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Abstract: Multi-source signal recognition is a common problem in engineering vibration 

control. Given that traditional methods often primarily rely on prior knowledge and expertise, 

which can limit efficiency and accuracy, this study proposed a vibration recognition model 

based on ResNet, utilizing continuous wavelet transform to combine signal processing with 

deep learning techniques. The continuous wavelet transform converts the original one-

dimensional vibration signals into two-dimensional time-frequency representations with richer 

feature information, which are then input into the convolutional layers for automatic feature 

extraction, culminating in vibration recognition through the Softmax layer. To evaluate the 

model’s performance, 20 sets of measured vibration data were tested. The results show that the 

proposed model achieves a recognition accuracy of 99%, excelling in both component 

recognition and the separation of vibration signals. Therefore, this study is of great significance 

for engineering vibration diagnosis, the front-end design of vibration control, and the analysis 

and optimization of control effectiveness. 
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1. Introduction 

In the industrial realm, the concurrent operation of a multitude of apparatuses 

gives rise to diverse vibration sources. The precise identification of these vibration 

sources empowers the realization of accurate fault diagnosis. For instance, within a 

factory’s production line, different machines exhibit distinctive vibration traits. By 

means of multi-source vibration recognition, faults like bearing abrasion and 

imbalance in a particular machine can be promptly detected, averting production halts 

due to equipment breakdowns and curtailing maintenance expenditures. In the 

transportation domain, during the course of vehicle travel, it is subject to various 

vibration sources including the road surface and the engine. The identification of these 

vibrations is conducive to optimizing the vehicle’s suspension system and noise 

reduction design, thereby augmenting ride comfort and driving safety. In the 

construction arena, multi-source vibration recognition can differentiate among 

disparate vibration sources such as earthquakes, nearby construction activities, and 

vehicular traffic. This is of utmost importance for the preservation of ancient edifices 

and the vibration prevention of buildings housing precision instruments, facilitating 

the more effective implementation of corresponding protective measures. 

In practical engineering, objects under vibration control often face multi-source 

vibrations. Precision engineering, in particular, is susceptible to various influences, 

including ground pulsation, personnel movement, power equipment, internal (and 

external) pipelines within building structures, ground traffic, rail transit, construction 
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activities, and wind. To ensure the accurate and effective design of vibration control 

systems and development of vibration control devices, it is crucial to systematically 

study the multi-source vibration environment affecting the control object, which 

includes analyzing and identifying vibration components and frequency bands. 

Specifically, for active and semi-active control systems employing feedback design, 

accurately identifying multi-source environmental vibration components is essential 

to ensure the control system’s effective functioning, avoiding debugging and potential 

failures. Hou et al. [1] reviewed vibration damage identification methods used in civil 

engineering projects from 2010 to 2019. The review covered both classical approaches 

and advanced intelligent methods, including modal parameter-based methods, signal 

processing methods, machine learning (ML) algorithms, and Bayesian methods. Wang 

et al. [2] proposed a deep learning-based cable vibration recognition system, which 

consisted of a composite model based on Resnet-34 (Residual Neural Network of 34 

layers) and Swin-B (the base model in Swin Transformer), a linear rigid body motion 

recognizer based on Hough linear detection, and data processing. Liu et al. [3] 

presented a comprehensive review of deep learning-based planetary gearbox health 

state recognition. Kounta et al. [4] presented an approach first based on mechanical 

skills first to identify the optimal signal processing, then based on deep learning to 

automatically detect the phenomenon of chatter in machining. Łuczak [5] highlighted 

the utilisation of short-time Fourier transform (STFT) and continuous wavelet 

transform (CWT) for extracting time–frequency components from the signal, and by 

extracting the features using CWT, a convolutional neural network (CNN) for fault 

diagnosis were carried out. 

A convolutional neural network (CNN) is a type of feedforward neural network 

inspired by the biological visual perception mechanism and is considered one of the 

classical algorithms in deep learning. In recent years, cross-fusion approaches 

integrating CNNs with other intelligent methods have been widely adopted for 

vibration classification and recognition tasks. For example, Pinedo-Sanchez et al. [6] 

proposed a CNN model based on the AlexNet architecture to classify and diagnose 

wear levels in rotating systems. Nguyen et al. [7] proposed a deep learning method 

combining CNN and long short-term memory (CNN-LSTM) [8], which serves as the 

backbone for computer vision-based vibration testing technology. Liu et al. [9] applied 

deep recurrent neural networks (RNNs) and CNNs for vibration-based ground 

recognition in working faces, training and testing two deep CNN architectures, 

GoogLeNet and ResNet, using time-frequency scalogram data derived from 

continuous wavelet transformations. 

ResNet is a deep residual network proposed by He et al. [10] of Microsoft Asia 

Research Institute. This network successfully tackles two problems that typically 

emerge when traditional convolutional neural networks are overly stacked. The first 

problem pertains to the vanishing or exploding gradients, while the second one is the 

degradation issue. In response to the first problem, it is put forward that through data 

preprocessing and the utilization of Batch Normalization (BN) layers within the 

network, the issue of vanishing or exploding gradients can be effectively dealt with. 

Regarding the second problem, the residual structure is introduced with the aim of 

alleviating the degradation problem. The short-circuit mechanism is the core idea of 

ResNet, which can effectively alleviate the network degradation problem caused by 
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the increase of network depth in the traditional convolutional layer. Four aspects of 

the widespread use of ResNet in medical image processing are discussed in Ref. [11], 

i.e. lung tumor, diagnosis of skin diseases, diagnosis of breast diseases, and diagnosis 

of diseases of the brain. Wen et al. [12] proposed a new TCNN(ResNet-50) with the 

depth of 51 convolutional layers for fault diagnosis. Zhang et al. [13] proposed a 

transfer residual neural network based on ResNet-50 for detection of steel surface 

defects. 

In this study, a multi-source vibration signal recognition method utilizing 

continuous wavelet transform and ResNet is presented, where the original vibration 

signals are converted into two-dimensional images using continuous wavelet 

transform. ResNet is then employed to automatically extract features from the 

transformed 2D images, minimizing the influence of prior knowledge and expert 

experience. Finally, the vibration signals are classified using the SoftMax layer within 

ResNet. 

2. Continuous wavelet transform 

The continuous wavelet transform is a time-frequency analysis method designed 

for time-varying and non-stationary signals [5,14]. It converts one-dimensional 

vibration signals into two-dimensional time-frequency representations, containing 

both time and frequency domain information. Unlike the short-time Fourier transform, 

which uses a fixed window function, the continuous wavelet transform provides an 

adjustable window function that balances time and frequency resolution when 

analyzing non-stationary signals. 

The continuous wavelet transform can conduct diverse analyses on signals within 

different frequency ranges and at different times. Through the multi-resolution 

analysis, high-frequency signals can achieve a good time resolution but a relatively 

poor frequency resolution. Conversely, low-frequency signals can obtain a better 

frequency resolution and a higher time resolution. This clearly overcomes the 

drawbacks of applying the Fourier transform to non-stationary signals. The wavelet 

transform offers a time-frequency mixed representation of signals and has highly 

efficient applications in numerous fields. For engineering vibration recognition, the 

continuous wavelet transform can be utilized to convert one-dimensional vibration 

time-domain signals into two-dimensional time-frequency diagrams for the training 

and testing of deep learning models. 

For any signal x (t), its continuous wavelet transform is defined as: 

𝑋𝜔(𝑢, 𝑣) = ∫ 𝑥(𝑡)𝜑𝑢,𝑣(𝑡)𝑑𝑡 =
1

√𝑣
∙ ∫ 𝑥(𝑡)𝜑 (

𝑡 − 𝑢

𝑣
)

+∞

−∞

+∞

−∞

𝑑𝑡 (1) 

where u is the translation factor, determining the wavelet window’s position in the 

time domain, v is the scaling factor, adjusting the wavelet window’s size and its 

position in the frequency domain, and 𝜑𝑢,𝑣(𝑡)  is the wavelet basis function (also 

referred to as the parent wavelet), expressed as follows: 

𝜑𝑢,𝑣(𝑡)𝑑𝑡 =
1

√|𝑢|
𝜑 (

𝑡−𝑣

𝑢
)     𝑢 > 0 (2) 
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In this study, the complex Morlet wavelet is selected as the basis function for 

continuous wavelet transform. 

3. ResNet 

The ResNet is proposed to solve the problem of gradient disappearance or 

gradient explosion [15,16] and degradation [17,18] caused by the deepening of the 

layers of convolutional neural networks. The core part of ResNet is the residual 

structure [19], and the schematic diagram of which is shown in Figure 1. The features 

learned by the stacked network are denoted as H(x) when the input is x, and then H(x) 

= F(x) + x, and the problem to be learned can be transformed to the learning residual 

feature F(x) = H (x) − x. 

 

Figure 1. Residual structure. 

The residual block structure can be expressed as: 

𝑦𝑙 = ℎ(𝑥𝑙) + 𝐹(𝑥𝑙 ,𝑊𝑙) (3) 

𝑥𝑙+1 = 𝑓(𝑦𝑙) (4) 

where 𝑥𝑙 and 𝑥𝑙+1 are respectively the input and output of the l-th residual block, F is 

the learned residual feature, ℎ(𝑥𝑙) = 𝑥𝑙 represents the identity mapping, f is the ReLU 

activation function. Based on these, the following can be obtained: 

𝑥𝐿 = 𝑥𝑙 +∑𝐹(𝑥𝑖,𝑊𝑖)

𝐿−1

𝑖=𝑙

 (5) 

𝑥𝐿 is the learning feature from shallow layer l to deep layer L. Based on this, the 

process gradient of network backpropagation can be obtained as follows: 

𝜕𝑙𝑜𝑠𝑠

𝜕𝑥𝑙
=
𝜕𝑙𝑜𝑠𝑠

𝜕𝑥𝐿
×
𝜕𝑥𝐿
𝜕𝑥𝑙

=
𝜕𝑙𝑜𝑠𝑠

𝜕𝑥𝐿
× (1 +

𝜕

𝜕𝑥𝐿
∑𝐹(𝑥𝑖 ,𝑊𝑖)

𝐿−1

𝑖=𝑙

) (6) 

where 
𝜕𝑙𝑜𝑠𝑠

𝜕𝑥𝐿
 is the gradient of the loss function in layer L, and 1 in the second part 

shows the short-circuit mechanism, which indicates that the gradient can be 

propagated losslessly. Meanwhile, the other term needs to pass through layers with 

weight 𝑊𝑖 to transmit the gradient. The transfer of gradient will not disappear due to 
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the existence of 1 in Equation (6), so that the residual block can learn new features 

based on the input features and have better learning performance. 

For networks with a relatively small number of layers, such as ResNet18 and 

ResNet34, the residual structure is composed of two 3 × 3 convolutional layers with a 

stride of 1 on the main branch, along with a shortcut branch. In the case of networks 

having a larger number of layers, like ResNet50, ResNet101, and ResNet152, the main 

branch of the residual structure comprises three convolutional layers, specifically two 

1 × 1 convolutional layers and one 3 × 3 convolutional layers. The two 1 × 1 

convolutional layers serve different purposes, one is utilized for compressing the 

channel dimension, while the other is employed for restoring the channel dimension. 

Moreover, when the input channel and the output channel are not in agreement, in 

order to achieve consistency, the convolution on the main branch is changed to a 

convolution with a stride of 2, and a 1 × 1 convolution kernel with a stride of 2 must 

be added to the identity mapping. ResNet18 and ResNet50 are selected for comparison 

here, and their network structures are presented in Table 1 [20]. 

Table 1. The network structures of ResNet18 and ResNet50. 

Network layer Output size ResNet18 ResNet50 

Conv1 112×112 7×7, 64, stride=2 

Conv2_x 56×56 

3×3 max pool, stride=2 

Basicblock (channel = 64) × 2 
Bottleneck 

(channel = 64) × 3 

Conv3_x 28×28 Basicblock (channel = 128) × 2 Bottleneck (channel = 128) × 4 

Conv4_x 14×14 Basicblock (channel = 256) × 2 Bottleneck (channel = 256) × 6 

Conv5_x 7×7 Basicblock (channel = 512) × 2 Bottleneck (channel = 512) × 3 

 1×1 Average pool, 1000-d fc, softmax 

Several network structures with different depths have been designed for ResNet, 

and the network structure is shown in Figure 2 [21]. The main part is composed of 

stacked residuals, and the number and structure of residuals are different for networks 

with different depths. Taking Conv3_x as an example, for the shallow network 

ResNet18 and ResNet34, the two residual structures on the left are stacked, where the 

dashed structure is in the first layer, and the solid structure is set as different stacks 

according to the number of network layers. For the deep network ResNet50, 

ResNet101, and ResNet152, the residual structure is stacked based on the right 3 layers. 

Similarly, the dashed structure is adopted in the first layer, and the others are stacked 

by the solid structure, by which the parameters and computation can be reduced and 

the network’s training is accelerated. 
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Figure 2. Shallow and deep ResNet. 

ResNet50, being a significant member within the ResNet series, encompasses 3, 

4, 6, and 3 Bottleneck modules in layers 2 to 5 respectively. The structure of the 

Bottleneck module is illustrated in Figure 3. Each Bottleneck module consists of two 

distinct types of Blocks. The first type is the Conv Block, as depicted in Figure 3a, 

and the second type is the Identity Block, as presented in Figure 3b. 

  
(a) (b) 

Figure 3. The structure of bottleneck. (a) conv block; (b) identity block. 

ResNet50 is situated between shallow and deep networks. For training small-

sample data, the model has good network expressiveness while keeping the overall 

number of parameters moderate, thus reducing the phenomenon of overfitting. Taking 

all factors into consideration, the ResNet50 is adopted in this study for the further 

research. 



Sound & Vibration 2025, 59(1), 2242. 
 

7 

The parameter settings of ResNet50 are as follows. The optimization algorithm 

is Adam. The maximum number of epochs is 100. The size of the mini-batch is 64. 

The gradient threshold is 1, and the initial learning rate is 0.001. 

4. Sources of multi-source vibration data 

   
Vib.1 Vib.2 Vib.3 

   
Vib.4 Vib.5 Vib.6 

   
Vib.7 Vib.8 Vib.9 

   
Vib.10 Vib.11 Vib.12 

   
Vib.13 Vib.14 Vib.15 

   
Vib.16 Vib.17 Vib.18 

  

 

Vib.19 Vib.20  

Figure 4. 20 sets of original vibration data. 
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This study analyzed 20 sets of original vibration data collected from actual 

engineering tests at a sampling frequency of 256 Hz, all representing acceleration 

signals, as shown in Figure 4. Vib.1 is data from a newly constructed building site 

affected by ground traffic, while Vib.2 comes from the driving ramp of an underground 

parking lot in an office building. Vib.3 is from the converter foundation of a steel plant, 

and Vib.4 is from the deep foundation pit of a newly constructed university campus. 

Vib.5 reflects data from the floor of a subway building structure, and Vib.6 is from the 

anti-vibration foundation surface of a research institution. Vib.7 represents data from 

an open field, and Vib.8 is from a residential floor. Vib.9 is from a site selected for a 

quantum testing building of a university, and Vib.10 is from an electron microscope 

room of a research institution. Vib.11 captures data from a gravitational wave 

laboratory, while Vib.12 comes from a new Internet of Things laboratory of a 

university. Vib.13 is from a precision optics laboratory, Vib.14 is from a chip 

production factory, and Vib.15 is from a rooftop fan on an office building. Vib.16 

covers data from lampblack units and air conditioning power equipment situated on a 

university rooftop, Vib.17 is from the foundation of a research institute’s mechanics 

laboratory, Vib.18 is from an independent large-volume foundation of an electronic 

industrial plant, Vib.19 is from a site selected for an electronic industrial plant, and 

Vib.20 is from the grid structure of a wind tunnel laboratory. 

5. Identification of multi-source vibration 

This study proposed a multi-source vibration recognition method, CWT-ResNet, 

which converts one-dimensional vibration signals into two-dimensional time-

frequency representations using continuous wavelet transform, thereby enabling the 

representation of vibration feature information. These two-dimensional time-

frequency representations are then input into the ResNet convolutional neural network, 

which automatically extracts relevant features. Finally, the vibration type is classified 

by the Softmax layer. The detailed steps are as follows: 

(1) The original vibration data collected is randomly divided according to the 

specified sample length. 

(2) Continuous wavelet transform is applied to convert one-dimensional vibration 

signals into two-dimensional time-frequency representations. 

(3) The resulting time-frequency representations are proportionally divided into 

training and test sets. 

(4) ResNet50 models are built (Figure 5), with its parameters initialized. 

(5) The training set’s time-frequency representations are input into the 

convolutional layers for model training, and the optimal model parameters are saved. 

(6) The test set is input into the model for classification, and the classification 

results and accuracy are evaluated. 

CWT-ResNet vibration identification process is summarized in Figure 6. 

From 20 vibration datasets, 60 samples are extracted for each type of vibration, 

resulting in a total of 1200 samples. Each sample consists of 1024 sampling points, 

which are converted into 64 × 64 sample graphs to serve as model inputs. The dataset 

is then divided into training and test sets at a 3:1 ratio. 
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(a) 

 
(b) 

Figure 5. The net structure of adopted ResNet50. (a) the first half of the net structure of ResNet50; (b) the second half 

of the net structure of ResNet50. 

 

Figure 6. CWT-ResNet vibration identification process. 
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The continuous wavelet transform can convert one-dimensional vibration data 

into two-dimensional time-frequency diagrams (as shown in Figure 7). The total 

number of images is 60 × 20 = 1200, where 60 indicates the total number of samples, 

and 20 indicates the total categories of vibration signals. Then, these 1200 images are 

divided into a training set and a testing set by the ratio 900:300. 

     
No. 1 No. 2 No. 3 No. 4 No. 5 

     
No. 61 No. 62 No. 63 No. 64 No. 65 

     
No. 541 No. 542 No. 543 No. 544 No. 545 

     
No. 961 No. 962 No. 963 No. 964 No. 965 

     
No. 1131 No. 1132 No. 1133 No. 1134 No. 1135 

       
No. 1196 No. 1197 No. 1198 No. 1199 No. 1200 

Figure 7. Two-dimensional time-frequency images of vibration signals obtained using the continuous wavelet 

transform. 

t-SNE (t-Distributed Stochastic Neighbor Embedding) is an effective nonlinear 

dimensionality reduction method used to embed high-dimensional data into low-

dimensional space for visualization [22]. In the high-dimensional data space, the 

relationships between data points are intricate and hard to comprehend intuitively. The 
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objective of t-SNE is to map high-dimensional data into a low-dimensional space 

(typically two-dimensional or three-dimensional), while preserving the local and 

global structural relationships among data points to the greatest extent possible. It 

computes the probability distributions among high-dimensional data points and 

constructs a joint probability distribution based on the similarity of data points. 

Subsequently, it searches for the corresponding probability distribution in the low-

dimensional space and optimizes the positions of points in the low-dimensional space 

by minimizing the difference between the two probability distributions (usually using 

the Kullback-Leibler divergence). For instance, when handling the feature vectors of 

image data or text data that originally exist in a high-dimensional space, t-SNE can 

project these high-dimensional data onto a two-dimensional plane, bringing similar 

data points closer in the two-dimensional space and relatively separating data points 

of different categories. Thus, it helps people intuitively observe the clustering situation 

of data, discover patterns in the data, and assist in tasks such as data analysis and model 

evaluation in machine learning and deep learning. 

To visually evaluate the performance of the proposed model, t-SNE is applied for 

visual analysis. The visualization results of the original training set data are shown in 

Figure 8, where 20 distinct colors represent the 20 vibration inputs in the dataset. The 

results reveal that the original data distribution is relatively disordered, with significant 

overlap among vibration signals from the 20 categories, making it impossible to 

classify and identify multi-source vibrations based on the original data alone. Figure 

9 presents the visualization results of the data processed by CWT-ResNet. Compared 

to the original data, the processed data exhibits a reduced degree of disorder, indicating 

a trend toward greater organization, with features from different categories becoming 

more distinguishable. 

The model’s classification performance is represented using a confusion matrix. 

As can be seen from Figure 10, the model achieves an accuracy of 99% on the test 

dataset, indicating its ability to accurately distinguish between different vibration types. 

 

Figure 8. Original sample distribution. 
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Figure 9. Sample distribution after model identification. 

 

Figure 10. Confusion matrix for classification results. 

Building on this research, the model is applied to vibration identification, with 

Vib. test selected as the subject of study (Figure 11). The main computational steps 

are as follows: the trained model is loaded, vibration data are processed through 

wavelet transformation, the transformed data are input into the trained model for 

vibration signal recognition, and the identified vibration signals are extracted in real 

time. The recognition results are summarized in Table 2. 
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Figure 11. A selected vibration signal for identification test. 

Table 2. Vibration identification results. 

Time interval Identified vibration type Time interval Identified vibration type 

1 s~4 s Vib.19 129 s~132 s Vib.19 

5 s~8 s Vib.19 133 s~136 s Vib.19 

9 s~12 s Vib.19 137 s~140 s Vib.13 

13 s~16 s Vib.19 141 s~144 s Vib.19 

17 s~20 s Vib.19 145 s~148 s Vib.19 

21 s~24 s Vib.19 149 s~152 s Vib.19 

25 s~28 s Vib.19 153 s~156 s Vib.19 

29 s~32 s Vib.19 157 s~160 s Vib.19 

33 s~36 s Vib.19 161 s~164 s Vib.13 

37 s~40 s Vib.19 165 s~168 s Vib.19 

41 s~44 s Vib.19 169 s~172 s Vib.19 

45 s~48 s Vib.19 173 s~176 s Vib.19 

49 s~52 s Vib.19 177 s~180 s Vib.19 

53 s~56 s Vib.19 181 s~184 s Vib.19 

57 s~60 s Vib.19 185 s~188 s Vib.19 

61 s~64 s Vib.19 189 s~192 s Vib.19 

65 s~68 s Vib.19 193 s~196 s Vib.19 

69 s~72 s Vib.19 197 s~200 s Vib.13 

73 s~76 s Vib.19 201 s~204 s Vib.19 

77 s~80 s Vib.19 205 s~208 s Vib.19 

81 s~84 s Vib.19 209 s~212 s Vib.19 

85 s~88 s Vib.19 213 s~216 s Vib.19 

89 s~92 s Vib.19 217 s~220 s Vib.19 
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Table 2. (Continued). 

Time interval Identified vibration type Time interval Identified vibration type 

93 s~96 s Vib.19 221 s~224 s Vib.19 

97 s~100 s Vib.19 225 s~228 s Vib.19 

101 s~104 s Vib.19 229 s~232 s Vib.19 

105 s~108 s Vib.19 233 s~236 s Vib.19 

109 s~112 s Vib.19 237 s~240 s Vib.19 

113 s~116 s Vib.19 241 s~244 s Vib.18 

117 s~120 s Vib.19 245 s~248 s Vib.19 

121 s~124 s Vib.19 249 s~252 s Vib.19 

125 s~128 s Vib.19 253 s~256 s Vib.19 

As can be seen from Table 2, the primary component identified is Vib.19, with 

additional components including Vib.13 (3 groups) and Vib.18 (1 group). These 

components are grouped for FFT analysis, with the results presented in Figures 12 

and 13. For Vib.13, the FFT analysis results in Figure 12 indicate that the prominent 

frequency bands are consistently distributed within the ranges of 0 to 40 Hz and 60 to 

120Hz, and the two ranges of components are basically equivalent. Similarly, the 

results for Vib.18, shown in Figure 13, reveal a comparable distribution of prominent 

frequency bands, spanning 0 to 40 Hz and 60 to 120Hz, but it is clear that the 

components of the latter are higher than the former. 

  
(a) (b) 

 
(c) 

Figure 12. Spectral analysis results for identified Vib.13 components. (a) 137 s~140 s; (b) 161 s~164 s; (c) 197 s~200 

s. 
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241 s~244 s 

Figure 13. Spectral analysis results for identified Vib.18 components. 

An FFT analysis is performed on the principal components from 1s to 136 s, as 

shown in Figure 14. The spectral analysis results indicate that the dominant frequency 

bands are mainly concentrated in the ranges of 0 to 50 Hz and 50 to 120 Hz, and the 

spectral shape and frequency band distribution differ from those observed in Vib.13 

and Vib.18. 

 

Figure 14. Spectrum analysis results for the principal components. 

6. Summary 

This study investigated the challenge of recognizing multi-source vibration 

signals, a common issue in engineering vibration control. This involves converting the 

vibration signals using continuous wavelet transform, followed by inputting the 
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transformed signals into the ResNet model. After configuring the relevant parameters, 

the model is trained, and the trained model is subsequently employed to recognize the 

vibration signals.  

Given that traditional methods, which heavily depend on prior knowledge, are 

beset with limitations, this research introduced a novel and innovative approach. By 

leveraging the continuous wavelet transform, it converted one-dimensional vibration 

signals into two-dimensional time-frequency representations that are replete with rich 

and valuable feature information. Subsequently, these representations were fed into 

the ResNet convolutional neural network. ResNet, with its ingenious residual structure, 

effectively tackled problems such as gradient disappearance and network degradation, 

thereby facilitating efficient and effective feature extraction. 

In the course of the study, 20 sets of actual engineering vibration data were 

meticulously analyzed. After undergoing comprehensive data preprocessing and 

rigorous model training, the proposed CWT-ResNet method attained an impressively 

high recognition accuracy of 99% on the test dataset. Through visualization using t-

SNE, it was evident that the processed data exhibited a significantly higher degree of 

organization in contrast to the originally disordered data. 

The model was further extended and applied to a specific vibration identification 

test, where it successfully identified the main vibration component as well as 

additional components. The FFT analysis of these components unearthed their distinct 

and characteristic frequency band properties. The research results demonstrate that the 

proposed method effectively identifies multi-source vibration data, with test results 

confirming its high accuracy. It is important to note that the results and accuracy of 

the multi-source vibration component identification and stripping process depend on 

the diversity of the training samples provided to the model. 

In future work, the author plans to further expand and enrich the sample database 

developed in this study to enable more accurate and comprehensive vibration 

identification. This will not only enhance the understanding of vibration phenomena 

but also contribute to the development of more reliable and efficient engineering 

vibration control strategies. In addition, research on vibration time series prediction 

will be undertaken, building on the foundation established by the current vibration 

identification method. 
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