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Abstract: In order to improve the sound insulation performance of high-speed train floors,
this study first obtained the necessary data for model training based on the reverberation test
method, and then conducted data sorting and feature selection. Next, the maximum mutual
information minimum redundancy (mMRMR) feature selection algorithm was used to calculate
the selected features and screen out a subset of significant features. Subsequently, the
decision tree, BP neural network, and support vector machine regression (SVR) methods
were applied in sequence, and the standardized feature data were used for the high-speed
train floor under the same evaluation criteria of the mean square error (MSE) and coefficient
of determination (R?). We conducted training and validation of the sound insulation
prediction models for timber-framed support structures. The prediction accuracy of the
trained model was compared and evaluated with the finite element statistical energy analysis
(FE-SEA) prediction model. Finally, the SVR model was used to optimize the design under
constraint conditions. The research results show that based on the research object, sample
library, and model training in this article, compared with the FE-SEA model, the prediction
error of the SVR model is only 0.3 dB, showing better performance. In engineering practice,
the SVR model can effectively optimize the wooden support structure in the floor under
certain constraints, and it predicts that the weighted sound insulation of the entire floor is
50.45 dB, which has important engineering application value.

Keywords: high-speed train; floor wooden support structure for floor; sound insulation
prediction; machine learning; optimized design

1. Introduction

As the running speed of high-speed trains continues to increase, the noise inside
and outside the train increases sharply, and a large amount of noise enters the train
through the train body, especially the frequency band of 100 Hz-2000 Hz, seriously
affecting the ride comfort of drivers and passengers [1-7]. In this context, a high-
speed train’s floor structure, which is adjacent to the under-vehicle wheel rail area, is
the most important way for noise to propagate from the outside to the inside in the
airborne sound transmission path, so improving the sound insulation characteristics
of this structure to reduce the impact of the under-vehicle noise on the interior of the
vehicle is a direct and effective way to improve the acoustic environment inside the
vehicle [8-11].

The floor structure is different from the side wall structure, front structure, end
wall structure, etc. The wooden support structure is an indispensable part of the floor
structure and accounts for a large proportion of the entire floor structure, as shown in
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Figure 1. Among them, the interlayer material layer is the main area used to lay
sound insulation, sound absorption and damping materials. By trying to add and
replace materials, a structure with better sound insulation can be obtained. At present,
the use of wooden support structures in high-speed train floors has not been fully
investigated, especially in terms of sound insulation performance.
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Figure 1. Diagram of common floor structures in high-speed trains.

Traditional floor structure sound insulation prediction and optimization are
usually carried out through two methods: testing and simulation [12]. The former is
mostly based on multiple on-site assembly tests and comparisons to obtain test data.
This places high demands on laboratories and various materials, and the test costs are
relatively high. Han measured the mechanical properties of different composite
multi-layer floorings and calculated the mechanical property parameters of multi-
layer floor materials based on the measurement results [13]. Kim studied aluminum
extrusion panels for 400 km/h trains and proposed a practical method to improve the
sound insulation performance by modifying the core structure to increase the local
resonance frequency area and placing polyurethane foam in the core. Experiments
verified the impact on the sound insulation effect [14]. Wang investigated the impact
of altering the sequence of materials and structures, confirming through sound
insulation tests that concentrating sound-absorbing materials in the middle, with
sound-insulating materials on either side, improves the mid-frequency sound
insulation performance. This approach was subsequently applied to optimize the
sound insulation of high-speed train car bodies [15]. Zhang utilized two methods—
on-site measurement and simulation analysis—to verify the vibroacoustic model of
composite flooring and assess the contribution of its constituent materials. The
results indicate that effective noise and vibration control of composite flooring
should prioritize the design of the wooden keels, including aspects such as their
guantity, arrangement, and material [16]. Yao selected water-based vibration-
damping coating as a good noise reduction and vibration reduction material, and
proposed a modal adaptive damping treatment optimization design for floor
structures, which is widely used in railway floor structures and greatly reduces the
overall radiated sound power of the floor [17].

The latter are mostly based on modeling and calculations based on the finite
element [18] or statistical energy method [19] or algorithms [20] (genetic
algorithm [21,22], particle swarm algorithm [23,24]), which have higher
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requirements for model accuracy and material parameter investigation. Zhang
carried out a comprehensive statistical energy analysis (SEA) and contribution
analysis of the internal noise in high-speed trains. The study identified that, for the
passenger car examined, the primary contributors to internal noise were side wall
vibrations, noise from the bogie area, and floor noise transmission loss [25]. Xie
established a simulation model of the acoustic properties of aluminum profiles based
on statistical energy analysis (SEA). The research results show that under force load
excitation, the prediction results of the SEA model are relatively close to the test
results [26]. Cotoni established a hybrid FE-SEA model for high-speed train floors
with corrugated aluminum profiles and verified the model through numerical
methods [27]. Kim predicted the sound insulation characteristics of aluminum profile
structures based on the finite element method, verified the simulation prediction
model based on test results, and investigated the effects of boundary conditions and
damping loss factors on the sound insulation amount [28]. Yu established a noise
prediction model at the end of the cabin structure based on the FE-SEA hybrid method
to predict the noise level in the cabin and analyze the sound energy contribution of key
components in the cabin [29]. Yan used genetic algorithms to optimize phononic
crystal plates to achieve a lightweight and ultra-wide bandgap [30].

However, with the rapid advancement of artificial intelligence, machine
learning, as its core technology, has progressively permeated various fields [31-34].
Wang developed a machine learning model using the random forest method to
predict the sound insulation performance of composite floors and identified the key
factors influencing this performance. The results indicate that, considering all
material properties, the sound insulation of aluminum profiles, the surface density,
and the sound insulation of interior wall panels are the three most significant factors
affecting the sound insulation of composite flooring [35]. Sahib employed the Non-
dominated Sorting Genetic Algorithm (NCGA) to explore the design space of fiber
metal laminates (FMLs) and utilized the finite element method (FEM) to develop the
optimal design for train carriage floors. The results showed that the manufactured
panels can significantly reduce the weight of the floor [36].

Section 2 mainly outlines the research process and methods. Section 3 focuses
on the source of samples and how to select sample features. Section 4 explains the
preparations that need to be carried out before model training, especially the use of
the mRMR feature selection algorithm for feature screening. Section 5 uses the
decision tree, BP neural network, and support vector machine regression methods to
train and verify the prediction model for the sound insulation performance of high-
speed train floor structures using standardized feature data. The trained model is
analyzed and compared with the FE-SEA simulation model. Section 6 selects the
model with better performance after comparison under the constraints of engineering
practice and optimizes the design. Section 7 summarizes the article and presents the
research conclusions.

2. Research process and methods

How to link machine learning with weighted sound insulation in floors becomes
key. Data collection and preprocessing may be very tedious, but their importance
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Acoustic sound
insulation test

cannot be ignored. In this study, the sound insulation data on the floor structure of
high-speed trains were obtained through a large number of sound insulation tests.
After screening and evaluation, a floor structure sound insulation sample library for
subsequent training was established. This was followed by the selection of model
inputs. In this process, the physical parameters of the high-speed train floor structure
were converted into specific feature parameters. Finally, the model was trained and
verified. Once the training data are prepared, different ma-chine learning algorithms
can be used to establish the mapping relationship between the feature vector and the
target value, that is, the weighted sound insulation Ry, of the floor structure, so as to
obtain the sound insulation prediction model of the high-speed train’s floor structure.
The overall research process is shown in Figure 2.

Output MSE and R?
Decision tree, BP neural
Normalize input variables network and support vector
machine model training
' Building the model
Divide the traming set and FE-SEAmodel Model comparison and
test set selection
T ——
| Caleulate features based on mRMR optimization
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Figure 2. Flowchart of optimization strategy based on machine learning.

3. Sample source, collation, and feature selection

3.1. Sources of test samples, collation

The original data were obtained from a research project on sound insulation of a
high-speed train floor structure led by the acoustics laboratory of the Changzhou
Institute of Rail Transit Research, China, which aimed to use the acoustics laboratory
to study the influence of the wood bone support structure (different wood bone
arrangements, different parameters of wood bones and vibration damping pads, etc.)
regarding the sound insulation performance of the floor structure. In the project, a
total of 97 sets of floor structure test samples were tested for sound insulation
characteristics based on the reverberation method [37]. The tests are as follows:

The two reverberation chambers are connected by a 1 m? hole for placing the
samples to be tested, and the size of the samples is 985 mm > 970 mm. The test of
this sample is an effective method for practical applications. It can obtain data that
are close to the actual large sample test results. The reliability of the results can be
ensured by repeatedly testing different samples. The mutual positions of the sound
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isolation samples, sound source, loudspeaker, microphone, and loudspeaker and
microphone are based on the 1SO10140-2-2021 standard [37]. The experiment was
repeated six times to obtain twelve sets of data for averaging. The sample installation
and fixing method, including the production of specific devices, specific bolt torque,
specific sealing method, etc., are easy to implement. The sample is stable and
controllable, and the efficiency of the sound insulation test, the repeatability of the
test, and reproducibility of the test results are guaranteed. It is a mature test system.
The test site is shown in Figure 3.

12-sided non-directional
sound source

(@) (o)

Figure 3. Test site diagram. (a) Sound source room; (b) Receiving room.

After testing the sound insulation performance of the sample, although the
results were not completely consistent with the test results of the large-size sample,
they were still highly similar. This method can efficiently and reliably evaluate the
sound insulation performance of materials and components under resource-
constrained conditions, providing an important reference for the design and
optimization of rail transit projects.

We placed the excitation sound sources in the sound source room and the
receiving room, respectively, and performed sound pressure level tests on them. The
sound insulation level R of the sample can be calculated by substituting Equation (1)
into the following:

S
R=1Ly—L,+10lg~ (1)

In the formula, L, is the average sound pressure level of the sound source room,
L. is the average sound pressure level of the receiving room, S is the surface area of
the sample, and A is the sound absorption coefficient of the receiving room. It can be
substituted into Equation (2) to calculate that:

0.16V
_ 2
A T (2)

In the formula, V is the volume of the receiving chamber, and T is the
reverberation time of the receiving chamber.

After obtaining the calculation results of the sound insulation frequency curve,
the weighted sound insulation level Ry was further calculated according to the
standard [38], which was used as a single value evaluation quantity to evaluate the
overall sound insulation level of the sample.



Sound & Vibration 2025, 59(1), 2073.

The parameters and layout of the wooden bones and vibration damping pads in
the wooden bone support structure in the 97 groups of floor test samples are similar.
Comparing the sample data with the analysis of the differences in the parameters in
the structure, we can roughly analyze the influence of the wooden bone support
structure on the overall floor’s overall acoustic isolation characteristics, and put
forward the idea of directional optimization accordingly.

Table 1. Floor structure composition and selected parameters.

Name Thickness/mm Poisson’s Ratio  Density (kg/m?)
Floor cloth 3 0.4896 1100
Inner floor 195 0.2500 700
Vibration- / / /
Wooden support  apsorbing pad
structure
Wooden frame / / /
Sandwich material 40 / 16
Aluminum profile 80 0.3296 2700

Table 2. Samples’ wooden support structure parameters.

Structure Parameter Samplel Sample2  Sample3 Sample4 Sample5 Sample6 Sample7 Sample8
Density (kg/m?®) 300 640 1150 994 604 645 207 765
Elastic Modulus (GPa) 1.5 19 2.1 14 1.1 1.3 25 1.2
Shear modulus (GPa)  0.54 0.70 0.76 0.49 0.38 0.47 0.86 0.41

Vibration-absorbing pad Poisson’s ratio 0.40 0.35 0.39 0.42 0.45 0.38 0.45 0.46
Length (mm) 785 330 305 389 225 220 170 118
Width (mm) 50 50 47 44 44 48 50 43
Thickness (mm) 12 12 6 6 12 6 12 6
Quantity 3 6 6 8 9 9 12 12
Density (kg/m3) 600 547 505 592 522 598 565 538
Elastic Modulus (GPa) 12 11.2 121 124 115 12.7 12.6 11.7
Shear modulus (GPa)  4.80 4.67 4.88 5.00 4.38 5.08 5.04 4.68

Wooden frame Poisson’s ratio 0.25 0.28 0.24 0.24 0.31 0.25 0.25 0.25
Length (mm) 785 760 380 430 760 240 760 380
Width (mm) 50 50 50 46 46 50 50 48
Thickness (mm) 43 43 42 42 43 42 43 40
Number 3 3 6 8 3 9 3 6

Due to space constraints, this article only provides the composition of eight
groups of typical floor structure test samples from the project, as shown in Tables 1
and 2. Table 1 shows the composition of the floor. In this project, the impact of the
wooden support structure on its sound insulation was mainly investigated, and the
other materials remained unchanged. The wooden support structure included wooden
frames and vibration-absorbing pads. The parameters of the wooden support
structure in the eight groups of test samples are shown in Table 2. In order to help
readers quickly and clearly understand the differences between the samples, the
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figure shows the wooden support structure of sample 5 and sample 8. Figure 4
clearly shows the length, width, thickness and number of the vibration damping pad
and the wooden frame.

Length

TthklleSSE Thickness%
4 Quantity t
Width

(a) (b)
Figure 4. Schematic diagram of wooden frame support structure. (a) Sample 5; (b)
Sample 8.

3.2. Sample feature selection

In machine learning, examining key influencing factors and choosing feature
vectors is a crucial step in data preprocessing. Good feature selection can improve
the performance of a model, which plays an important role in the further
improvement of the model and algorithm. In this paper, based on the results of the
project on the sound insulation characteristics of the floor structure of the relevant
high-speed train and the measured results of this case, the main influencing factors of
the wood bone support structure on the sound insulation characteristics of the floor
are analyzed and preprocessed, as described below:

1) Material property parameters: Due to the laboratory conditions and the
limitations of the material setting options of the acoustic software, the basic
material property parameters mainly include density, modulus of elasticity,
Poisson’s ratio, and shear modulus. Affected by various wiring harnesses and
air ducts, the width of the wooden frame support structure in the manuscript
ranges from 42 to 45 mm, and the height ranges from 40 to 45 mm. The layout
is a simple horizontally symmetrical arrangement. The density, elastic modulus,
and other parameters have a small range of variation, which is determined based
on the specific parameters of the upper wooden frame support structure.

2) Acoustic property parameters: The acoustic parameters mainly include the
weighted sound insulation amount Ry of a single vibration-absorbing pad and
the weighted sound insulation amount Ry of a single wooden frame. Vibration-
absorbing pads and wooden frames are components of the wooden support
structure, and their respective weighted sound insulation levels Ry are
indispensable for evaluating the sound insulation properties of the overall floor.

3) Structural layout attribute parameters: In this project, these parameters mainly
includes the weight, length, width, and thickness of the vibration-absorbing
pads and wooden frames in the wooden support structure, the number of
vibration-absorbing pads, the contact area between the vibration-absorbing pads
and the wooden frames, the number of wooden frames, the number of vibration-
absorbing pads on the wooden frames, and the contact area between the wood
frame and the profile. The above parameters will cause changes in the wooden
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support structure, and this change is an important factor affecting the sound

insulation properties of the floor’s composite structure.

In summary, the characteristic parameters of the above factors were selected
and numbered to summarize a total of 23 original characteristic parameters, as
shown in Table 3.

Table 3. Main influencing factors of wooden support structure.

Serial Number Influencing Factors Belongs to Serial Number  Influencing Factors Belongs to
FO1 Density Vibration-absorbing pad F14 Length Wooden frame
F02 Elastic Modulus Vibration-absorbing pad F15 Thickness Wooden frame
F03 Poisson’s ratio Vibration-absorbing pad F16 Width Wooden frame
F04 Length Vibration-absorbing pad F17 Sound insulation Wooden frame
FO5 Thickness Vibration-absorbing pad F18 Contact area with profile Wooden frame
F06 Width Vibration-absorbing pad F19 Density Wooden frame
F07 Sound insulation Vibration-absorbing pad F20 Elastic Modulus Wooden frame
FO8 Quantity Vibration-absorbing pad F21 Poisson’s ratio Wooden frame
F09 Contact area Vibration-absorbing pad F22 Weight Wooden frame
F10 Shear modulus Vibration-absorbing pad F23 Shear modulus Wooden frame
F11 Weight Vibration-absorbing pad

F12 Number Wooden frame

13 Number of pads on the Wooden frame

wooden frame

4. Calculation and significant feature screening based on mRMR

Due to the large number of feature parameters, redundant features should be
eliminated before modeling in order to improve the model’s quality and computing
speed. Therefore, the maximum correlation-minimum redundancy (mRMR) feature
selection algorithm for regression data is used [39], which is a feature selection
method that is commonly used to deal with high-dimensional data., Tand the core of
this algorithm is to select the important features by maximizing the correlation
between the features and the target variables while minimizing the redundancy
between the features.

The algorithm uses mutual information to measure the correlation between
variables. Given two discrete random variables X and Y with their marginal
probability distribution functions p(x), and p(y) and joint probability distribution
function p(x,y), the mutual information of X and Y is:

x,¥)
100Y) = D> p(xy) log— S

L4 P()P() )
Assume that the target feature subset of MRMR is S, the number of features to
be selected is m, x;, xj (i, j = 1, 2,..., m, i # ]) represent any two features in S, and c
represents the target variable. Then, the m features with the greatest correlation with
c can be calculated through Equation (4), and the redundancy between the m features

can be eliminated through Equation (5).
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1
max D (S,¢),D = §Z I(x;,¢) 4)
Xi€ES
_ 1
minR (S),R = S12 Z I(x;, x7) (5)
xi,x]-ES

Combine the maximum correlation D with the minimum redundancy R, define
an operator to combine D and R, and consider the simplest combination method:

max ¢ (D,R),¢ =D —R (6)

Finally, the feature set S of the maximum correlation minimum redundancy is
obtained:

1 1
mRMR = max mz I(x;,¢) — m Z I(xi:xj) (7)
Xi

Xi,Xj€ES

Use programming software to enter the code and calculate the maxo(D,R)
values corresponding to the 23 original characteristic parameters in Table 3. The
results are shown in Figure 5. The numbers of the characteristic parameters in the
figure are consistent with those in Table 3. Here, maxp (D,R) = 1 is used as the
dividing line to distinguish whether a feature is suitable or not. The yellow area in
the figure indicates the part where the maxp (D,R) value of each feature exceeds 1.
These features will be recognized as suitable features. Salient feature subsets can be

stored.

Maxo(D, R)

Figure 5. maxe (D,R) calculation result.

The following steps should be considered: (1) Ensure that certain characteristic
parameters are screened out. (2) Then compare the solutions and optimize the design.
(3) The model’s comprehensive coverage of the characteristic parameters and the
feasibility of the solution should be assessed. Arrange the feature parameters and
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artificially filter out the F20, F15, and F16 feature parameters, store them together as
a significant feature subset. In conclusion, the machine learning model identified a
subset of significant features comprising 12 parameters, which have been
renumbered as detailed in Table 4.

Table 4. Salient feature subset.

New Number Original Number Influencing Factors Belongs to

NF01 F14 Length Wooden frame

NF02 F13 Number of pads on the wooden frame Wooden frame

NF03 F06 Width Vibration-absorbing pad
NF04 F11 Weight Vibration-absorbing pad
NFO05 F03 Poisson’s ratio Vibration-absorbing pad
NF06 F09 Contact area with wood frames Vibration-absorbing pad
NF07 FO05 Thickness Vibration-absorbing pad
NF08 F22 Weight Wooden frame

NF09 F02 Elastic Modulus Vibration-absorbing pad
NF10 F20 Elastic Modulus Wooden frame

NF11 F15 Thickness Wooden frame

NF12 F16 Width Wooden frame

5. Predictive modelling, validation, and discussion

5.1. Data standardization

Considering the different units and magnitudes between each feature in the
subset of salient features, when the subset of salient features is used as an input
variable, it will cause difficulties in terms of the establishment of the model, the
speed of operation, and the accuracy of the model, so it is necessary to standardize
the data of this subset before establishing the model.

Data standardization is a dimensionless method for processing data
characteristics. Dimensionless refers to the need to convert data of different
specifications to the same specification, or to convert data of different distributions
to a specific distribution. During the model training process, the data characteristics
after dimensionality can accelerate the solution of the model.

The Min-Max standardization method is one of the most common data
standardization methods. Min-Max normalization performs a linear transformation
of the original data and maps the values in the range of between [0,1]. The Min-Max
method is applicable to bounded data. and depends on all sample data. The floor data
volume in this manuscript is 97, which is a small data set, and the value will not
change. Moreover, this manuscript does not involve distance measurements,
covariance calculation, etc. The Min-Max method is convenient for eliminating
dimensions and incorporating the data of each indicator into the comprehensive
evaluation. Therefore, it is preferable reasonable to use the Min-Max method to
process the data in this paper. To transform the sample sequence {X1,X2,Xs, ...,xn}, the
function is as follows:

10
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Xi — MiNy < j<nix)

Vi = (8)

- MAX1<j<n{xj) — MiN1<j<n{xj)
In the formula, n is the number of samples. Then, the new sequence yi, Y2, Ys,...,
yn€ [0,1] is dimensionless.

5.2. Model evaluation

Taking the measured sound insulation data of the aforementioned 97 sets of
high-speed train floor combination structures as the total sample, three machine
learning models that are commonly used for regression tasks, namely decision tree,
the BP neural network model, and the support vector machine regression (SVR)
model, were used to analyze prediction of the weighted sound insulation of the high-
speed train’s composite floor composite structures. Decision trees, BP neural
networks, and SVR represent different types of models (tree models, neural networks,
and models based on statistical learning), which can provide multi-angle comparison
of prediction results. By comparing these three methods, we can have a more
comprehensive understanding of the characteristics of the data and its relationship
with the prediction results, and provide a reference for selecting appropriate models
for future research. For this, 70% (68 groups) of the samples were randomly selected
and classified into the training set, and the remaining 30% (29 groups) were
classified into the test set for verification. During the verification process, the mean
square error (MSE) and square correlation coefficient (R?) were used to evaluate the
model’s training results. The calculations of MSE and R? are as follows:

m a2
— izl(x;n YL) (9)

X =) (v = W]
Nt (e — )2 X (v — ¥)?

MSE

R? =

(10)

5.3. Decision tree algorithm

Decision tree is a widely used machine learning method that can effectively
handle classification and regression problems. Its basic idea is to recursively divide
the data set, with each node being a feature, each branch representing the value of
the feature, and each leaf node representing a category or a value. Among them, the
CART method can effectively model multiple feature variables, and the extraction
rules are simple, highly accurate, and easy to understand. The decision tree model is
intuitive and easy to understand, and can handle nonlinear relationships. In this
context, this paper uses the CART algorithm to predict the sound insulation of high-
speed train floors.

Assuming X and Y are input and output variables, forming a training data set,
we traverse each feature variable and its corresponding value. Let the current
splitting variable be the j-th variable, corresponding to a splitting value s, which can
divide and define two regions.

11
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Then, the input space will be continuously divided into L subspaces a1, ay, ..., a..
Each subspace a contains a part of the sample data and output value . The solution
of the current model can be expressed as follows:

L
f@ =) pilxea) (1)
=1

The error size of the loss function is compared using the squared error Y (y; —
f(x))?, and the optimal split point and predicted value are determined using the
squared error minimization criterion. According to the least squares method, the

mean value of all outputs y; on subspace o is the optimal value BZ of A, which can be
expressed as follows:

é\l = ave(y;|x; € a;) (12)

Select the optimal segmentation attribute j and attribute value s to divide the
input space, which is expressed by means of the following formula:

min|min > =Bt Hmin > i) (13)
Gl A= i P2 vl

Traverse all input feature variables and their values, find the current optimal
split point (j, s), and then divide the current space into two sub-regions based on the
split point. At this time, if the two sub-regions cannot be divided, the corresponding
optimal output value can be obtained, expressed as follows:

A

h = ave(ilxi € ,,9) 1
B, = ave(vilxi € ), )

According to the above steps, if the division can continue, repeat the above
steps until it stops.

Figure 6a below shows the comparison between the actual measurements and
the prediction results of the training set. It can be seen that the actual measurements
and the prediction results of the training set are relatively close. Their MSE is
0.015673, and R? is 0.94075. The effect of the model training is good.; Further,
Figure 6b shows the comparison between the actual measurement and prediction
results of the test set, but the consistency between the measurement and prediction
results is not high. Its MSE is 0.12145, and R?is 0.60359, indicating that the trained
model is not effective. Subsequent adjustments and retraining should be carried out.

12
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Figure 6. Comparison of actual measurements and prediction results. (a) Training set; (b) Test set.

5.4. BP neural network method

A BP neural network (BPNN, Back Propagation Neural Network) can
essentially be considered a simplified biological model. The data are first imported
into the input layer and then passed to the hidden layer. For the hidden layer, the
received signal will be passed to the output layer again according to certain rules
according to the weight of the interconnected neurons. The output layer will compare
the results. If there is an error, it will return to modify the weight of the
interconnected neurons. It is good at handling complex pattern recognition problems,
especially performing well in nonlinear and high-dimensional data, can
automatically learn features, and has strong generalization ability. Its structural
model is shown in Figure 7.

Output layer . . .

~— A

S .

Input layer . e ‘

Figure 7. Structural model diagram.

Before training, the variables of the input layer, hidden layer, and output layer
must be defined, and each variable must be initialized. The number of nodes is set to
a, b, and c, respectively, the connection weight values between each layer are set to
wij and wj, respectively, and the neuron transfer function is selected. Calculate the
output value H of the hidden layer according to Equation (15):

i=1
H; = f Z(wij — a]-) ;J=12,...,b (15)
n

According to Equation (16), calculate the predicted output O:

1
0, = Zijjk bk =12,..,c (16)
j

13
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Based on the predicted output O and the actual output Y, calculate the loss
function e:

ek=Y -0,k=12,...c (17)

According to the back propagation error, adjust the correction weights wij, wj,
and p,t. Finally, check whether the error evaluation training of the output value is
qualified. When the error reaches the minimum, the training stops. If the error value
can continue to decrease, return to continue training.

A neural network model was established using MATLAB2016b software. The
specific neural network model implementation process is shown in Figure 8.

- dHidden Ifyy_ : OQutput L{yer _
Input { 4.—_1 Pr— (
? = O
12 b |

Figure 8. Neural network model implementation process.

Figure 9a shows the comparison between the measured and predicted results of
the 68 samples in the training set. It can be seen that the MSE is 0.015673 and the R?
is 0.94075. The two curves of the actual measured value and the predicted value of
the training set are in good agreement, which shows that the model training effect is
better; Figure 9b shows the comparison between the actual measurement and
prediction results of the 29 samples in the test set. The MSE is 0.018782, R? is
0.87628, and the model is relatively stable.
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Figure 9. Comparison of actual measurements and prediction results. (a) Training set; (b) Test set.

5.5. Support vector machine regression (SVR) method

Support vector regression (SVR) is a regression method based on the support
vector machine (SVM). Different from traditional regression methods, the goal of
SVR is not to directly fit the data, but to find a hyperplane in the feature space so
that the sample points are as close to the hyperplane as possible, and a certain error is
allowed within the tolerance range. SVR performs well in processing high-
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dimensional data and has good generalization ability, especially in the case of small
samples, and can effectively avoid overfitting problems.

For the regression problem, given the training data set D =
{(x1,y1),(X2,¥2),...,(Xi,yi) }, where xieR" is the n-dimensional input sample and yieR is
the output sample, the aim is to learn a regression model f(x) = w'x + b so that f(x)
and y are as close as possible. w and b are model parameters.

For samples (x, y), traditional regression models usually calculate the loss
directly based on the difference between the model output f(x) and the true output y.
The loss is 0 if and only if f(x) is exactly the same as y. In contrast to this, the support
vector machine (SVR) assumes that we can tolerate up to ¢ errors between f(x) and y,
and only calculates the loss when the absolute value of the difference between f(x)
and y is greater than ¢.

Therefore, the SVR problem is written as follows:

min W2 + €Y L (F ) = ) (19)
i=1

In the formula, C is a regularization constant. We introduce the slack variables

A
&; and &;, rewrite the above formula, and satisfy the constraints:

1 oA
min, = [wll® + czl@-.a-) (19)

Wlb'filgi
s.tf(x;))—y; <e+¢&

A
yi—fx) <e+¢ (20)
A
Ei = O,fi = O,i = 1,2,...,m

Furthermore, the SVR dual problem is obtained:

m m m
A A 1 A A T
mc%nyi(ai —a;) —e(a; + ) — EZ Z(ai —a)(a; +a)xix;  (21)
®a =1

i=1j=1

m
A
s. t.Z(ai —a;)=0
@)
0<a,a;<Ci=12.,m

The above process satisfies the KKT condition. Then, we map the data to a
high-dimensional feature space for linear regression, use the kernel function to
replace the inner product operation in the linear problem, replace x with ¢(x), and
obtain the final model of the support vector machine:

m
FG) = ) (@ - a)p()p(x) + b (23)
i=1

Figure 10a shows the comparison between the actual measurements and the
prediction results of the 68 samples in the training set. It can be seen that the MSE is
0.00009724 and the R? is 0.99976. The two curves of the actual measured value and
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the predicted value of the training set are in good agreement, which shows that the
model training effect is better; Figure 10b shows the comparison between the
measured and predicted results for the 29 samples in the test set. It can be seen that
the measured and predicted values in the test set are still highly consistent, with an
MSE of 0.009842 and an R? of 0.96782. This shows that the trained model has good
generality. In addition, during the operation process, the training set and test set are
randomly selected, so the trained model has a certain degree of randomness. The
above shows that the SVR model is reliable for subsequent numerical predictions.
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Figure 10. Comparison of actual measurements and prediction results. (a) Training set; (b) Test set.

5.6. Comparison and discussion of machine learning models

In order to optimize the wooden support structure below the floor, the MSE and
R? of the prediction sets of the above three machine learning prediction models are
now compared, as shown in Figure 11. Numbers 1, 2, and 3 represent the decision
tree, BP neural network, and SVR. The two curve trends in the figure show that
among the models trained in this article, SVR has a better effect.

T

—m— MSE
-9--R

Mean Square Error, MSE
Square correlation coefficient,R?

Algorithm number

Figure 11. Comparison of prediction sets’ evaluation criteria.

In addition, cross-validation is a technique for evaluating the performance of
statistical models (such as machine learning models). It is mainly used to evaluate
the performance of a model on independent data sets, avoid overfitting, and ensure
the generalization ability of the model.

Based on the idea of cross-evidence, the SVR model was used as an example.
From this, 70% (68 groups) of the questions were taken as practice tests and the
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remaining 30% (29 groups) were taken as test questions. We repeated the process 20
times to statistically calculate the MSE and R? values for each training and
measurement set, as shown in Figure 12. As can be seen in Figure 12a, the MSE of
the 20 training sets was between 0 and 0.02, the R? was between 0.9 and 1.0, and
most were close to 1. As can be seen in Figure 12b, the MSE of the corresponding
measurements ranged from 0 to 0.06 and was often around 0.02, and the R? ranged
from 0.8 to 1.0. In general, the model was more powerful.

0.00

Mean Square Firor, MSE
Square correlation coe fcient &

Square correls

(a) (b)

Figure 12. MSE and R? values for the floor structure diagram. (a) Test results; (b) Predicted results.

Further, the prediction models are compared and discussed in terms of
prediction accuracy. As shown in Figure 13, the material composition of the
composite structure of a new high-speed train floor developed in this project, is
shown. Taking this floor combination structure as an example, we use the trained
model to predict the weighted sound insulation level, and compare the predicted
results with the measured sound insulation results of the reverberation method in
Section 3.1. In addition, the FE-SEA method (Figure 14) is also used to conduct
sound insulation modeling and simulation of the floor structure. FE-SEA simulations
provide an independent data source, allowing us to more fully evaluate the
performance of the model.

(@ | (b)
Figure 13. Floor structure diagram. (a) Cross-sectional photography; (b)
Distribution diagram of wooden support structure.
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Receiving room

Sound source room

| Floor structure

(@) (b)
Figure 14. Predictive model diagram. (a) FE-SEA prediction model; (b) Distribution
diagram of wooden support structure.

DAF

Table 5 shows the comparison between the predicted values of the above
prediction methods and the actual measured values. It can be seen that the predicted
value of the weighted sound insulation Ry based on the support vector machine
regression method only differs from the measured value by 0.3 dB, which is
compared with the 1.6 dB of the hybrid FE-SEA model, the 0.5 dB of the BP neural
network, and the 1.1 dB of the decision tree error. The accuracy has been
significantly improved. Finally, in the prediction task of this article, the support
vector machine regression (SVR) method is the most suitable prediction model for
the optimization of the wooden support structure.

Table 5. Comparison of different model predictions and actual measurement results.

Method of Prediction Model Category Weighted Sound Insulation Rw/dB Error/dB
Experiment Reverberation method test 50.7 /
Simulation Hybrid FE-SEA 49.1 1.6
Machine learning Decision tree 49.6 11
Machine learning BP neural network 51.2 0.5
Machine learning SVR 51.0 0.3

6. Target optimization based on engineering practice

6.1. Optimization goals and constraints

Due to the influence of the material type, quantity, cost, construction period,
and other conditions, only 97 sound insulation tests of high-speed train floor
structure samples were completed in this project. However, for machine learning,
the number of experimental results is still very small, which can only guide
directional optimization ideas to a certain extent, and cannot determine the
optimal structural solution. This section mainly uses the prediction model of the
support vector machine regression method, which was previously shown to have
a good training effect, to seek the rapid prediction of the optimal plan for the
wooden support structure and its related parameters, and complete the
optimization with the main goal of sound insulation of the floor structure.

Overall, sound insulation is the acoustic design goal of the floor structure.
Combined with the actual engineering and the main research object of this article
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(a wooden support structure), and based on the project’s design goals and

planning, this section uses the overall thickness and density of the wooden

support structure of the design plan as “constraints”. The specific description of
these “constraints” is as follows:

1) Overall thickness: The floor structure will be subject to conditions during
assembly. As a component of the floor structure, the overall thickness of the
wooden support structure will also be limited. Therefore, the overall
thickness of the timber support structure serves as one of the “constraints”.

2) Overall density: Lightweighting high-speed trains is an important measure
to reduce the demand for traction power of high-speed EMUs and achieve
high-speed operation. It improves the operating efficiency and reduces
energy consumption. and is a key development trend for high-speed trains.
Therefore, the overall density of the wooden support structure serves as one
of the “constraints”.

6.2. Optimization implementation and analysis

Based on the comparative evaluation of the machine learning model in
Section 5.6, this section will optimize the wooden support structure and illustrate
the beneficial effect of the SVR model on target optimization.

First, the salient characteristic parameters and their specific data that were
screened out in Table 4 are sorted. It should be noted that there are restrictions
on some parameters in the optimization of this project, so the salient
characteristic parameters and their values that meet the requirements of this
project are used to form a new sample library.

Furthermore, by permuting and combining the calculation results, it can be
seen that the number of possible solutions is N = 26357760. However, it should
be noted that among such a large number of solutions, not all solutions are
reasonable or meet the actual assembly requirements. The reasons for this are as
follows:

1) The number of damping pads on a single wooden frame multiplied by the
length of a single damping pad should not be greater than the length of a
single wooden frame.

2) The width of the vibration-absorbing pad should not be greater than the
width of the wooden frame.

Therefore, all solutions that are unreasonable or do not meet the feasibility
of assembly are eliminated. After elimination, the SVR prediction model is used
to calculate all the solutions, so as to obtain the predicted value of the sound
insulation level for each solution, and, under the “constraint conditions”, find the
best solution to achieve project feasibility.

After evaluating and screening, 303,696 solutions were identified that
satisfy all the constraints and assembly requirements, given that the overall
thickness of the wooden support structure was 60 mm and the solution’s density
did not exceed 1000 kg/m3. Figure 15 depicts a scatter plot of these floor
structure configurations, where the X, y, and z axes represent the density, total
thickness, and weighted sound insulation of each scheme, respectively. The
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scheme that achieved the maximum sound insulation of 50.45 dB is highlighted
in the figure. The specific values of the significant characteristic parameters
corresponding to this scheme are given, as shown in Table 6.

Table 6. Structural parameters of the maximum sound insulation plan.

Structure Parameter Value
Density (kg/m?3) 500
Elastic Modulus (GPa) 2

o ) Length (mm) 500

Vibration-absorbing pad .
Width (mm) 40
Thickness (mm) 12
Poisson’s ratio 0.43
Density(kg/m?) 1275
Elastic Modulus (GPa) 125
Thickness (mm) 42.6

Wooden frame .
Width (mm) 44
Length (mm) 785
Number of pads on the wooden frame 1

51.0 -
50.8 -|
50.6 |
50.4 |
50.2 -|
g 50.0
= 49.8
S
Z 49.6 4
B 494
S 492 *
g 49.0 il l”i!
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486 1000
y 950 &
6
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Figure 15. Calculation results of solutions that meet the conditions.

The highest-performing sound insulation solution achieves an overall
density that adheres to the weight requirement of not exceeding 1000 kg/m?3; the
thickness of the wooden frames is 42.6 mm, the thickness of the vibration-
absorbing pad is 12 mm, and the overall thickness of the wooden support
structure is 54.6 mm, which meets the project requirements. Based on the
preceding analysis, the obtained solution satisfies all the limiting conditions and
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is a feasible solution. In addition, through the reverberation method’s test
verification, the weighted sound insulation of this scheme is found to be 50.55
dB, and the error is only 0.1 dB, indicating that the optimization results are
reasonable and accurate.

7. Conclusions

Through this research, the sound insulation performance of a high-speed
train’s floor has successfully been improved. First, the data required for model
training were obtained and organized based on the reverberation test method, and
feature selection was performed. Then, the maximum mutual information
minimum redundancy (MRMR) algorithm was used to screen out the significant
feature subsets. Subsequently, the decision tree, BP neural network, and support
vector machine regression (SVR) methods were applied, and the standardized
feature data were used for the high-speed train floor timber support structure
under the same evaluation criteria of mean square error (MSE) and coefficient of
determination (R?). Training and validation of the sound insulation prediction
models were carried out. In engineering practice, the SVR model can effectively
optimize the wooden support structure in the floor structure under certain
constraints. The main conclusions are as follows:

(1) The maximum mutual information minimum redundancy (MRMR)
algorithm is used to calculate the selected features and screen out a subset of
significant features, which provides strong support for the subsequent model
training.

(2) The comparative results show that the prediction errors of the decision tree
model, BP neural network model, and finite element statistical energy
analysis (FE-SEA) model are 1.1 dB, 0.5 dB, and 1.6 dB. The prediction
error of the SVR model is only 0.3 dB, which is significantly better than the
above model, indicating that the SVR model has higher reliability and
prediction accuracy.

(3) According to the planning of a certain project, the SVR model was used to
optimize the design under certain constraints, and we successfully
optimized the wooden support structure in the floor. The prediction results
show that the weighted sound insulation of the overall floor reaches 50.45
dB, which reflects the significant application value and practical feasibility
of the SVR model in engineering practice.

As the number of samples increases, the performance of the model will be
further improved, and the prediction results will be more accurate.
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