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Abstract: In order to improve the sound insulation performance of high-speed train floors, 

this study first obtained the necessary data for model training based on the reverberation test 

method, and then conducted data sorting and feature selection. Next, the maximum mutual 

information minimum redundancy (mRMR) feature selection algorithm was used to calculate 

the selected features and screen out a subset of significant features. Subsequently, the 

decision tree, BP neural network, and support vector machine regression (SVR) methods 

were applied in sequence, and the standardized feature data were used for the high-speed 

train floor under the same evaluation criteria of the mean square error (MSE) and coefficient 

of determination (R2). We conducted training and validation of the sound insulation 

prediction models for timber-framed support structures. The prediction accuracy of the 

trained model was compared and evaluated with the finite element statistical energy analysis 

(FE-SEA) prediction model. Finally, the SVR model was used to optimize the design under 

constraint conditions. The research results show that based on the research object, sample 

library, and model training in this article, compared with the FE-SEA model, the prediction 

error of the SVR model is only 0.3 dB, showing better performance. In engineering practice, 

the SVR model can effectively optimize the wooden support structure in the floor under 

certain constraints, and it predicts that the weighted sound insulation of the entire floor is 

50.45 dB, which has important engineering application value. 

Keywords: high-speed train; floor wooden support structure for floor; sound insulation 

prediction; machine learning; optimized design 

1. Introduction 

As the running speed of high-speed trains continues to increase, the noise inside 

and outside the train increases sharply, and a large amount of noise enters the train 

through the train body, especially the frequency band of 100 Hz-2000 Hz, seriously 

affecting the ride comfort of drivers and passengers [1–7]. In this context, a high-

speed train’s floor structure, which is adjacent to the under-vehicle wheel rail area, is 

the most important way for noise to propagate from the outside to the inside in the 

airborne sound transmission path, so improving the sound insulation characteristics 

of this structure to reduce the impact of the under-vehicle noise on the interior of the 

vehicle is a direct and effective way to improve the acoustic environment inside the 

vehicle [8–11]. 

The floor structure is different from the side wall structure, front structure, end 

wall structure, etc. The wooden support structure is an indispensable part of the floor 

structure and accounts for a large proportion of the entire floor structure, as shown in 
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Figure 1. Among them, the interlayer material layer is the main area used to lay 

sound insulation, sound absorption and damping materials. By trying to add and 

replace materials, a structure with better sound insulation can be obtained. At present, 

the use of wooden support structures in high-speed train floors has not been fully 

investigated, especially in terms of sound insulation performance. 

 

Figure 1. Diagram of common floor structures in high-speed trains. 

Traditional floor structure sound insulation prediction and optimization are 

usually carried out through two methods: testing and simulation [12]. The former is 

mostly based on multiple on-site assembly tests and comparisons to obtain test data. 

This places high demands on laboratories and various materials, and the test costs are 

relatively high. Han measured the mechanical properties of different composite 

multi-layer floorings and calculated the mechanical property parameters of multi-

layer floor materials based on the measurement results [13]. Kim studied aluminum 

extrusion panels for 400 km/h trains and proposed a practical method to improve the 

sound insulation performance by modifying the core structure to increase the local 

resonance frequency area and placing polyurethane foam in the core. Experiments 

verified the impact on the sound insulation effect [14]. Wang investigated the impact 

of altering the sequence of materials and structures, confirming through sound 

insulation tests that concentrating sound-absorbing materials in the middle, with 

sound-insulating materials on either side, improves the mid-frequency sound 

insulation performance. This approach was subsequently applied to optimize the 

sound insulation of high-speed train car bodies [15]. Zhang utilized two methods—

on-site measurement and simulation analysis—to verify the vibroacoustic model of 

composite flooring and assess the contribution of its constituent materials. The 

results indicate that effective noise and vibration control of composite flooring 

should prioritize the design of the wooden keels, including aspects such as their 

quantity, arrangement, and material [16]. Yao selected water-based vibration-

damping coating as a good noise reduction and vibration reduction material, and 

proposed a modal adaptive damping treatment optimization design for floor 

structures, which is widely used in railway floor structures and greatly reduces the 

overall radiated sound power of the floor [17]. 

The latter are mostly based on modeling and calculations based on the finite 

element [18] or statistical energy method [19] or algorithms [20] (genetic 

algorithm [21,22], particle swarm algorithm [23,24]), which have higher 
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requirements for model accuracy and material parameter investigation. Zhang 

carried out a comprehensive statistical energy analysis (SEA) and contribution 

analysis of the internal noise in high-speed trains. The study identified that, for the 

passenger car examined, the primary contributors to internal noise were side wall 

vibrations, noise from the bogie area, and floor noise transmission loss [25]. Xie 

established a simulation model of the acoustic properties of aluminum profiles based 

on statistical energy analysis (SEA). The research results show that under force load 

excitation, the prediction results of the SEA model are relatively close to the test 

results [26]. Cotoni established a hybrid FE-SEA model for high-speed train floors 

with corrugated aluminum profiles and verified the model through numerical 

methods [27]. Kim predicted the sound insulation characteristics of aluminum profile 

structures based on the finite element method, verified the simulation prediction 

model based on test results, and investigated the effects of boundary conditions and 

damping loss factors on the sound insulation amount [28]. Yu established a noise 

prediction model at the end of the cabin structure based on the FE-SEA hybrid method 

to predict the noise level in the cabin and analyze the sound energy contribution of key 

components in the cabin [29]. Yan used genetic algorithms to optimize phononic 

crystal plates to achieve a lightweight and ultra-wide bandgap [30]. 

However, with the rapid advancement of artificial intelligence, machine 

learning, as its core technology, has progressively permeated various fields [31–34]. 

Wang developed a machine learning model using the random forest method to 

predict the sound insulation performance of composite floors and identified the key 

factors influencing this performance. The results indicate that, considering all 

material properties, the sound insulation of aluminum profiles, the surface density, 

and the sound insulation of interior wall panels are the three most significant factors 

affecting the sound insulation of composite flooring [35]. Sahib employed the Non-

dominated Sorting Genetic Algorithm (NCGA) to explore the design space of fiber 

metal laminates (FMLs) and utilized the finite element method (FEM) to develop the 

optimal design for train carriage floors. The results showed that the manufactured 

panels can significantly reduce the weight of the floor [36]. 

Section 2 mainly outlines the research process and methods. Section 3 focuses 

on the source of samples and how to select sample features. Section 4 explains the 

preparations that need to be carried out before model training, especially the use of 

the mRMR feature selection algorithm for feature screening. Section 5 uses the 

decision tree, BP neural network, and support vector machine regression methods to 

train and verify the prediction model for the sound insulation performance of high-

speed train floor structures using standardized feature data. The trained model is 

analyzed and compared with the FE-SEA simulation model. Section 6 selects the 

model with better performance after comparison under the constraints of engineering 

practice and optimizes the design. Section 7 summarizes the article and presents the 

research conclusions. 

2. Research process and methods 

How to link machine learning with weighted sound insulation in floors becomes 

key. Data collection and preprocessing may be very tedious, but their importance 



Sound & Vibration 2025, 59(1), 2073.  

4 

cannot be ignored. In this study, the sound insulation data on the floor structure of 

high-speed trains were obtained through a large number of sound insulation tests. 

After screening and evaluation, a floor structure sound insulation sample library for 

subsequent training was established. This was followed by the selection of model 

inputs. In this process, the physical parameters of the high-speed train floor structure 

were converted into specific feature parameters. Finally, the model was trained and 

verified. Once the training data are prepared, different ma-chine learning algorithms 

can be used to establish the mapping relationship between the feature vector and the 

target value, that is, the weighted sound insulation Rw of the floor structure, so as to 

obtain the sound insulation prediction model of the high-speed train’s floor structure. 

The overall research process is shown in Figure 2. 

 

Figure 2. Flowchart of optimization strategy based on machine learning. 

3. Sample source, collation, and feature selection 

3.1. Sources of test samples, collation 

The original data were obtained from a research project on sound insulation of a 

high-speed train floor structure led by the acoustics laboratory of the Changzhou 

Institute of Rail Transit Research, China, which aimed to use the acoustics laboratory 

to study the influence of the wood bone support structure (different wood bone 

arrangements, different parameters of wood bones and vibration damping pads, etc.) 

regarding the sound insulation performance of the floor structure. In the project, a 

total of 97 sets of floor structure test samples were tested for sound insulation 

characteristics based on the reverberation method [37]. The tests are as follows: 

The two reverberation chambers are connected by a 1 m2 hole for placing the 

samples to be tested, and the size of the samples is 985 mm × 970 mm. The test of 

this sample is an effective method for practical applications. It can obtain data that 

are close to the actual large sample test results. The reliability of the results can be 

ensured by repeatedly testing different samples. The mutual positions of the sound 
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isolation samples, sound source, loudspeaker, microphone, and loudspeaker and 

microphone are based on the ISO10140-2-2021 standard [37]. The experiment was 

repeated six times to obtain twelve sets of data for averaging. The sample installation 

and fixing method, including the production of specific devices, specific bolt torque, 

specific sealing method, etc., are easy to implement. The sample is stable and 

controllable, and the efficiency of the sound insulation test, the repeatability of the 

test, and reproducibility of the test results are guaranteed. It is a mature test system. 

The test site is shown in Figure 3. 

  
(a) (b) 

Figure 3. Test site diagram. (a) Sound source room; (b) Receiving room. 

After testing the sound insulation performance of the sample, although the 

results were not completely consistent with the test results of the large-size sample, 

they were still highly similar. This method can efficiently and reliably evaluate the 

sound insulation performance of materials and components under resource-

constrained conditions, providing an important reference for the design and 

optimization of rail transit projects. 

We placed the excitation sound sources in the sound source room and the 

receiving room, respectively, and performed sound pressure level tests on them. The 

sound insulation level R of the sample can be calculated by substituting Equation (1) 

into the following: 

𝑅 = 𝐿1 − 𝐿2 + 10 𝑙𝑔
𝑆

𝐴
 (1) 

In the formula, L1 is the average sound pressure level of the sound source room, 

L2 is the average sound pressure level of the receiving room, S is the surface area of 

the sample, and A is the sound absorption coefficient of the receiving room. It can be 

substituted into Equation (2) to calculate that: 

𝐴 =
0.16𝑉

𝑇
 (2) 

In the formula, V is the volume of the receiving chamber, and T is the 

reverberation time of the receiving chamber. 

After obtaining the calculation results of the sound insulation frequency curve, 

the weighted sound insulation level Rw was further calculated according to the 

standard [38], which was used as a single value evaluation quantity to evaluate the 

overall sound insulation level of the sample. 
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The parameters and layout of the wooden bones and vibration damping pads in 

the wooden bone support structure in the 97 groups of floor test samples are similar. 

Comparing the sample data with the analysis of the differences in the parameters in 

the structure, we can roughly analyze the influence of the wooden bone support 

structure on the overall floor’s overall acoustic isolation characteristics, and put 

forward the idea of directional optimization accordingly. 

Table 1. Floor structure composition and selected parameters. 

Name Thickness/mm Poisson’s Ratio Density (kg/m3) 

Floor cloth 3 0.4896 1100 

Inner floor 19.5 0.2500 700 

Wooden support 

structure 

Vibration-

absorbing pad 
/ / / 

Wooden frame / / / 

Sandwich material 40 / 16 

Aluminum profile 80 0.3296 2700 

Table 2. Samples’ wooden support structure parameters. 

Structure Parameter Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 

Vibration-absorbing pad 

Density (kg/m3) 300 640 1150 994 604 645 207 765 

Elastic Modulus (GPa) 1.5 1.9 2.1 1.4 1.1 1.3 2.5 1.2 

Shear modulus (GPa) 0.54 0.70 0.76 0.49 0.38 0.47 0.86 0.41 

Poisson’s ratio 0.40 0.35 0.39 0.42 0.45 0.38 0.45 0.46 

Length (mm) 785 330 305 389 225 220 170 118 

Width (mm) 50 50 47 44 44 48 50 43 

Thickness (mm) 12 12 6 6 12 6 12 6 

Quantity 3 6 6 8 9 9 12 12 

Wooden frame 

Density (kg/m3) 600 547 505 592 522 598 565 538 

Elastic Modulus (GPa) 12 11.2 12.1 12.4 11.5 12.7 12.6 11.7 

Shear modulus (GPa) 4.80 4.67 4.88 5.00 4.38 5.08 5.04 4.68 

Poisson’s ratio 0.25 0.28 0.24 0.24 0.31 0.25 0.25 0.25 

Length (mm) 785 760 380 430 760 240 760 380 

Width (mm) 50 50 50 46 46 50 50 48 

Thickness (mm) 43 43 42 42 43 42 43 40 

Number 3 3 6 8 3 9 3 6 

Due to space constraints, this article only provides the composition of eight 

groups of typical floor structure test samples from the project, as shown in Tables 1 

and 2. Table 1 shows the composition of the floor. In this project, the impact of the 

wooden support structure on its sound insulation was mainly investigated, and the 

other materials remained unchanged. The wooden support structure included wooden 

frames and vibration-absorbing pads. The parameters of the wooden support 

structure in the eight groups of test samples are shown in Table 2. In order to help 

readers quickly and clearly understand the differences between the samples, the 
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figure shows the wooden support structure of sample 5 and sample 8. Figure 4 

clearly shows the length, width, thickness and number of the vibration damping pad 

and the wooden frame. 

  
(a) (b) 

Figure 4. Schematic diagram of wooden frame support structure. (a) Sample 5; (b) 

Sample 8. 

3.2. Sample feature selection 

In machine learning, examining key influencing factors and choosing feature 

vectors is a crucial step in data preprocessing. Good feature selection can improve 

the performance of a model, which plays an important role in the further 

improvement of the model and algorithm. In this paper, based on the results of the 

project on the sound insulation characteristics of the floor structure of the relevant 

high-speed train and the measured results of this case, the main influencing factors of 

the wood bone support structure on the sound insulation characteristics of the floor 

are analyzed and preprocessed, as described below: 

1) Material property parameters: Due to the laboratory conditions and the 

limitations of the material setting options of the acoustic software, the basic 

material property parameters mainly include density, modulus of elasticity, 

Poisson’s ratio, and shear modulus. Affected by various wiring harnesses and 

air ducts, the width of the wooden frame support structure in the manuscript 

ranges from 42 to 45 mm, and the height ranges from 40 to 45 mm. The layout 

is a simple horizontally symmetrical arrangement. The density, elastic modulus, 

and other parameters have a small range of variation, which is determined based 

on the specific parameters of the upper wooden frame support structure. 

2) Acoustic property parameters: The acoustic parameters mainly include the 

weighted sound insulation amount Rw of a single vibration-absorbing pad and 

the weighted sound insulation amount Rw of a single wooden frame. Vibration-

absorbing pads and wooden frames are components of the wooden support 

structure, and their respective weighted sound insulation levels Rw are 

indispensable for evaluating the sound insulation properties of the overall floor. 

3) Structural layout attribute parameters: In this project, these parameters mainly 

includes the weight, length, width, and thickness of the vibration-absorbing 

pads and wooden frames in the wooden support structure, the number of 

vibration-absorbing pads, the contact area between the vibration-absorbing pads 

and the wooden frames, the number of wooden frames, the number of vibration-

absorbing pads on the wooden frames, and the contact area between the wood 

frame and the profile. The above parameters will cause changes in the wooden 
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support structure, and this change is an important factor affecting the sound 

insulation properties of the floor’s composite structure. 

In summary, the characteristic parameters of the above factors were selected 

and numbered to summarize a total of 23 original characteristic parameters, as 

shown in Table 3. 

Table 3. Main influencing factors of wooden support structure. 

Serial Number Influencing Factors Belongs to Serial Number Influencing Factors Belongs to 

F01 Density Vibration-absorbing pad F14 Length Wooden frame 

F02 Elastic Modulus Vibration-absorbing pad F15 Thickness Wooden frame 

F03 Poisson’s ratio Vibration-absorbing pad F16 Width Wooden frame 

F04 Length Vibration-absorbing pad F17 Sound insulation Wooden frame 

F05 Thickness Vibration-absorbing pad F18 Contact area with profile Wooden frame 

F06 Width Vibration-absorbing pad F19 Density Wooden frame 

F07 Sound insulation Vibration-absorbing pad F20 Elastic Modulus Wooden frame 

F08 Quantity Vibration-absorbing pad F21 Poisson’s ratio Wooden frame 

F09 Contact area Vibration-absorbing pad F22 Weight Wooden frame 

F10 Shear modulus Vibration-absorbing pad F23 Shear modulus Wooden frame 

F11 Weight Vibration-absorbing pad    

F12 Number Wooden frame    

F13 
Number of pads on the 

wooden frame 
Wooden frame    

4. Calculation and significant feature screening based on mRMR 

Due to the large number of feature parameters, redundant features should be 

eliminated before modeling in order to improve the model’s quality and computing 

speed. Therefore, the maximum correlation-minimum redundancy (mRMR) feature 

selection algorithm for regression data is used [39], which is a feature selection 

method that is commonly used to deal with high-dimensional data., Tand the core of 

this algorithm is to select the important features by maximizing the correlation 

between the features and the target variables while minimizing the redundancy 

between the features. 

The algorithm uses mutual information to measure the correlation between 

variables. Given two discrete random variables X and Y with their marginal 

probability distribution functions p(x), and p(y) and joint probability distribution 

function p(x,y), the mutual information of X and Y is: 

𝐼(𝑋, 𝑌) = ∑∑𝑝(𝑥, 𝑦) 𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑦∈𝑌𝑥∈𝑋

 (3) 

Assume that the target feature subset of mRMR is S, the number of features to 

be selected is m, xi, xj (i, j = 1, 2,…, m, i ≠ j) represent any two features in S, and c 

represents the target variable. Then, the m features with the greatest correlation with 

c can be calculated through Equation (4), and the redundancy between the m features 

can be eliminated through Equation (5). 
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𝑚𝑎𝑥𝐷 (𝑆, 𝑐), 𝐷 =
1

𝑆
∑ 𝐼(𝑥𝑖, 𝑐)

𝑥𝑖∈𝑆

 (4) 

𝑚𝑖𝑛𝑅 (𝑆), 𝑅 =
1

|𝑆|2
∑ 𝐼(𝑥𝑖, 𝑥𝑗)

𝑥𝑖,𝑥𝑗∈𝑆

 (5) 

Combine the maximum correlation D with the minimum redundancy R, define 

an operator to combine D and R, and consider the simplest combination method: 

𝑚𝑎𝑥 𝜙 (𝐷, 𝑅), 𝜙 = 𝐷 − 𝑅 (6) 

Finally, the feature set S of the maximum correlation minimum redundancy is 

obtained: 

𝑚𝑅𝑀𝑅 = 𝑚𝑎𝑥 [
1

|𝑆|
∑𝐼(𝑥𝑖, 𝑐) −

1

|𝑆2|
∑ 𝐼(𝑥𝑖 , 𝑥𝑗)

𝑥𝑖,𝑥𝑗∈𝑆𝑥𝑖

] (7) 

Use programming software to enter the code and calculate the maxφ(D,R) 

values corresponding to the 23 original characteristic parameters in Table 3. The 

results are shown in Figure 5. The numbers of the characteristic parameters in the 

figure are consistent with those in Table 3. Here, maxφ (D,R) = 1 is used as the 

dividing line to distinguish whether a feature is suitable or not. The yellow area in 

the figure indicates the part where the maxφ (D,R) value of each feature exceeds 1. 

These features will be recognized as suitable features. Salient feature subsets can be 

stored. 

 

Figure 5. maxφ (D,R) calculation result. 

The following steps should be considered: (1) Ensure that certain characteristic 

parameters are screened out. (2) Then compare the solutions and optimize the design. 

(3) The model’s comprehensive coverage of the characteristic parameters and the 

feasibility of the solution should be assessed. Arrange the feature parameters and 
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artificially filter out the F20, F15, and F16 feature parameters, store them together as 

a significant feature subset. In conclusion, the machine learning model identified a 

subset of significant features comprising 12 parameters, which have been 

renumbered as detailed in Table 4. 

Table 4. Salient feature subset. 

New Number Original Number Influencing Factors Belongs to 

NF01 F14 Length Wooden frame 

NF02 F13 Number of pads on the wooden frame Wooden frame 

NF03 F06 Width Vibration-absorbing pad 

NF04 F11 Weight Vibration-absorbing pad 

NF05 F03 Poisson’s ratio Vibration-absorbing pad 

NF06 F09 Contact area with wood frames Vibration-absorbing pad 

NF07 F05 Thickness Vibration-absorbing pad 

NF08 F22 Weight Wooden frame 

NF09 F02 Elastic Modulus Vibration-absorbing pad 

NF10 F20 Elastic Modulus Wooden frame 

NF11 F15 Thickness Wooden frame 

NF12 F16 Width Wooden frame 

5. Predictive modelling, validation, and discussion 

5.1. Data standardization 

Considering the different units and magnitudes between each feature in the 

subset of salient features, when the subset of salient features is used as an input 

variable, it will cause difficulties in terms of the establishment of the model, the 

speed of operation, and the accuracy of the model, so it is necessary to standardize 

the data of this subset before establishing the model. 

Data standardization is a dimensionless method for processing data 

characteristics. Dimensionless refers to the need to convert data of different 

specifications to the same specification, or to convert data of different distributions 

to a specific distribution. During the model training process, the data characteristics 

after dimensionality can accelerate the solution of the model. 

The Min-Max standardization method is one of the most common data 

standardization methods. Min-Max normalization performs a linear transformation 

of the original data and maps the values in the range of between [0,1]. The Min-Max 

method is applicable to bounded data. and depends on all sample data. The floor data 

volume in this manuscript is 97, which is a small data set, and the value will not 

change. Moreover, this manuscript does not involve distance measurements, 

covariance calculation, etc. The Min-Max method is convenient for eliminating 

dimensions and incorporating the data of each indicator into the comprehensive 

evaluation. Therefore, it is preferable reasonable to use the Min-Max method to 

process the data in this paper. To transform the sample sequence {x1,x2,x3,…,xn}, the 

function is as follows: 
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𝑦𝑖 =
𝑥𝑖 −𝑚𝑖𝑛1≤𝑗≤𝑛{xj}

𝑚𝑎𝑥1≤𝑗≤𝑛{xj}−𝑚𝑖𝑛1≤𝑗≤𝑛{xj}
 (8) 

In the formula, n is the number of samples. Then, the new sequence y1, y2, y3,…, 

yn∈ [0,1] is dimensionless. 

5.2. Model evaluation 

Taking the measured sound insulation data of the aforementioned 97 sets of 

high-speed train floor combination structures as the total sample, three machine 

learning models that are commonly used for regression tasks, namely decision tree, 

the BP neural network model, and the support vector machine regression (SVR) 

model, were used to analyze prediction of the weighted sound insulation of the high-

speed train’s composite floor composite structures. Decision trees, BP neural 

networks, and SVR represent different types of models (tree models, neural networks, 

and models based on statistical learning), which can provide multi-angle comparison 

of prediction results. By comparing these three methods, we can have a more 

comprehensive understanding of the characteristics of the data and its relationship 

with the prediction results, and provide a reference for selecting appropriate models 

for future research. For this, 70% (68 groups) of the samples were randomly selected 

and classified into the training set, and the remaining 30% (29 groups) were 

classified into the test set for verification. During the verification process, the mean 

square error (MSE) and square correlation coefficient (R2) were used to evaluate the 

model’s training results. The calculations of MSE and R2 are as follows: 

𝑀𝑆𝐸 =
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑚
𝑖=1

𝑚
 (9) 

𝑅2 =
[∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

𝑚
𝑖=1 ]2

∑ (𝑥𝑖 − 𝑥)
2∑ (𝑦𝑖 − 𝑦)

2𝑚
𝑖=1

𝑚
𝑖=1

 (10) 

5.3. Decision tree algorithm 

Decision tree is a widely used machine learning method that can effectively 

handle classification and regression problems. Its basic idea is to recursively divide 

the data set, with each node being a feature, each branch representing the value of 

the feature, and each leaf node representing a category or a value. Among them, the 

CART method can effectively model multiple feature variables, and the extraction 

rules are simple, highly accurate, and easy to understand. The decision tree model is 

intuitive and easy to understand, and can handle nonlinear relationships. In this 

context, this paper uses the CART algorithm to predict the sound insulation of high-

speed train floors. 

Assuming X and Y are input and output variables, forming a training data set, 

we traverse each feature variable and its corresponding value. Let the current 

splitting variable be the j-th variable, corresponding to a splitting value s, which can 

divide and define two regions. 



Sound & Vibration 2025, 59(1), 2073.  

12 

Then, the input space will be continuously divided into L subspaces α1, α2,…, αL. 

Each subspace αl contains a part of the sample data and output value βl. The solution 

of the current model can be expressed as follows: 

𝑓(𝑥) =∑𝛽𝑙

𝐿

𝑙=1

𝐼(𝑥 ∈ 𝛼1) (11) 

The error size of the loss function is compared using the squared error ∑(𝑦𝑖 −

𝑓(𝑥𝑖))
2 , and the optimal split point and predicted value are determined using the 

squared error minimization criterion. According to the least squares method, the 

mean value of all outputs yi on subspace αl is the optimal value βl
ˆ

 of βl, which can be 

expressed as follows: 

𝛽𝑙
∧

= 𝑎𝑣𝑒(𝑦𝑖|𝑥𝑖 ∈ 𝛼𝑙) (12) 

Select the optimal segmentation attribute j and attribute value s to divide the 

input space, which is expressed by means of the following formula: 

𝑚𝑖𝑛
𝑗,𝑠

[𝑚𝑖𝑛
𝛽𝑙

∑ (𝑦𝑖 − 𝛽1)
2 +𝑚𝑖𝑛

𝛽2
∑ (𝑦𝑖 − 𝛽2)

2

𝑥𝑖∈𝛼2(𝑗,𝑠)𝑥𝑖∈𝛼1(𝑗,𝑠)

] (13) 

Traverse all input feature variables and their values, find the current optimal 

split point (j, s), and then divide the current space into two sub-regions based on the 

split point. At this time, if the two sub-regions cannot be divided, the corresponding 

optimal output value can be obtained, expressed as follows: 

{
𝛽1
∧

= 𝑎𝑣𝑒(𝑦𝑖|𝑥𝑖 ∈ 𝛼1(𝑗, 𝑠))

𝛽2
∧

= 𝑎𝑣𝑒(𝑦𝑖|𝑥𝑖 ∈ 𝛼2(𝑗, 𝑠))
 (14) 

According to the above steps, if the division can continue, repeat the above 

steps until it stops. 

Figure 6a below shows the comparison between the actual measurements and 

the prediction results of the training set. It can be seen that the actual measurements 

and the prediction results of the training set are relatively close. Their MSE is 

0.015673, and R2 is 0.94075. The effect of the model training is good.; Further, 

Figure 6b shows the comparison between the actual measurement and prediction 

results of the test set, but the consistency between the measurement and prediction 

results is not high. Its MSE is 0.12145, and R2 is 0.60359, indicating that the trained 

model is not effective. Subsequent adjustments and retraining should be carried out. 
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(a) (b) 

Figure 6. Comparison of actual measurements and prediction results. (a) Training set; (b) Test set. 

5.4. BP neural network method 

A BP neural network (BPNN, Back Propagation Neural Network) can 

essentially be considered a simplified biological model. The data are first imported 

into the input layer and then passed to the hidden layer. For the hidden layer, the 

received signal will be passed to the output layer again according to certain rules 

according to the weight of the interconnected neurons. The output layer will compare 

the results. If there is an error, it will return to modify the weight of the 

interconnected neurons. It is good at handling complex pattern recognition problems, 

especially performing well in nonlinear and high-dimensional data, can 

automatically learn features, and has strong generalization ability. Its structural 

model is shown in Figure 7. 

 

Figure 7. Structural model diagram. 

Before training, the variables of the input layer, hidden layer, and output layer 

must be defined, and each variable must be initialized. The number of nodes is set to 

a, b, and c, respectively, the connection weight values between each layer are set to 

ωij and ωjk, respectively, and the neuron transfer function is selected. Calculate the 

output value H of the hidden layer according to Equation (15): 

𝐻𝑗 = 𝑓 [∑(𝜔𝑖𝑗 − 𝛼𝑗)

𝑖=1

𝑛

] ; 𝑗 = 1,2,… , 𝑏 (15) 

According to Equation (16), calculate the predicted output O: 

𝑂𝑘 =∑𝐻𝑗𝜔𝑗𝑘 − 𝑏𝑘; 𝑘 = 1,2, … , 𝑐

1

𝑗

 (16) 
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Based on the predicted output O and the actual output Y, calculate the loss 

function e: 

𝑒𝑘 = 𝑌𝑘 − 𝑂𝑘; 𝑘 = 1,2,… , 𝑐 (17) 

According to the back propagation error, adjust the correction weights ωij, ωjk, 

and p,t. Finally, check whether the error evaluation training of the output value is 

qualified. When the error reaches the minimum, the training stops. If the error value 

can continue to decrease, return to continue training. 

A neural network model was established using MATLAB2016b software. The 

specific neural network model implementation process is shown in Figure 8. 

 

Figure 8. Neural network model implementation process. 

Figure 9a shows the comparison between the measured and predicted results of 

the 68 samples in the training set. It can be seen that the MSE is 0.015673 and the R2 

is 0.94075. The two curves of the actual measured value and the predicted value of 

the training set are in good agreement, which shows that the model training effect is 

better; Figure 9b shows the comparison between the actual measurement and 

prediction results of the 29 samples in the test set. The MSE is 0.018782, R2 is 

0.87628, and the model is relatively stable. 

  
(a) (b) 

Figure 9. Comparison of actual measurements and prediction results. (a) Training set; (b) Test set. 

5.5. Support vector machine regression (SVR) method 

Support vector regression (SVR) is a regression method based on the support 

vector machine (SVM). Different from traditional regression methods, the goal of 

SVR is not to directly fit the data, but to find a hyperplane in the feature space so 

that the sample points are as close to the hyperplane as possible, and a certain error is 

allowed within the tolerance range. SVR performs well in processing high-
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dimensional data and has good generalization ability, especially in the case of small 

samples, and can effectively avoid overfitting problems. 

For the regression problem, given the training data set D = 

{(x1,y1),(x2,y2),…,(xi,yi)}, where xi∈Rn is the n-dimensional input sample and yi∈R is 

the output sample, the aim is to learn a regression model f(x) = wTx + b so that f(x) 

and y are as close as possible. w and b are model parameters. 

For samples (x, y), traditional regression models usually calculate the loss 

directly based on the difference between the model output f(x) and the true output y. 

The loss is 0 if and only if f(x) is exactly the same as y. In contrast to this, the support 

vector machine (SVR) assumes that we can tolerate up to ε errors between f(x) and y, 

and only calculates the loss when the absolute value of the difference between f(x) 

and y is greater than ε. 

Therefore, the SVR problem is written as follows: 

𝑚𝑖𝑛
𝑤,𝑏

1

2
‖𝑤‖2 + 𝐶∑𝑙𝜀

𝑚

𝑖=1

(𝑓(𝑥𝑖) − 𝑦𝑖) (18) 

In the formula, C is a regularization constant. We introduce the slack variables 

𝜉𝑖 and 𝜉𝑖
∧

, rewrite the above formula, and satisfy the constraints: 

𝑚𝑖𝑛
𝑤,𝑏,𝜉𝑖,𝜉𝑖

∧

1

2
‖𝑤‖2 + 𝐶∑(𝜉𝑖, 𝜉𝑖

∧

)

𝑚

𝑖=1

 (19) 

𝑠. 𝑡.f(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀 + 𝜉𝑖
∧

𝜉𝑖 ≥ 0, 𝜉𝑖
∧

≥ 0, 𝑖 = 1,2,… ,𝑚}
 

 
 (20) 

Furthermore, the SVR dual problem is obtained: 

𝑚𝑎𝑥
𝛼,𝑎
∧
∑𝑦𝑖(𝛼𝑖

∧
𝑚

𝑖=1

− 𝛼𝑖) − 𝜀(𝛼𝑖
∧
+ 𝛼𝑖) −

1

2
∑∑(

𝑚

𝑗=1

𝑚

𝑖=1

𝛼𝑖
∧
− 𝛼𝑖)(𝛼𝑖

∧
+ 𝛼𝑖)𝑥𝑖

𝑇𝑥𝑗 (21) 

𝑠. 𝑡.∑(𝛼𝑖
∧

𝑚

𝑖=1

− 𝛼𝑖) = 0

0 ≤ 𝛼𝑖
∧
, 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,2, … ,𝑚}

 

 
 (22) 

The above process satisfies the KKT condition. Then, we map the data to a 

high-dimensional feature space for linear regression, use the kernel function to 

replace the inner product operation in the linear problem, replace x with 𝜑(𝑥), and 

obtain the final model of the support vector machine: 

𝑓(𝑥) =∑(𝛼𝑖
∧

𝑚

𝑖=1

− 𝛼𝑖)𝜑(𝑥𝑖)
𝑇𝜑(𝑥𝑖) + 𝑏 (23) 

Figure 10a shows the comparison between the actual measurements and the 

prediction results of the 68 samples in the training set. It can be seen that the MSE is 

0.00009724 and the R2 is 0.99976. The two curves of the actual measured value and 
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the predicted value of the training set are in good agreement, which shows that the 

model training effect is better; Figure 10b shows the comparison between the 

measured and predicted results for the 29 samples in the test set. It can be seen that 

the measured and predicted values in the test set are still highly consistent, with an 

MSE of 0.009842 and an R2 of 0.96782. This shows that the trained model has good 

generality. In addition, during the operation process, the training set and test set are 

randomly selected, so the trained model has a certain degree of randomness. The 

above shows that the SVR model is reliable for subsequent numerical predictions. 

  
(a) (b) 

Figure 10. Comparison of actual measurements and prediction results. (a) Training set; (b) Test set. 

5.6. Comparison and discussion of machine learning models 

In order to optimize the wooden support structure below the floor, the MSE and 

R2 of the prediction sets of the above three machine learning prediction models are 

now compared, as shown in Figure 11. Numbers 1, 2, and 3 represent the decision 

tree, BP neural network, and SVR. The two curve trends in the figure show that 

among the models trained in this article, SVR has a better effect. 

 

Figure 11. Comparison of prediction sets’ evaluation criteria. 

In addition, cross-validation is a technique for evaluating the performance of 

statistical models (such as machine learning models). It is mainly used to evaluate 

the performance of a model on independent data sets, avoid overfitting, and ensure 

the generalization ability of the model. 

Based on the idea of cross-evidence, the SVR model was used as an example. 

From this, 70% (68 groups) of the questions were taken as practice tests and the 
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remaining 30% (29 groups) were taken as test questions. We repeated the process 20 

times to statistically calculate the MSE and R2 values for each training and 

measurement set, as shown in Figure 12. As can be seen in Figure 12a, the MSE of 

the 20 training sets was between 0 and 0.02, the R2 was between 0.9 and 1.0, and 

most were close to 1. As can be seen in Figure 12b, the MSE of the corresponding 

measurements ranged from 0 to 0.06 and was often around 0.02, and the R2 ranged 

from 0.8 to 1.0. In general, the model was more powerful. 

 

Figure 12. MSE and R2 values for the floor structure diagram. (a) Test results; (b) Predicted results. 

Further, the prediction models are compared and discussed in terms of 

prediction accuracy. As shown in Figure 13, the material composition of the 

composite structure of a new high-speed train floor developed in this project, is 

shown. Taking this floor combination structure as an example, we use the trained 

model to predict the weighted sound insulation level, and compare the predicted 

results with the measured sound insulation results of the reverberation method in 

Section 3.1. In addition, the FE-SEA method (Figure 14) is also used to conduct 

sound insulation modeling and simulation of the floor structure. FE-SEA simulations 

provide an independent data source, allowing us to more fully evaluate the 

performance of the model. 

  
(a) (b) 

Figure 13. Floor structure diagram. (a) Cross-sectional photography; (b) 

Distribution diagram of wooden support structure. 
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(a) (b) 

Figure 14. Predictive model diagram. (a) FE-SEA prediction model; (b) Distribution 

diagram of wooden support structure. 

Table 5 shows the comparison between the predicted values of the above 

prediction methods and the actual measured values. It can be seen that the predicted 

value of the weighted sound insulation Rw based on the support vector machine 

regression method only differs from the measured value by 0.3 dB, which is 

compared with the 1.6 dB of the hybrid FE-SEA model, the 0.5 dB of the BP neural 

network, and the 1.1 dB of the decision tree error. The accuracy has been 

significantly improved. Finally, in the prediction task of this article, the support 

vector machine regression (SVR) method is the most suitable prediction model for 

the optimization of the wooden support structure. 

Table 5. Comparison of different model predictions and actual measurement results. 

Method of Prediction Model Category Weighted Sound Insulation Rw/dB Error/dB 

Experiment Reverberation method test 50.7 / 

Simulation Hybrid FE-SEA 49.1 1.6 

Machine learning Decision tree 49.6 1.1 

Machine learning BP neural network 51.2 0.5 

Machine learning SVR 51.0 0.3 

6. Target optimization based on engineering practice 

6.1. Optimization goals and constraints 

Due to the influence of the material type, quantity, cost, construction period, 

and other conditions, only 97 sound insulation tests of high-speed train floor 

structure samples were completed in this project. However, for machine learning, 

the number of experimental results is still very small, which can only guide 

directional optimization ideas to a certain extent, and cannot determine the 

optimal structural solution. This section mainly uses the prediction model of the 

support vector machine regression method, which was previously shown to have 

a good training effect, to seek the rapid prediction of the optimal plan for the 

wooden support structure and its related parameters, and complete the 

optimization with the main goal of sound insulation of the floor structure. 

Overall, sound insulation is the acoustic design goal of the floor structure. 

Combined with the actual engineering and the main research object of this article 

Sound source room
Receiving room

Floor structure

DAF
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(a wooden support structure), and based on the project’s design goals and 

planning, this section uses the overall thickness and density of the wooden 

support structure of the design plan as “constraints”. The specific description of 

these “constraints” is as follows: 

1) Overall thickness: The floor structure will be subject to conditions during 

assembly. As a component of the floor structure, the overall thickness of the 

wooden support structure will also be limited. Therefore, the overall 

thickness of the timber support structure serves as one of the “constraints”. 

2) Overall density: Lightweighting high-speed trains is an important measure 

to reduce the demand for traction power of high-speed EMUs and achieve 

high-speed operation. It improves the operating efficiency and reduces 

energy consumption. and is a key development trend for high-speed trains. 

Therefore, the overall density of the wooden support structure serves as one 

of the “constraints”. 

6.2. Optimization implementation and analysis 

Based on the comparative evaluation of the machine learning model in 

Section 5.6, this section will optimize the wooden support structure and illustrate 

the beneficial effect of the SVR model on target optimization. 

First, the salient characteristic parameters and their specific data that were 

screened out in Table 4 are sorted. It should be noted that there are restrictions 

on some parameters in the optimization of this project, so the salient 

characteristic parameters and their values that meet the requirements of this 

project are used to form a new sample library. 

Furthermore, by permuting and combining the calculation results, it can be 

seen that the number of possible solutions is N = 26357760. However, it should 

be noted that among such a large number of solutions, not all solutions are 

reasonable or meet the actual assembly requirements. The reasons for this are as 

follows: 

1) The number of damping pads on a single wooden frame multiplied by the 

length of a single damping pad should not be greater than the length of a 

single wooden frame. 

2) The width of the vibration-absorbing pad should not be greater than the 

width of the wooden frame. 

Therefore, all solutions that are unreasonable or do not meet the feasibility 

of assembly are eliminated. After elimination, the SVR prediction model is used 

to calculate all the solutions, so as to obtain the predicted value of the sound 

insulation level for each solution, and, under the “constraint conditions”, find the 

best solution to achieve project feasibility. 

After evaluating and screening, 303,696 solutions were identified that 

satisfy all the constraints and assembly requirements, given that the overall 

thickness of the wooden support structure was 60 mm and the solution’s density 

did not exceed 1000 kg/m3. Figure 15 depicts a scatter plot of these floor 

structure configurations, where the x, y, and z axes represent the density, total 

thickness, and weighted sound insulation of each scheme, respectively. The 
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scheme that achieved the maximum sound insulation of 50.45 dB is highlighted 

in the figure. The specific values of the significant characteristic parameters 

corresponding to this scheme are given, as shown in Table 6. 

Table 6. Structural parameters of the maximum sound insulation plan. 

Structure Parameter Value 

Vibration-absorbing pad 

Density (kg/m3) 500 

Elastic Modulus (GPa) 2 

Length (mm) 500 

Width (mm) 40 

Thickness (mm) 12 

Poisson’s ratio 0.43 

Wooden frame 

Density(kg/m3) 1275 

Elastic Modulus (GPa) 12.5 

Thickness (mm) 42.6 

Width (mm) 44 

Length (mm) 785 

Number of pads on the wooden frame 1 

 

Figure 15. Calculation results of solutions that meet the conditions. 

The highest-performing sound insulation solution achieves an overall 

density that adheres to the weight requirement of not exceeding 1000 kg/m3; the 

thickness of the wooden frames is 42.6 mm, the thickness of the vibration-

absorbing pad is 12 mm, and the overall thickness of the wooden support 

structure is 54.6 mm, which meets the project requirements. Based on the 

preceding analysis, the obtained solution satisfies all the limiting conditions and 
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is a feasible solution. In addition, through the reverberation method’s test 

verification, the weighted sound insulation of this scheme is found to be 50.55 

dB, and the error is only 0.1 dB, indicating that the optimization results are 

reasonable and accurate. 

7. Conclusions 

Through this research, the sound insulation performance of a high-speed 

train’s floor has successfully been improved. First, the data required for model 

training were obtained and organized based on the reverberation test method, and 

feature selection was performed. Then, the maximum mutual information 

minimum redundancy (mRMR) algorithm was used to screen out the significant 

feature subsets. Subsequently, the decision tree, BP neural network, and support 

vector machine regression (SVR) methods were applied, and the standardized 

feature data were used for the high-speed train floor timber support structure 

under the same evaluation criteria of mean square error (MSE) and coefficient of 

determination (R2). Training and validation of the sound insulation prediction 

models were carried out. In engineering practice, the SVR model can effectively 

optimize the wooden support structure in the floor structure under certain 

constraints. The main conclusions are as follows: 

(1) The maximum mutual information minimum redundancy (mRMR) 

algorithm is used to calculate the selected features and screen out a subset of 

significant features, which provides strong support for the subsequent model 

training. 

(2) The comparative results show that the prediction errors of the decision tree 

model, BP neural network model, and finite element statistical energy 

analysis (FE-SEA) model are 1.1 dB, 0.5 dB, and 1.6 dB. The prediction 

error of the SVR model is only 0.3 dB, which is significantly better than the 

above model, indicating that the SVR model has higher reliability and 

prediction accuracy. 

(3) According to the planning of a certain project, the SVR model was used to 

optimize the design under certain constraints, and we successfully 

optimized the wooden support structure in the floor. The prediction results 

show that the weighted sound insulation of the overall floor reaches 50.45 

dB, which reflects the significant application value and practical feasibility 

of the SVR model in engineering practice. 

As the number of samples increases, the performance of the model will be 

further improved, and the prediction results will be more accurate. 
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