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Abstract: The control of vehicle interior noise has become a critical metric for assessing noise, 

vibration, and harshness (NVH) in vehicles. During the initial phases of vehicle development, 

accurately predicting the impact of road noise on interior noise is essential for reducing noise 

levels and expediting the product development cycle. In recent years, data-driven methods 

based on machine learning have gained significant attention due to their robust capability in 

navigating complex data mapping relationships. Notably, surrogate models have demonstrated 

exceptional performance in this domain. Numerous researchers have integrated diverse 

intelligent algorithms into the study of vehicle noise, leveraging advantages such as the 

elimination of precise modeling requirements, extensive solution space exploration, continuous 

learning from data, and robust algorithmic versatility. However, in NVH engineering 

applications, data-driven models face inherent limitations, particularly in interpretability and 

stability. To address these issues, this paper introduces an improved Long Short-Term Memory 

(LSTM) network that combines knowledge and data. Inspired by the physical information 

neural network concept, this approach incorporates values calculated through empirical 

formulas into the neural network as constraints. Comparative assessments with traditional 

LSTM networks highlight the advantages of this deep learning model. By integrating empirical 

formulas constraints, the model not only enhances interpretability but also achieves robust 

generalization with fewer data samples. The proposed method is validated on a specific vehicle 

model, showing significant improvements in prediction accuracy and efficiency. 
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1. Introduction 

With rapid scientific and technological advancements and higher living 

standards, the demand for automobiles has expanded beyond simple mobility to 

include greater comfort. The Noise, Vibration, and Harshness (NVH) performance of 

vehicles significantly affects both drivers and passengers psychologically and 

physiologically [1–3]. Consequently, companies are increasingly prioritizing NVH 

optimization. Traditional gasoline vehicles produce noise from the engine, 

transmission, intake and exhaust systems, road, and wind [4–7]. In particular, the road 

surface and tires play a significant role in traffic noise. The structural noise generated 

by the interaction of road surface roughness excites the tire’s internal cavity and the 

hub coupling system, which also transmits noise [8–10]. Tires are a major source of 

noise, especially their tread patterns [11]. The noise response of different tread patterns 

varies when driving on the road surface. In contrast, electric vehicles, which lack 

engine noise, emphasize road noise and wind noise [12,13], especially in the process 
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of driving at medium speed on good urban roads, road noise has become a key research 

object. 

In the early stages, conducting experiments to study acoustic comfort and overall 

noise in different scenarios is a common approach [14,15]. The composition of traffic 

and traffic volume have a significant impact on noise generation on typical roads. 

Alves et al. [16] studied noise generation by measuring the percentage of heavy 

vehicles in the total traffic volume on typical roads. Praticò et al. [17] emphasized the 

necessity of reducing traffic noise through the use of quiet road surfaces. The study of 

automobile road noise has evolved with advances in computer technology and acoustic 

theory, progressing from early single tests to Computer-Aided Engineering (CAE) 

simulations [18,19]. Yin et al. [20] predicted the acoustic performance of newly laid 

low-noise road surfaces by developing two models and using different surface mix 

parameters across various frequency ranges as inputs for the models. The integration 

of test technology and CAE is now essential for major automotive research and 

development. Various methodologies have emerged, such as Huang et al.’s [21] 

proposed an adaptive parallel filter method for fast response and suppression of 

different in-vehicle road noise, achieves fast noise reduction response and low steady-

state error in attenuating varying in-vehicle road noise. Fan et al. [22] designed a 

magnetic levitation actuator for vehicle suspension to control road noise, 

demonstrating excellent vibration isolation in the 20–300 Hz range using a sport utility 

vehicle. Park et al. [23] utilized a component-level transfer path analysis based on the 

hysteresis force method to achieve the road noise target, and based on this interior 

noise prediction, the interior noise and vibration levels were reduced by a hysteresis 

force-based method. Despite advancements, challenges in predicting vehicle interior 

noise persist due to long test periods and high costs associated with complex analysis 

mechanisms. 

Research on noise and vibration issues across various industries using 

experimental methods and CAE approaches often faces challenges such as long-time 

consumption and complex modeling [24–26]. However, in recent years, with the rapid 

development of computer technology, these challenges are being addressed. Data-

driven approaches based on machine learning show promise for addressing complex 

data mapping relationships through surrogate models. Scholars have applied these 

methods to vehicle NVH analysis to improve research efficiency [27,28]. For instance, 

Wysocki et al. [29] created training data for an artificial neural network by deforming 

an initial component finite element model to find component design optimization 

parameters for the frequency response function target curve. Li et al. [30] predicted 

the noise value of the vehicle by means of Elman neural network and established a 

body structure optimization method with comprehensive consideration of NVH 

performance and side impact safety. Huang et al. [31] used empirical modal 

decomposition and sample entropy to extract noise features, established a wavelet 

neural network for sound quality prediction, and proposed a modified Long Short-

Term Memory (LSTM) model based on adaptive learning rate forests. Yu et al. [32] 

analyzed that compared to Recurrent Neural Networks (RNN), LSTM can solve the 

long-term dependency problem well and give better predictions. 

With the increase in automotive consumers, acoustic comfort has become an 

important issue. The design quality of sound within the vehicle cabin [33] can directly 
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impact driving safety and the overall riding experience [34]. Despite achievements in 

some NVH engineering applications, predicting vehicle interior noise effectively 

remains challenging for two main reasons [35,36]. First, neural network models 

require substantial training data, especially with complex structures. Insufficient 

training data can lead to overfitting, causing model failure. Second, designers often 

hesitate to adopt complex data-driven systems due to difficulties in understanding their 

internal mechanisms, including the interpretability of decision-making and evaluation 

results. 

This paper introduces an improved Long Short-Term Memory (IMP-LSTM) 

method to address the limitations of existing methodologies. First, it proposes a novel 

approach by redesigning the neural network’s loss function to incorporate local 

“empirical knowledge” as constraints. This innovation leverages empirical data to 

guide network learning, creating a hybrid model driven by both knowledge and data. 

This methodology addresses the shortcomings of traditional LSTM, which heavily rely 

on precise samples, especially for complex systems. Second, the study introduces 

normalized adaptive weights to enhance the model’s predictive capability. This 

strategy allows the network to dynamically adjust the weights of loss terms, ensuring 

numerical comparability and preventing issues such as gradient disappearance or 

explosion, thereby enhancing training stability and efficiency. 

The paper is structured as follows: Section 2 provides an overview of LSTM 

models, and introduces the proposed IMP-LSTM model theoretically; Section 3 details 

the experimental design and analyzes the results; Section 4 implements the proposed 

prediction method and validates the results; Finally, Section 5 summarizes the findings 

and insights of the study. 

2. Methodology 

2.1. Introduction to LSTM network structure 

Predicting road noise encompasses numerous components, making it a multi-

dimensional, nonlinear problem characterized by a small sample size derived from 

engineering practice. The LSTM network is particularly suitable for addressing this 

issue due to its superior time series data processing capabilities [37,38]. 

LSTM is a specialized type of RNN designed to address gradient disappearance 

and explosion issues common in traditional RNNs when handling long sequences [39]. 

It employs a unique ‘gate’ structure to control the flow of information, ensuring stable 

parameter updates. This structure determines which information to retain and which 

to discard based on input data characteristics, thus avoiding unnecessary information 

accumulation while preserving long-term dependencies [40]. As illustrated in Figure 

1, the LSTM network topology includes an input layer, two hidden layers, and an 

output layer. The input layer receives external data and transmits it to the first hidden 

layer. Each hidden layer consists of multiple LSTM units interconnected to facilitate 

data flow. The second hidden layer passes the data to the output layer, which provides 

the final prediction results. In practice, the number of hidden layers in the LSTM 

network can be adjusted based on the complexity of specific tasks and data. 
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Figure 1. LSTM cell internal structure. 

The right side of Figure 1 illustrates the detailed cellular structure of the LSTM 

cell. Within the LSTM cell, there are three key “gate” structures: the forget gate, input 

gate, and output gate. These gates control the flow of information within the cell, 

enabling it to learn and remember long-term sequential dependencies. The LSTM cell 

first determines what information to remove from the cell state through the forget gate, 

which is achieved via a layer with a sigmoid activation function, as shown in Equation 

(1). 

𝑓 = 𝜎(𝑥𝑡𝑊𝑓 + ℎ𝑡−1𝑊𝑓 + 𝑏𝑓) (1) 

where the output of the forget gate is derived from the input 𝑥𝑡 at moment t, the state 

ℎ𝑡−1  at moment t−1, and the bias term b. This output is then passed through the 

sigmoid function, represented as σ in the equation. The sigmoid function, an S-shaped 

curve, maps the input variables between 0 and 1, commonly serving as an activation 

function for neural networks. Each value of f ranges from 0 (complete forgetting) to 1 

(complete remembering). 

Next, the input gate decides what new information will be stored in the cell state. 

This process involves two parts: First, a sigmoid layer called the “input gate layer” 

determines which values will be updated, with a probability 𝑖𝑡 . Then, a tanh layer 

creates a vector of candidate values 𝐶̃𝑡  to be added to the cell state. These two 

components combine to update the state, as shown in Equation (2). Notably, the tanh 

function is used instead of the sigmoid function as the activation function because its 

role is to add new information to the memory cell, not to gate it. 

𝑖𝑡 = 𝜎(𝑥𝑡𝑊𝑖 + ℎ𝑡−1𝑊𝑖 + 𝑏𝑖), 𝐶̃𝑡 = 𝑡𝑎𝑛ℎ( 𝑊𝐶 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶 (2) 

where the old cell state 𝐶̃𝑡−1 is then updated to the new cell state 𝐶̃𝑡. The new cell state 

is a hybrid that combines the old state and the new candidate, depending on the 

previously determined amount of forgetting and updating, as shown in Equation (3). 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶̃𝑡 (3) 

For the design of the output mechanism, the output of the LSTM depends not 

only on the current input and hidden state but also on the cell state. This process is 



Sound & Vibration 2025, 59(1), 2022. 
 

5 

facilitated by an output gate. The output gate’s primary task is to determine which 

parts of the cell state should be output. Specifically, it applies a sigmoid layer to 

interrogate the current input 𝑥𝑡 and the current hidden state ℎ𝑡−1, generating a value 

between 0 and 1 for each element of the cell state. This value determines the amount 

of information retained in the corresponding section, as shown in Equation (4). 

𝑜𝑡 = 𝜎(𝑥𝑡𝑊𝑡 + ℎ𝑡−1𝑊𝑡 + 𝑏𝑡) (4) 

Subsequently, the cell state 𝐶𝑡 is passed through a tanh layer that compresses its 

value to between −1 and 1. The output of the tanh is then multiplied by the output of 

the output gate 𝑂𝑡  to obtain the final output ℎ𝑡 . This process ensures that only the 

filtered portion of the information is passed to the next layer or used as the current 

layer’s output, as shown in Equation (5). 

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ( 𝐶𝑡) (5) 

Through this mechanism, the LSTM can flexibly extract useful information from 

its long-term memory while considering the current context. This capability not only 

enhances the model’s predictive accuracy but also improves its ability to handle time-

series data, making it well-suited for complex tasks such as road noise prediction. 

The training process of neural network methods, such as LSTM, involves 

calculating errors based on the loss function and then backpropagating to update 

parameters. The loss function is the core metric that determines the direction of the 

network’s training process. For road noise prediction tasks, in addition to focusing on 

the overall trend prediction accuracy, it is also necessary to pay attention to the 

prominent peaks caused by local resonances in the overall noise. Improving the 

prediction accuracy of these prominent peaks is a current challenge in road noise 

prediction. 

2.2. Improvement of the LSTM model 

This study draws on the concept of physics-informed neural networks [41] to 

refine and expand the loss function. Empirical formula values are introduced as 

constraints into the network based on the LSTM infrastructure, making it more suitable 

for the specific needs of road noise prediction. Consequently, the empirical model of 

the IMP-LSTM network is proposed, with its topology illustrated in Figure 2. 

The loss function of the IMP-LSTM network is divided into three parts. The first 

part is the traditional data-driven model loss term, which focuses on the difference 

between the predicted value and the actual value, as shown in Equation (6). 

𝐸𝑑 = ∑ [𝑢𝑝𝑟𝑒𝑑(𝑡𝑖
𝑑 , 𝑥𝑖

𝑑; 𝜃, ) − 𝑢𝑟𝑒𝑎𝑙(𝑡𝑖
𝑑 , 𝑥𝑖

𝑑)]
𝑁𝑑

𝑖=1

2

 (6) 

where 𝑁𝑑  is the number of data points, 𝑢𝑝𝑟𝑒𝑑(𝑡𝑖
𝑑 , 𝑥𝑖

𝑑; 𝜃, )  represents the neural 

network output value and 𝑢𝑟𝑒𝑎𝑙(𝑡𝑖
𝑑 , 𝑥𝑖

𝑑) denotes the labeled value. This loss term 

ensures that the model output remains close to the training data overall, providing a 

baseline learning objective for the model. 



Sound & Vibration 2025, 59(1), 2022. 
 

6 

 

Figure 2. IMP-LSTM network structure. 

The second component is the peak error loss term of the predicted sequence 

features, as shown in Equation (7). 

𝑀𝑆𝐸𝑝 =
1

𝑁𝑝
∑ [𝑢𝑝𝑟𝑒𝑑(0, 𝑥𝑝

𝑝𝑒𝑎𝑘
; 𝜃, ) − 𝑢𝑟𝑒𝑎𝑙(0, 𝑥𝑝

𝑝𝑒𝑎𝑘
)]

2𝑁𝑝

𝑖=1
 (7) 

where 𝑁𝑝 is the number of data points near the peak of the feature, 𝑢𝑝𝑟𝑒𝑑(0, 𝑥𝑝
𝑝𝑒𝑎𝑘

; 𝜃, ) 

is the prediction of the neural network for the pth initial data point 𝑥𝑝
𝑝𝑒𝑎𝑘

 under 

parameter 𝜃; 𝑢𝑝𝑟𝑒𝑑(0, 𝑥𝑝
𝑝𝑒𝑎𝑘

) is the true value of the pth initial data point. This loss 

term calculates the mean squared error between the neural network output and the true 

value near the peak location, ensuring that the neural network output matches the true 

value at the peak of the feature. 

The third component is the correlation loss, which is calculated using Pearson’s 

correlation coefficient, as shown in Equation (8). The loss function is defined as 1 

minus the correlation coefficient, where the loss is 0 when the output is completely 

correlated with the labels and 1 when the output is not correlated with the labels, 

effectively guiding the network training. 

𝑀𝑆𝐸𝑟 = 1 −

1
𝑁𝑟

∑ [(𝑢𝑝𝑟𝑒𝑑
𝑟 − 𝑢̄𝑝𝑟𝑒𝑑)(𝑢𝑟𝑒𝑎𝑙

𝑟 − 𝑢̄𝑟𝑒𝑎𝑙)]
𝑁𝑟
𝑖=1

√∑ [(𝑢𝑝𝑟𝑒𝑑
𝑟 − 𝑢̄𝑝𝑟𝑒𝑑)2]

𝑁𝑟
𝑖=1

∑ [(𝑢𝑟𝑒𝑎𝑙
𝑟 − 𝑢̄𝑟𝑒𝑎𝑙)2]𝑁𝑟

𝑖=1

 (8) 

where 𝑁𝑟 is the number of data points, 𝑢̅𝑝𝑟𝑒𝑑 is the average of network output 

features, 𝑢̅𝑟𝑒𝑎𝑙 is the average of labeled values. This loss term measures the correlation 

between the predicted output of the neural network and the true labeled values. By 

calculating the Pearson’s correlation coefficient between the network output sequence 

𝑢𝑝𝑟𝑒𝑑  and the labeled value sequence 𝑢𝑟𝑒𝑎𝑙
𝑟 , the strength of the linear relationship 

between them is determined. 

The total loss of the network is shown in Equation (9). 

𝐿oss𝐼𝑀𝑃−𝐿𝑆𝑇𝑀 = 𝜔𝑑𝑀𝑆𝐸𝑑 + 𝜔𝑝𝑀𝑆𝐸𝑝 + 𝜔𝑟𝑀𝑆𝐸𝑟 (9) 
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where 𝑤𝑑 is the loss weight in the traditional neural network model, 𝑤𝑝 is the local 

loss weight of the feature peaks, and 𝑤𝑟 is the serial correlation error loss weight. 

As with physics-informed neural networks, the individual weights of the loss 

function are fixed, and the training efficiency of the network depends on the weights 

associated with different loss terms. However, the general method of adjusting the loss 

weights is time-consuming, laborious, and prone to errors and omissions. To address 

this, an adaptive weighting algorithm based on a normalization method is proposed, 

which normalizes each weight term so that they contribute equal weights to the total 

loss, ensuring that no single loss term is biased during model training. This approach 

improves the generalization ability of the model and usually speeds up convergence 

by avoiding training instability due to overemphasis on a single loss term. 

Specifically, the average value of each loss term is computed by forward 

propagation before training begins. Initial normalization weights are set to 0.5, as the 

same in [42]. Using these calculated average loss values and those weights balance the 

contribution of each loss term to the total loss, as shown in Equation (10). 

𝜔𝑑
′ =

1

𝜎𝑑√𝑁𝑑

, 𝜔𝑝
′ =

1

𝜎𝑝√𝑁𝑝

, 𝜔𝑟
′ =

1

𝜎𝑟√𝑁𝑟

 (10) 

where the symbols 𝜎𝑑, 𝜎𝑝, 𝜎𝑟 represent the standard deviations of the data loss term, 

peak error loss term, and correlation error loss term, respectively, during the initial 

training phase.𝑁𝑑, 𝑁𝑃, 𝑁𝑟 represent the number of samples in the data loss term, peak 

error loss term, and correlation error loss term, respectively. During each forward 

propagation, the total loss is calculated using normalized weights, as shown in 

Equation (11). 

𝐿oss𝐼𝑀𝑃−𝐿𝑆𝑇𝑀
′ = 𝜔𝑑

′ 𝑀𝑆𝐸𝑑 + 𝜔𝑝
′ 𝑀𝑆𝐸𝑝 + 𝜔𝑟

′ 𝑀𝑆𝐸𝑟 (11) 

Before training begins, calculate the initial average and standard deviation of 

each loss term. This step serves as a reference for the subsequent weight updates 

during training. During each training iteration, Equations (10) and (11) are used to 

dynamically update the weights of the loss terms. This ensures that the model can 

adaptively adjust the contribution of each loss term based on their changes, which 

continues throughout the training process. This dynamic normalization process 

ensures that the model quickly adapts to the data and empirical formulas in the early 

stages of learning while automatically adjusting in the later stages to avoid overfitting 

of local loss terms. 

3. Vehicle road noise data collection and modeling 

3.1. Vehicle Road noise road test 

In structural vibration and noise analysis, any system, including vehicles, follows 

the ‘source-path-receiver’ model. During driving, the tire excites the road surface of 

the suspension system, transmitting vibration to the body, which generates structural 

radiation sound ultimately perceived as noise by the human ear [43,44]. Understanding 

this transmission mechanism involves examining road excitation, tire characteristics, 

and the properties of each elastic connection in the suspension. In practice, obtaining 
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and rectifying tire stiffness and damping parameters is challenging [45,46]. To 

simplify the road noise prediction model, steering knuckle excitation is used as an 

input kinematic parameter, bypassing the need to study tire and road surface 

interactions. Within the suspension system, the helical spring’s stiffness primarily 

affects system frequency with minimal impact on road noise. However, the bushing 

and shock absorber, the main vibration isolation components, significantly influence 

road noise. Thus, dynamic stiffness of the bushing and shock absorber damping are 

included as input dynamic parameters [47]. This study focuses on a car model with 

‘front McPherson, rear multi-link’ suspension. 

To collect vibration data from the steering knuckle, suspension, and body, as well 

as noise data from the driver’s right ear, a real vehicle road test was conducted [48]. 

Data were collected synchronously using a 24-channel LMS SCADAS Mobile system 

from LMS Company and analyzed with the Signature Testing-Advanced module in 

LMS Test.Lab18. Noise signals were captured with a BSWA sound pressure sensor 

(model: MPA201-550507), while vibration signals were recorded using PCB three-

axis vibration sensors (models: BW13510-J0810/BW13510-J0812). Sampling time 

was set to 10 seconds, with a frequency of 6400 Hz and a resolution of 1 Hz. To ensure 

the consistency of the road input during the test, a rough asphalt road is selected and 

the vehicle speed is kept at 60 km/h at a constant speed. During the test, the external 

noise interference should be minimized; the windows, air inlet, and outlet should be 

closed, and the air conditioner and fan should be closed to ensure that no abnormal 

noise is generated. In addition, the necessary test personnel and drivers try to put the 

vehicle in a no-load state. Also, to ensure the quality of the test data, each designed 

data sample is tested four times, and the results with better consistency are screened 

as the subsequent training samples of the prediction model. The road noise tests were 

conducted under stable weather conditions to minimize the influence of external 

environmental factors on the noise data. Specifically, all tests were performed on days 

with mild weather, avoiding extreme conditions such as heavy rain, strong winds, or 

extreme temperatures. The ambient temperature during the tests ranged between 25 

°C and 28 °C, with minimal wind interference. These controlled conditions helped 

ensure the reliability and consistency of the collected noise data, allowing the model 

to focus primarily on the road-induced noise without significant interference from 

environmental noise sources. 

Rough asphalt pavement was chosen for the road noise test for two main reasons: 

it effectively stimulates the vehicle’s structural sound while minimizing other noise 

contributions, and it is a typical urban passenger car surface, providing relevant real-

world noise levels. The sensor layout is illustrated in Figure 3. Two PCB three-axis 

vibration acceleration sensors measured the vibration of the vehicle’s left-side steering 

knuckles. A sound pressure sensor was placed near the driver’s right ear in a forward-

facing direction, adhering to ISO 5128:2023: Acoustics—Measurement of interior 

vehicle noise [49]. The driver’s right ear noise and the Z-direction vibration 

acceleration of the front suspension steering knuckle collected in the test are shown in 

Figure 4a,b, respectively. Combined with the transmission characteristics of road 

structure noise, its frequency band range is mainly concentrated in 50–300 Hz, because 

this paper focuses on the noise characteristics in the sub-frequency band. 
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Figure 3. Sensor placement. 

The vibration sensor is located at the front steering knuckle. 

 
 

Figure 4. Driver’s right ear noise and front steering knuckle vibration acceleration test data, (a) driver’s right ear 

noise; (b) front suspension steering knuckle acceleration. 

3.2. Data pre-processing 

A total of 60 sample data points were obtained from the pilot tests using both the 

original and comparison models. To mitigate the impact of data relative value on 

modeling, normalization of the dataset was performed [50,51]. Normalization converts 

the sample eigenvalues to a common scale within the [0,1] interval. The Min-Max 
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scaler function was used for normalizing the input data and performing inverse 

normalization on the output results, as shown in Equation (12) and Equation (13). 

𝑋𝑠𝑡𝑑 =
𝑋 − 𝑋. 𝑚𝑖𝑛(𝑎𝑥𝑖𝑠 = 0)

𝑋. 𝑚𝑎𝑥(𝑎𝑥𝑖𝑠 = 0) − 𝑋. 𝑚𝑖𝑛(𝑎𝑥𝑖𝑠 = 0)
 (12) 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑋𝑠𝑡𝑑 ∗ (𝑚𝑎𝑥 − 𝑚𝑖𝑛()𝑚𝑖𝑛) (13) 

where X is the data to be normalized, usually a two-dimensional matrix; 

𝑋. 𝑚𝑖𝑛(𝑎𝑥𝑖𝑠 = 0)is the row vector consisting of the minimum value in each column; 

𝑋. 𝑚𝑎𝑥(𝑎𝑥𝑖𝑠 = 0) is the row vector consisting of the maximum value in each column; 

max is the maximum value of the interval to be mapped to, the default is 1; min is the 

minimum value of the interval to be mapped to, the default is 0; 𝑋𝑠𝑡𝑑 is the result of 

normalization; 𝑋𝑠𝑡𝑑  is the result of anti-normalization; 𝑋𝑠𝑐𝑎𝑙𝑒𝑑  is the result of anti-

normalization. 

4. Method application and validation 

4.1. Modeling of road noise prediction based on IMP-LSTM 

We introduce a new regression-based IMP-LSTM model for predicting in-

vehicle noise. First, we compare the model’s convergence speed and final loss level 

with and without the adaptive weighting strategy. Then, we assess the new model’s 

effectiveness and efficiency against traditional machine learning models like LSTMs. 

The overall model-building process is illustrated in Figure 5. First, the input consists 

of a 250 × 24 feature matrix, which includes 24 sequence features. These features 

comprise the vibration acceleration of the front and rear suspension steering knuckles, 

as well as the dynamic stiffness of several components within the suspension system. 

Specifically, the dynamic stiffness features involve the front and rear shock absorber 

bushings, the front suspension swing arm (both front and rear bushings), the rear 

lateral tie rod bushing, the rear lateral control arm bushing, and the rear lower swing 

arm bushing. Each dynamic stiffness feature is measured in the x, y, and z directions. 

Each sequence has a length of 141, with a frequency range of 50–300Hz and a 

frequency resolution of 1 Hz. The output is a 250 × 1 matrix representing the noise at 

the driver’s right ear in decibels (dB). 
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Figure 5. IMP-LSTM algorithm prediction process. 

The road noise sample dataset is divided into training, test, and validation sets in 

an 8:1:1 ratio. The LSTM sequence architecture is used for forward propagation to 

obtain the network output y. The loss function is calculated as per the formula in 

Section 2.3, and the loss is iteratively backpropagated to adjust network parameters 

using the training set, aiming to reduce the loss function value. A unified evaluation 

metric is determined before model training to compare different models’ prediction 

effects. This regression prediction problem uses evaluation indices such as mean 

square error (MSE), coefficient of determination (R²), root mean square error (RMSE) 

[52], peak error, and training time. These metrics characterize the numerical deviation 

of the prediction results from the actual results. 

The modeling software used is Pycharm2022.3, running on an RTX 2080 Ti with 

64G RAM. A grid search method is employed to optimize the IMP-LSTM network 

parameters, focusing on the learning rate and the number of neurons in the hidden 

layer. The learning rate is tested in the range e ∈ [0.001, 0.01, 0.1], and the number of 

hidden layer nodes is tested in the range n ∈ [16, 32, 48, 64]. Initial iterations are set 

to 150, and 12 tests (3 learning rates × 4 node counts) are performed. The optimal 

parameters are identified based on model accuracy. The highest accuracy obtained is 

0.93, achieved with a learning rate of 0.01 and 64 hidden layer nodes. The results of 

the parameter optimization are presented in Table 1. 

Table 1. Network search parameter optimization results. 

Number of hidden layer nodes learning rate 

 0.00001 0.001 0.01 

16 0.68 0.77 0.83 

32 0.76 0.84 0.86 

48 0.88 0.90 0.89 

64 0.89 0.91 0.93 
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The parameters of the model are set as follows: the learning rate is 0.01, the 

attenuation coefficient is 0.9, the batch size is 10, and the number of hidden layer 

nodes is 64. On the premise of the highest accuracy of the model, the parameters of 

the IMP-LSTM network are optimized. The ADAM algorithm is used as the optimizer, 

combining Momentum and Adam for efficient parameter space search. To investigate 

the effect of loss weights on network accuracy, initial weight terms are set as 𝜔𝑑 = 1, 

𝜔𝑝 = 0.5, 𝜔𝑟 = 0.1. The performance of the network with fixed weights is compared 

against that with normalized weights through experiments. The changes in the three 

loss terms during training are shown in Figures 6–8. 

 

Figure 6. Changes in each loss item of the model under fixed weights. 

 

Figure 7. Changes in each loss item of the model under adaptive weights. 
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Figure 8. Changes in the total loss of the model. 

From the loss weight change diagram shown in Figure 6 and 7, it can be seen 

that Loss1, Loss2 and Loss3 all decrease rapidly and then tend to be stable. In contrast, 

using normalized adaptive weights, the loss terms of Loss1 and Loss2 decrease faster, 

and the loss term of normalized adaptive weight Loss3 is smaller than that of fixed 

weight Loss3. From Figure 8, it can be concluded that the introduction of the 

normalized adaptive weight method in the LSTM network helps to optimize the loss 

term more evenly, prevent the model from paying too much attention to a specific loss 

term, learn the overall characteristics of the data more comprehensively, improve the 

convergence speed and reduce the final loss level.  

Based on the validation set, the hyperparameters of the model are adjusted, and 

the model is optimized during the training process to obtain the IMP-LSTM model 

with more accurate prediction results on the validation set. At the same time, the 

performance of the obtained model on the unseen data is evaluated on the test set, and 

the generalization ability of the model is tested. The IMP-LSTM model predicts the 

sound pressure level of the driver’s right ear using validation set and test set data, as 

shown in Figure 9a,b, respectively. It can be seen from the figure that the predicted 

values and real values of the test set and the validation set of the model have high 

accuracy, and the predicted results are roughly consistent with the real trend. Among 

them, the results of the test set in Figure 9b prove that the IMP-LSTM model has good 

generalization. In summary, the results show that the proposed model and method 

effectively capture the key data features and sound features, which can provide some 

help for the study of road noise problems. 
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(a) (b) 

Figure 9. Model total loss weight changes, (a) validation set; (b) testing set. 

4.2. Comparison of IMP-LSTM models 

To validate the effectiveness of the IMP-LSTM model in predicting in-vehicle 

noise, this study introduces a nonlinear fitting LSTM neural network for comparison. 

Both models use consistent network parameters to ensure fairness. The results on the 

validation and test sets are shown in Figures 10, with performance metrics detailed in 

Table 2, focusing on the prediction accuracy at the driver’s right ear. 

The IMP-LSTM model, with its focus on loss weight variation, shows significant 

improvement over the traditional LSTM model. On both test and validation sets, the 

IMP-LSTM model fits the actual noise labels better at peak frequencies, demonstrating 

superior local accuracy. While the LSTM model captures the overall noise trend, it 

exhibits larger prediction biases at certain peaks. This suggests that IMP-LSTM are 

better suited for handling data with prominent features, crucial for accurately 

predicting frequency-specific noise impacting passenger comfort. 

Overall, the IMP-LSTM model aligns more closely with actual noise levels on 

both sets, indicating its proficiency in learning the data distribution. In contrast, the 

LSTM model, despite capturing general noise variations, shows more deviations at 

specific frequencies. This highlights that the IMP-LSTM model more effectively 

integrates empirical formulas information with data-driven learning, ensuring higher 

prediction accuracy. In summary, the IMP-LSTM model offers a better fit for road 

noise sequence features. 
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(a) (b) 

  
(c) (d) 

Figure 10. Driver’s right ear noise validation and testing results, (a) LSTM 

validation results; (b) LSTM testing results; (c) IMP-LSTM validation results; (d) 

IMP-LSTM testing results. 

Table 2. Comparison of IMP-LSTM model and LSTM model test results (Testing 

set). 

 MSE loss 69Hz peak error (dB) 
Training time 

(150 epoch/min) 
R2 

LSTM data model 0.49 1.2 4.2 0.76 

IMP-LSTM data model 0.21 0.1 3.0 0.89 

5. Conclusion 

In this study, we proposed an improved Long Short-Term Memory (IMP-LSTM) 

method for predicting vehicle road noise, focusing on the 50 to 300 Hz frequency 

range. The method integrates knowledge-based constraints with a data-driven 

approach, enhancing both prediction accuracy and interpretability. 

The IMP-LSTM model demonstrated high prediction accuracy with an 

impressive R2 value of 0.89, showcasing a substantial improvement over traditional 

LSTM models. It effectively predicted key sound pressure peaks caused by local 
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resonances, which are essential in road noise analysis. Additionally, the model’s 

efficiency was evident as it completed 150 training rounds in just 3 minutes, 

significantly reducing training time compared to conventional methods. This 

efficiency makes the IMP-LSTM particularly suitable for practical applications in 

vehicle design, where rapid iterations are often needed. Furthermore, the model 

showed strong generalization capabilities, as it accurately predicted sound pressure 

levels on unseen test data, especially in critical peak regions. 

Despite the promising results of the IMP-LSTM model, certain limitations must 

be addressed in future work. Firstly, the model’s training was based on a limited 

dataset, which affects its robustness and generalization. Future studies should 

incorporate a wider variety of road conditions, vehicle models, and noise sources to 

enhance its performance. Additionally, while the use of empirical knowledge 

improved prediction accuracy, further refinement of the physical constraints could 

help capture more nuanced road noise characteristics, particularly at lower 

frequencies. To build upon the current research, future investigations should focus on 

expanding the dataset by including additional real-world road noise data from various 

vehicle types and road surfaces, which could further enhance the model’s predictive 

capabilities. Moreover, exploring hybrid approaches that combine the strengths of 

physical modeling and advanced machine learning techniques, such as integrating 

physics-informed neural networks with deep learning, could lead to even more 

accurate predictions. Finally, optimizing the model for real-time noise prediction and 

control during vehicle operation is another critical avenue for development, as it would 

provide immediate insights into noise issues in dynamic environments. 

In conclusion, the IMP-LSTM model provides an effective and efficient solution 

for vehicle road noise prediction. By combining data-driven methods with empirical 

knowledge, it significantly improves both prediction accuracy and training efficiency. 

With further development, this approach could be instrumental in enhancing noise 

prediction methodologies and vehicle NVH performance analysis.  
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