𝑡) = �̃�(𝑡)𝐸𝑥𝑝(−𝜎𝑒𝑞𝑣𝑡/2) (7) 

By putting Equation (7) into Equation (4), one obtains 

�̃�″ + (𝜔𝑒𝑞𝑣
2 −

1

4
𝜎𝑒𝑞𝑣

2 ) �̃� = 𝛬𝐸𝑥𝑝(𝜎𝑒𝑞𝑣𝑡/2) (8) 

Therefore, the overall frequency is provided by 𝛺2 = 𝜔𝑒𝑞𝑣
2 −

1

4
𝜎𝑒𝑞𝑣
2 . 

3. Applications 

This section examines various highly nonlinear problems utilizing the 

previously NPA. 

3.1. Example 1 

This example focuses on an adaptable vibrating structure applicable to both 

nano and micro electromechanical systems (N/MEMS). It aims to illustrate the 

previously established theoretical framework by applying it to a general model of 

N/MEMS oscillators. Subsequently, the example will demonstrate how this general 

model can be adopted to represent three specific, well-known N/MEMS devices 

commonly used in Nano science and nanotechnology, as documented in source [36]. 

We will analyze the movement of these microstructures, which are governed by a 

nonlinear ODE that captures the behavior of a class of oscillators found in N/MEMS. 

The main equation of motion may be expressed as follows. 

(1 + 𝑑1𝑦 + 𝑑2𝑦2 + 𝑑3𝑦3 + 𝑑4𝑦4)�̈� + 𝑑5 + 𝑑6𝑦 + 𝑑7𝑦2 

+𝑑8𝑦3 + 𝑑9𝑦4 + 𝑑10𝑦5 + 𝑑11𝑦6 + 𝑑12𝑦7 = 0 
(9) 

where 𝑑𝑗 = 𝛼𝑗/𝛼0, 𝑗 = 1,2,3, . . . . .12. Additionally, the constants 𝛼0, 𝛼1, . . . . . , 𝛼12 are 

derived from the transformation of a multivariable differential equation into an 

ordinary differential equation (ODE) using the Galerkin approach [37]. 

In accordance with the NPA, Equation (9) may be written as follows: 

�̈� + 𝑓1(𝑦, �̈�) + 𝑓2(𝑦, �̈�) = 0 (10) 

where 

𝑓1(𝑦, �̈�) = 𝑑2𝑦2�̈� + 𝑑4𝑦4�̈� + 𝑑6𝑦 + 𝑑8𝑦3 + 𝑑10𝑦5 + 𝑑12𝑦7,

𝑓2(𝑦, �̈�) = 𝑑2 + 𝑑1𝑦�̈� + 𝑑3𝑦3�̈� + 𝑑7𝑦2 + 𝑑9𝑦4 + 𝑑11𝑦6.
} (11) 

As seen from Equation (11), the function 𝑓1(𝑦, �̈�) represents an odd function, 

which produces the secular terms. Meanwhile, the function 𝑓2(𝑦, �̈�) signifies an even 

function, which does not yield any secular terms. Following NPA as augmented 

previously [9], the process in finding the equivalent linear equation may be 

introduced as follows: 
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Assuming that the guessing (trial) solution is given by 

ℎ = 𝐴 𝑐𝑜𝑠 𝛺 𝑡, 𝐼. 𝐶. ℎ(0) = 𝐴, and ℎ̇(0) = 0 (12) 

It is referred to be a “trial” solution since it is an informed hypothesis that may 

not yield a straightforward resolution to the problem. The term implies the temporary 

nature of the assumption, acknowledging that the preliminary estimate may require 

adjustments or improvements. In iterative methods, the initial trial solution serves as 

a basis, and the objective is to systematically enhance this answer to converge on the 

accurate solution. In analytical methods, the trial solution often facilitates the 

development of a general solution, which is then adjusted by integrating the unique 

conditions or constraints of the problem. 

The corresponding linear ODE may be formulated as follows: 

ℎ = 𝐴 𝑐𝑜𝑠 𝛺 𝑡, 𝐼𝐶. ℎ(0) = 𝐴, and ℎ̇(0) = 0 (13) 

ℎ̈ + 𝛺2ℎ = −𝛬, (14) 

where the parameters 𝛺 and 𝛬 may be evaluated as follows: 

The total frequency may be obtained using the following integration: 

𝛺2 = ∫ ℎ𝑓1(ℎ, ℎ̈)𝑑𝑡
2𝜋/𝛺

0

/ ∫ ℎ2𝑑𝑡
2𝜋/𝛺

0

 (15) 

By means of the MS with some simplifications, Equation (15) yields 

𝛺2 =
64𝑑6 + 48𝐴2𝑑8 + 40𝐴4𝑑10 + 35𝐴6𝑑12

64 + 48𝐴2𝑑2 + 40𝐴4𝑑4
 (16) 

The constant 𝛬 can be evaluated from the following substitution: 

𝛬 = 𝑓2(𝑦, �̈�)|
𝑦→

𝐴
2

,�̈�→
𝐴𝛺2

2

 (17) 

The direct substitution between the second Equation in (11) and (16) produces 

𝛬 =
1

64
(𝑑11𝐴6 + 64𝑑5 + 16(𝑑7 + 𝑑1𝛺2)𝐴2 + 4(𝑑9 + 𝑑3𝛺2)𝐴4) (18) 

Now, Equation (14) is well-defined. For enhanced convenience, the numerical 

solutions of Equations (9) and (14) can be obtained with the command NDSolve in 

the MS. 

Therefore, consider a sample of data choices as follows: 

𝑑1 = 2.0, 𝑑2 = 3.0, 𝑑3 = 2.0, 𝑑4 = 5.0, 𝑑5 = 3.0, 𝑑6 = 4.0, 𝑑7 = 2.0,  

𝑑8 = 5.0, 𝑑9 = 3.0, 𝑑10 = 7.0, 𝑑11 = 4.0, 𝑑12 = 3.0, and 𝐴 = 0.02. 

The validation of the NPA is shown in Figure 1. 
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Figure 1. Displays the comparison between the NS of Equations (9) and (14). 

The MS showed that the absolute error between the two solutions is 0.140187. 

The convergence of a highly nonlinear ODE and a linear one transpires at particular 

places, where their solutions cross. This occurrence indicates that, despite the 

fundamentally distinct behavior of the two ODEs-one defined by simple, 

proportional relationships and the other by intricate, dynamic changes-they exhibit 

comparable values under specific conditions. At these places of intersection, the 

complex curvature of the nonlinear ODE temporarily coincides with the constant 

trajectory of the linear one, forming an intersection. This indicates a temporary 

equilibrium in which the systems represented by these equations produce identical 

outputs, despite their differing governing principles. 

From Equation (16), it should be noted that the stability condition is given by 

64𝑑6 + 48𝐴2𝑑8 + 40𝐴4𝑑10 + 35𝐴6𝑑12

64 + 48𝐴2𝑑2 + 40𝐴4𝑑4
> 0 (19) 

3.2. Example 2 

The nonlinear system arises from the natural oscillation of a conservative 

oscillator [6,38]. It is suitable for simulating the movement of a mass attached to 

both linear and nonlinear springs in a series arrangement on a smooth contact surface, 

as displayed in Figure 2. Here 𝑘1 is the stiffness of linear spring, 𝑚 is the mass, 𝑘2 

and 𝛽  represent the coefficients of the linear and nonlinear components of the 

nonlinear spring, respectively.  

 

Figure 2. Geometry of the problem in example 2. 

where 
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𝜀 =
𝛽

𝑘2
, 𝜈 =

𝑘2

𝑘1
, 𝑧 =

𝜈

1 + 𝜈
, and 𝜔 = √

𝑘2

𝑚(1 + 𝜈)
 (20) 

The equation of motion may be formulated as [38]: 

(1 + 3𝜀𝑧𝑥2)�̈� + 6𝜀𝑧�̇�2𝜔2𝑥 + 𝜀𝜔2𝑥3 = 0 (21) 

With the following ICs: 

𝑥(0) = 𝐴, and �̇�(0) = 0 (22) 

where the dots over letters show the time derivatives. 

Equation (21) may be written as follows: 

�̈� + 𝑓(𝑥, �̇�, �̈�) = 0 (23) 

where 

𝑓(𝑥, �̇�, �̈�) = 3𝜀𝑧𝑥2�̈� + 6𝜀𝑧�̇�2 + 𝜔2𝑥 + 𝜀𝜔2𝑥3 (24) 

As seen from Equation (24), the function 𝑓(𝑥, �̇�, �̈�) represents an odd function, 

which produces the secular terms. Following the NPA as previously augmented [9], 

the process in finding the equivalent linear ODE may be introduced as follows: 

Assuming that the solution obtained through guessing is represented by 

𝑢 = 𝐵𝑐𝑜𝑠�̃�𝑡, 𝐼𝐶𝑠 𝑢(0) = 𝐵, and u̇(0) = 0 (25) 

The corresponding linear ODE may be formulated as follows: 

�̈� + �̃�2𝑢 = 0 (26) 

where �̃� may be evaluated as follows: 

The following integration may be used to find the total frequency: 

�̃�2 = ∫ 𝑢𝑓(𝑢, �̇�, �̈�)𝑑𝑡
2𝜋/�̃�

0

/ ∫ 𝑢2𝑑𝑡
2𝜋/�⃛�

0

 (27) 

Using the MS with simplifications, Equation (27) provides 

�̃�2 =
(4 + 3𝜀𝐵2)

4 + 3𝜀𝑧𝐵2
𝜔2 (28) 

Equation (28) is clearly defined. For enhanced convenience, the NS of 

Equations (23) and (26) can be obtained using the NDSolve command in the MS. 

Consequently, examine a selection of data options as follows: 

ε = 3.0, 𝑧 = 4.0, 𝜔 = 2.0, and 𝐵 = 0.1. 

The validation of the NPA is illustrated in Figure 3. 
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Figure 3. Displays the comparison between the NS of Equations (21) and (26). 

The MS showed that, the absolute error between the two solutions is 0.0109541. 

The convergence of a highly nonlinear ODE and a linear one occurs at specific 

points, where their solutions intersect. This phenomenon suggests that, despite the 

fundamentally different behavior of the two ODEs-one characterized by simple, 

proportional relationships and the other by complex, dynamic changes-they display 

similar values under certain conditions. At these points of intersection, the intricate 

curvature of the nonlinear ODE briefly aligns with the constant trajectory of the 

linear one, creating an intersection. This signifies a transient equilibrium, where the 

systems described by these equations yield identical outputs, notwithstanding their 

divergent controlling principles. 

From Equation (28), it should be noted that the stability condition is given by 

(4 + 3𝜀𝐴2)

4 + 3𝜀𝑧𝐴2
𝜔2 > 0 (29) 

3.3. Example 3 

The equation of motion for a rigid rod rocking on a circular surface without 

slipping is stated as follows [39]: 

(
1

12
+

1

16
𝑢2)

𝑑2𝑢

𝑑𝑡2
+

1

16
𝑢 (

𝑑𝑢

𝑑𝑡
)

2

+
𝑔

4𝑙
𝑢 𝑐𝑜𝑠 𝑢 = 0 (30) 

With the ICs 𝑢(0) = 𝐴, and 𝑢′(0) = 0 and 𝐴 is the initial amplitude, 𝑔 is the 

gravitational acceleration, 𝑎 is the length of the rod and 𝑡 is time. The problem is 

illustrated in Figure 4 corresponding to the solution 𝑢(𝑡) in Equation (30). 

 

Figure 4. Geometry of the problem in example 3. 
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This problem was extensively analyzed by El-Dib and Moatimid [40] by means 

of the modified HPM, then by Moatimid and Amer [12] in case of the time delay. In 

the previous two cases, the authors were forced to adopt Taylor expansion in or to 

expand the forcing force. In contrast, the usage of the NPA does not use Taylor 

expansion.  

Equation (30) can be expressed as: 

�̈� +
3

4
𝑢2�̈� +

3

4
𝑢�̇�2 +

3𝑔

𝑙
𝑢 𝑐𝑜𝑠 𝑢 = 0 (31) 

where the dots over letters show the time derivatives. 

Equation (31) may be written as follows: 

�̈� + 𝑓(𝑢, �̇�, �̈�) = 0 (32) 

where 

𝑓(𝑢, �̇�, �̈�) =
3

4
𝑢2�̈� +

3

4
𝑢�̇�2 +

3𝑔

𝑙
𝑢 𝑐𝑜𝑠 𝑢 (33) 

As seen from Equation (33), the function 𝑓(𝑢, �̇�, �̈�) represents an odd function, 

which produces the secular terms. Following the NPA as previously augmented [9], 

the process in finding the equivalent ODE may be introduced as follows: 

Assuming that the solution obtained through guessing is represented by 

𝑥 = 𝐶𝑐𝑜𝑠�̂�𝑡, 𝐼. 𝐶. 𝑥(0) = 𝐶, and �̇�(0) = 0 (34) 

The corresponding linear ODE may be formulated as follows: 

�̈� + �̂�2𝑥 = 0 (35) 

where the parameters �̂� may be assessed as follows: 

The following integration may be used to find the total frequency: 

�̂�2 = ∫ 𝑥𝑓(𝑥, �̇�, �̈�)
2𝜋/�̂�

0

𝑑𝑡/ ∫ 𝑥2𝑑𝑡
2𝜋/�̂�

0

 (36) 

Using the MS and certain simplifications, Equation (36) provides 

�̂�2 =
48𝑔

𝑙𝐴
(

𝐽1(𝐴) − 𝐴𝐽2(𝐴)

8 + 3𝐴2
) (37) 

where 𝐽1(𝐴) and 𝐽2(𝐴) are the Bessel functions of order one and two, respectively. 

Equation (36) is clearly specified. For heightened convenience, the numerical 

solutions of Equations (31) and (37) can be obtained through the MS using the 

NDSolve command. Consequently, examine a selection of data options as follows: 

g = 12, 𝑙 = 10, and 𝐶 = 0.5, 

Figure 5 displays the justification of the NPA. 
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Figure 5. Displays the comparison between the NS of Equations (31) and (35). 

The MS showed that, the absolute error between the two solutions is 0.0151677. 

The convergence of a highly nonlinear ODE and a linear one transpires at 

distinct locations when their solutions cross. This occurrence indicates that, despite 

the fundamentally distinct behavior of the two ODEs-one defined by simple, 

proportional relationships and the other by intricate, dynamic changes-they exhibit 

analogous values under specific conditions. At these junction sites, the complex 

curvature of the nonlinear ODE momentarily coincides with the constant path of the 

linear ODE, resulting in an intersection. This indicates a temporary equilibrium in 

which the systems represented by these equations produce the same outputs, despite 

their differing governing principles. 

From Equation (37), it should be noted that the stability condition is given by 

48𝑔

𝑙𝐴
(

𝐽1(𝐴) − 𝐴𝐽2(𝐴)

8 + 3𝐴2
) > 0 (38) 

3.4. Example 4 

Motion of a ring on a rotating parabola 

Let us explore a single  degree-of-freedom conservative system represented by a 

complex ODE. Imagine a particle of mass sliding without friction along a wire 

shaped like a parabola 𝑧 = 𝑝𝑥2. This parabola rotates at a uniform angular velocity 𝜎 

around the z-axis, as described in [4]. The problem is illustrated in Figure 6. This 

specific problem has been previously studied using the HPM and the expanded 

frequency concept [41].  To derive the main equation of motion for the particle, we 

can utilize the Euler-Lagrange formulation. Since the system is conservative and 

holonomic (meaning its constraints can be integrated), its equation of motion can be 

represented as follows: 
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Figure 6. Geometry of the problem in example 4. 

(1 + 4𝑝2𝑥2)�̈� + 𝛬𝑥 + 4𝑝2�̇�2𝑥 = 0, 𝛬 = 2𝑔𝑝 − 𝜎2 (39) 

The following is the way to express Equation (39): 

�̈� + 𝑓(𝑥, �̇�, �̈�) = 0 (40) 

where, 𝑓(𝑥, �̇�, �̈�) = 𝛬𝑥 + 4𝑝2�̇�2𝑥 + 4𝑝2𝑥2�̈�. 

Assuming that the proposed (trial) solution is provided by 

𝑣 = 𝐷 𝑐𝑜𝑠 𝛺̄ 𝑡, 𝐼. 𝐶. 𝑣(0) = 𝐷, and �̇�(0) = 0 (41) 

The corresponding frequency may be calculated using the following integration: 

𝜔𝑒𝑞𝑣
2 = ∫ 𝑣𝑓(𝑣, �̇�, �̈�)𝑑𝑡

2𝜋/�̄�

0

/ ∫ 𝑣2𝑑𝑡
2𝜋/�̄�

0

 (42) 

Using the non-perturbative technique, Equation (42) provides. 

𝜔𝑒𝑞𝑣
2 = ∫ 𝑣𝑓(𝑣, �̇�, �̈�)𝑑𝑡

2𝜋/�̄�

0

/ ∫ 𝑣2𝑑𝑡
2𝜋/�̄�

0

 (43) 

𝜔𝑒𝑞𝑣
2 = 𝛬 − 3𝐵2𝑝2�̄�2 (44) 

As there is similar damping in the investigated case, it follows that the total 

frequency. 

�̄�2 =
𝛬

1 + 3𝐵2𝑝2
 (45) 

The analogous linear ODE is presented as follows: 

�̈� + �̄�2𝑣 = 0 (46) 

The stability condition necessitates that 𝛺2 > 0. This means that 2𝑔𝑝 − 𝜎2 > 0, 

or 𝜎2 < 2𝑔𝑝. 

To make things easier, the MS may be used to match the original nonlinear 

differential equation provided in Equation (39) to the corresponding linear ODE 

given in Equation (45) for the sample system: 

σ = 2.0, 𝑔 = 4.0, 𝑝 = 1.0, and 𝐷 = 0.05, 
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Figure 7 depicts the justification of the NPA. 

 

Figure 7. A matching between the two solutions of Equations (39) and (45). 

The absolute error between the two answers is 0.0059. It should be highlighted 

that, unlike classic perturbation approaches, the current NPA allows us to discuss the 

stability requirement. The convergence of a highly non-linear ordinary differential 

equation and a linear one occurs at different points when their solutions intersect. 

This phenomenon demonstrates that, despite the fundamentally different behavior of 

the two ODEs-one characterized by simple, proportional relationships and the other 

by complex, dynamic changes-they display similar values under certain conditions. 

At these junctions, the intricate curvature of the nonlinear ordinary differential 

equation temporarily aligns with the constant trajectory of the linear equation, 

leading to an intersection. This signifies a transient equilibrium wherein the systems 

denoted by these equations yield identical outputs, notwithstanding their divergent 

controlling principles. 

From Equation (44), the stability criteria becomes 

𝛬

1 + 3𝐵2𝑝2
> 0 (47) 

4. Results and discussions 

It is common to match analytical responses to numerical ones to determine the 

correctness of approximate solutions derived using a certain NPA. It will use the 

given solution (4) to generate numerical simulations in solving Equation (2). Figures 

1, 3, 5, and 7 compare the numerical and analytical solutions, demonstrating the 

great accuracy of the current technique. Figures 1, 3, 5, and 7 demonstrate great 

agreement between the numerical and analytical solutions. Finally, we may conclude 

that the NPA is suitable for providing an accurate solution to the strong non-linear 

oscillator. 
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5. Concluding remarks 

Because nonlinear oscillators have become increasingly more community, the 

primary aim of the present study was to investigate the HFF to attempt to 

demonstrate the theoretical justifications for various types of highly nonlinear 

oscillators. We studied mathematically and computationally the connection between 

elastic forces and the solution of a certain kind of oscillators with substantial 

nonlinear damping. The motion was thought to be explained by a strong nonlinear 

ODE, whose solution was matched by the proper value of the trigonometric 

functions. We gave several instances drawn from various scientific and technological 

domains. It was evident that the new approach was easier to use and takes less time 

to process than the traditional perturbation methodologies that were being used 

extensively in this field. The NPA refers to this novel approach, which is essentially 

a linearization of the nonlinear ODE. Using this approach, a new frequency is 

produced that is similar to a linear ODE in fundamentally harmonic situations. This 

straightforward process yields findings that not only agree well with numerical 

results when computed for physiologically descriptive specialist instances, but also 

turn out to be more accurate than the results from several widespread approximation 

approaches. For the reader’s understanding, a thorough explanation of the NPA was 

presented. A numerical analysis, validated by MS, corroborated the theoretical 

findings. There was a strong correlation between the results obtained from both the 

theoretical analysis and the NS test. It was a well-established fact that all traditional 

perturbation methods rely on Taylor expansion to approximate restoring forces, 

which simplifies the analysis but introduces certain limitations. These limitations are 

overcome with the NPA. Furthermore, the NPA allows for a proper investigation of 

the stability analysis of the problems, an area that was previously inaccessible with 

standard methods. Therefore, the NPA represents a more appropriate analytical tool 

when dealing with approximations of highly nonlinear oscillators within MS. Its 

adaptability makes the NPA a valuable asset across scientific, technological, and 

applied research domains, allowing it to tackle a wide variety of nonlinear problems. 

The ensuing outcomes should focus on the original methodology or notable 

results:  

1) The specified technique produced a supplementary linear ODE that was 

equivalent to a non-linear one.  

2) There existed a robust link between these two equations.  

3) In the face of restoring forces, all traditional methods employed Taylor 

expansion to simplify the situation at hand. This weakness has been eradicated 

in the current strategy.  

4) The current methodology, unlike earlier traditional methodologies, allowed us 

to conduct a stability study of the problem.  

In the coming study, we intend to analyze the state spaces of multi-degrees of 

freedom in accordance with the following characteristics:  

1) The concept of multiple degrees of freedom in basic pendulums extends their 

conventional single-degree-of-freedom motion to complex systems where many 

interconnected pendulums function either independently or interactively.  
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2) This significantly improves their physical behavior, enabling the description of 

intricate dynamical systems observed in both natural and artificial environments.  

3) Multi-degree-of-freedom pendulums are crucial for analyzing coupled 

oscillations, wave propagation, and energy transfer, with applications in 

mechanical and civil engineering, robotics, and seismology.  

4) Understanding their dynamics may improve vibration control in structures, 

optimize the design of coupled oscillatory systems in equipment, or promote the 

development of advanced robotics with flexible joints.  

5) Moreover, they serve as simplified representations of more complex phenomena, 

such as molecular vibrations in chemistry or chaotic systems in physics.  

6) By analyzing their degrees of freedom, researchers can gain insights into 

resonance, stability, and energy distribution, making multi-degree-of-freedom 

pendulums crucial for exploring nonlinear dynamics and developing innovative 

solutions. 
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