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Abstract: This paper analyzes the active vibration control of sandwich beams using Active 

Constrained Layer Damping (ACLD). The finite element model of the viscoelastic sandwich 

beam combines finite element method with the Golla Hughes McTavish (GHM) model, using 

a 2-node 8 degrees freedom element. The finite element model is validated by the first four 

natural frequencies of the model in the literature, and the governing equations of sandwich 

beams are generated based on the Hamiltonian principle. The physical space dynamic 

condensation technique and state space complex mode decoupling method are employed to 

reduce the order of the structural model. This is necessary because free degree of the finite 

element model is too high to directly control the structure’s vibration. It shows that the 

fundamental physical characteristics of the structure may remain largely unchanged while the 

physical and state spaces are jointly reduced. We investigated how the positions and coverages 

of ACLD patches impact on the active control, vibration damping of viscoelastic sandwich 

beams. 

Keywords: active vibration control; finite element method; viscoelastic materials; partially 

covered Active Constrained Layer Damping (ACLD); dynamic condensation; sandwich beams 

1. Introduction 

Thin-walled constructions are employed increasingly often in aircraft 

engineering and vehicle production as science and technology advance. Even if the 

vibration frequency is near to the natural frequency, the thin-walled structure will 

vibrate due to its small mass and thickness when subjected to external pressures. The 

ACLD-treated sandwich structure based on active damping has excellent vibration 

resistance. The composite structure includes a piezoelectric layer, a base layer and a 

viscoelastic material. It has the characteristics of light weight, high rigidity, strong 

driving ability and excellent vibration damping performance. 

Numerous researchers have studied and used the active constrained layer 

damping (ACLD) method on structures since the early 1990s. The function as both 

sensors and actuators is a distinctive characteristic of piezoelectric materials. The 

ACLD can increase the shear stress of the viscoelastic layer and overcome the 

limitations of Passive Constrained Layer Damping (PCLD) [1,2] when utilized as an 

actuator and in accordance with a suitable control law [3,4]. 

ACLD treatment in sandwich structures can be achieved by combining the active 

capabilities of piezoelectric materials at low frequencies with the strong ability of 

passive viscoelastic materials to dissipate vibrational energy at high frequencies. 

Abhay Gupta et al. [5] added solid particles to the viscoelastic layer of a sandwich 

conveyor to improve damping and reduce the vibration amplitude of the structure. 
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Yongbin Guo et al. [6] described the modal frequencies and damping behavior of 

ACLD-treated beam structures when parameters such as temperature and angular 

velocity were varied. Mevada et al. [7] studied active damping temperature control in 

sandwich support structures , and conclude that ACLD patches have a better damping 

effect on low-temperature structures. Khizar Hayat et al. [8] Introduced a multi-step 

damage identification process, and provided a comprehensive method for structural 

health monitoring of different structures through vibration analysis. Diyar Khan and 

Rafal burdzik [9] reviewed the measurement and analysis parameters, methods and 

standards, prediction and control measures of traffic vibration and noise in many 

countries. 

At the beginning of the 21st century, the finite element method of sandwich 

structure has been widely accepted. AH Sheikh et al. [10] proposed a finite element 

model representing the structure and potential of thin-walled smart laminated 

composite plate. So Shi et al. [11] combined the GHM model and finite element model, 

and proposed a finite element model method for active vibration control of ACLD 

elements. SG Wong et al. [12] conducted a vibration analysis of the forced vibration 

of sandwich beams using a finite element model of beam elements with 1-node 6 

degrees. A.R. Daman pack et al. [13,14] proposed a sandwich beam finite element 

with18 mechanics and potential degrees of freedom physical nodes, at the same time, 

a sandwich beam element for analyzing the flexible core and delaminated regions is 

proposed. Based on the shear stress and compression damping mechanism, Huang et 

al. [14,15] respectively developed two kinds of finite element models of viscoelastic 

sandwich structures, which further improved the accuracy of the model. Zhicheng 

Huang et al. [16] Established the integral finite element model of elastic viscoelastic 

elastic sandwich beam structure based on two damping mechanisms. Gradually, a 

growing number of scientists are working on the active damping of vibrations in 

sandwich structures. Lu Qifa et al. [17] studied the low-frequency vibration of 

composite sandwich beams by experiments and simulations, and adopted the adaptive 

method to control the vibration of sandwich beams. 

After comparing numerous references, it is found that the full-coverage ACLD 

patch is often not the best way. Li Fengming et al. [18] showed that in an active control 

analysis of the sandwich beam, a beam with two ACLD patches had better active 

control than with one ACLD patch. LiangLi et al. [19] analyzed the free vibration of 

a fully covered ACLD composite plate and studied the control parameters. H. Zheng 

et al. [20] examined the damping analysis of a simply-supported beam by dividing the 

CLD patches into various lengths and distances. L.Zoghaib et al. [21] conducted a 

structurally damped vibration analysis at the CLD patch position and showed that the 

patch position plays a less important role in the higher frequency range or larger patch 

size. The findings of Yaman M. et al. [22] showed that the best vibration reduction 

effect was obtained when the CLD patch was covered by 50%. Navin Kumar et al. [4] 

studied the effect of ACLD patch coverage on the dissipation factor, and concluded 

that when the patch coverage reaches 50%, the beam treated by ACLD can obtain the 

first-order modal maximum. Y.S. Gao et al. [23] indicated that the loss factor also 

decreases with the decrease of the coverage of CLD patches, but the natural frequency 

is opposite. 
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Most researchers currently typically focus on full coverage ACLD patches and 

rarely use partial coverage. The latter group analyses a structure’s passive properties 

the most, while the pieces that actively control vibration are much rarer. In order to 

address these shortcomings, this study bases its finite element code for ACLD 

sandwich beams on the Hamiltonian principle and is written in MATLAB. Active 

vibration control of laminated beams by varying the length and position of the 

overlaying ACLD patches, and comparing the effects of different structures on the 

effectiveness of active control. Among them, the Linear Quadratic Regulator (LQR) 

is a control method suitable for state-space forms, capable of considering multiple 

performance metrics and system robustness simultaneously. Therefore, LQR is used 

as a controller. 

This paper evaluates the model in fields such as airplanes and automobiles, 

comparing the performance differences between active vibration control and 

traditional passive vibration control systems. Additionally, it studies how to divide 

active damping patches to enhance vibration reduction effectiveness. This research 

results an innovative and efficient vibration control scheme for the aerospace and 

automotive fields, along with theoretical and practical references for the application 

of active damping structures. The remainder of the paper is organized as follows: 

Section 2 finite element model downscaling, Section 3 model validation and numerical 

analysis, Section 4 effect of different ACLD patch positions and lengths on active 

control of vibration, and Section 5 provides conclusions. 

2. Finite element modeling of damped sandwich beams 

2.1. Basic assumptions of the model 

(1) Due to the high elastic modulus of the base beam and the piezoelectric layer 

relative to the viscoelastic layer, the base beam and the piezoelectric layer can be 

considered as Euler-Bernoulli beams; 

(2) Perfect bonding is assumed between layers, ensuring no relative displacement 

between the layers; 

(3) The density of each material layer is uniform and complies with the basic 

assumptions of material mechanics; 

(4) Due to the large beam aspect ratio, the effect of rotational inertia of each layer is 

ignored to simplify the analysis and improve the computational efficiency; 

(5) The viscoelastic material properties are characterized using the GHM model, 

which simulates hysteretic damping by adding dissipative coordinates, and 

viscoelastic damping coefficients are discussed only in Maxwell’s linear theory 

of viscoelasticity; 

(6) The voltage is uniformly distributed over the entire surface of the piezoelectric 

layer, producing a uniform electric field, and the electric pressure applied to the 

damped sandwich beam is uniformly distributed over the element. 

2.2. Shape function of Active Constrained Layer Damping (ACLD) beam 

As shown in Figure 1, the ACLD element is a two-node composite three-layer 

beam element, which is composed of a piezoelectric layer, viscoelastic layer and base 
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beam layer from top to bottom. According to the overall structure of the laminated 

beam, it is divided into several 2-node beam elements. Considering the boundary 

conditions, the appropriate number of nodes and element lengths are selected, and the 

finite element mesh of the whole beam structure is obtained after assembly. 

 
Figure 1. 2-node 8 degrees of freedom (DOF) sandwich beam elements. 

The displacement vector of ACLD elements is given by: 

{𝑉𝑒} = {𝑤𝑖  𝜃𝑖   𝑢𝑏𝑖  𝑢𝑐𝑖  𝑤𝑗  𝜃𝑗   𝑢𝑏𝑗  𝑢𝑐𝑗}
𝑇 (1) 

The nodal displacements in the ACLD element can be represented by 

interpolation functions N. These shape functions are derived using standard finite 

element interpolation techniques for beam elements: 

{𝑉𝑒} = [𝜔  𝜃  𝑢𝑏  𝑢𝑐]
𝑇 = 𝑁{𝑉𝑒} (2) 

where 𝑁 =  [𝑁𝜔 𝑁𝜃  𝑁𝑢𝑏  𝑁𝑢𝑐]
𝑇 .The finite element shape functions of transverse 

displacement, axial displacement of foundation beam and axial displacement of PZT 

layer are respectively: 

𝜔 = [𝑁𝜔]{𝑉(𝑒)}  𝜃 = [𝑁𝜃]{𝑉(𝑒)}  𝑢𝑏 = [𝑁𝑢𝑏]{𝑉
(𝑒)}  𝑢𝑐 = [𝑁𝑢𝑐]{𝑉

(𝑒)}  (3) 

𝑁 =  [𝑁𝜔 𝑁𝜃 𝑁𝑢𝑏  𝑁𝑢𝑐]
𝑇 in the above equation corresponds to the four shape 

function matrices of the unit, denoted respectively: 
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(4) 

The dynamic relationship between the PZT layer and the base beam layer is 

shown in Figure 2. According to the first-order shear deformation theory, the 

expressions for the longitudinal displacement 𝑢𝑣 and shear strain 𝛾 of the viscoelastic 

layer can be deduced as: 
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Figure 2. The geometry and deformation of ACLD beam left: Before deformation; 

right: After deformation. 

𝑑 =
1

2
(ℎ𝑐 + ℎ𝑏) + ℎ𝑣 (5) 

𝑢𝑣 =
1

2
[𝑢𝑐 + 𝑢𝑏] + (

ℎ𝑐 − ℎ𝑏
2

)
∂𝜔

∂𝑥
] (6) 

𝛾 =
1

ℎ𝑣
[(𝑢𝑐 − 𝑢𝑏) + 𝑑

∂𝜔

∂𝑥
] (7) 

From the geometry and deformation of ACLD beam. Where ∂ω/∂x is the cross-

section rotation of ACLD beam; φ is the shear angle of Viscoelastic layer; γ indicate 

the shear strain of Viscoelastic layer; uc , ub respectively the transverse displacement 

in PZT layer and base beam layer. The thickness of the PZT layer, the viscoelastic 

layer and the base beam are hc, hb and hv , respectively. 

The constitutive equation of a piezoelectric layer in a sandwich beam is presented 

here. 

[
𝜀
𝐷

] = [
𝑆11

𝐸 𝑑31

𝑑31 𝜀33
𝜏 ] [

𝜏
𝐸
] (8) 

where ε is the mechanical strain in the axial direction; 𝑆11
𝐸  is the elastic compliance 

constant; d31 is the piezoelectric constant; E is the electric field intensity, D is the 

electric displacement, τ is the transverse mechanical traction, 𝜀33
𝜏 is the dielectric 

constant. 

2.3. GHM model 

The GHM model is frequently utilized to represent the complicated variable 

modulus model in the finite element analysis of viscoelastic materials. The dissipative 

coordinates used in the GHM method allow the consideration of viscoelastic damping 

effects without the constraints of steady state motion. The viscoelastic material 

properties in the GHM model can respond to frequency and temperature changes more 

accurately. 
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In the GHM model, the composite shear modulus of viscoelastic materials is 

expressed by the micro vibrator model. The micro vibrator model represents the 

complex shear modulus function sG(s) of materials by a series of micro vibration 

terms. 

where sG(s) is given by [24]: 

sG(𝑠)=G∞[1 + ∑ 𝛼𝑘

𝑠2 + 2𝜉𝑘�̂�𝑘𝑠

𝑠2 + 2𝜉𝑘�̂� 𝑘𝑠 + �̂�𝑘
2

𝑁

𝑘=1

] (9) 

where 𝐺∞is the steady-state value of the relaxation characteristic under the condition 

of time t = ∞, specifically the final value of the shear modulus of viscoelastic materials, 

s is the Laplace operator, {𝛼𝑘，𝜔
^

𝑘，𝜉
^

𝑘}are three groups of ordinary numbers. It 

determines the affect on every micro vibrator. It additionally determines the 

complicated shear modulus function of viscoelastic materials in the pull domain. 

When the micro vibrator term reaches order k, then the number of parameters to be 

determined is 3k + 1. The GHM model performs well in describing the properties of 

viscoelastic materials, and therefore it has been widely used in the description of 

dynamic response and vibration characteristics. 

The time domain expression of the viscoelastic sandwich beam dynamic model 

is:
 

�̃��̈� + �̃��̇� + �̃�𝑞 = 𝑓 (10) 

where 
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2 Δ

]
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(12) 

𝐾
~

=
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𝐾𝑒 + �̃�(1 + ∑ 𝛼𝑘)

𝑁

𝐾=1
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−𝛼1𝑅
𝑇 𝛼1Δ 0 0

⋮ 0 ⋱ 0
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(13) 

𝑞 = {
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⋮
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}，𝑓 = {
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0
0
0

}

 

(14) 
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The dynamic finite element equation of viscoelastic sandwich beam can be 

obtained by assembling the elements as follows: 

𝑀�̈� + 𝐷�̇� + 𝐾𝑞 = 𝑓 (15) 

where M is the total mass matrix of structure; D is the total damping matrix of 

structure; K is the total stiffness matrix of structure, and f is the sum of external 

incentives to the structure. 

The derived equation for the natural frequency of a cantilever beam is: 

𝑓𝑛 =
√𝐷𝑚

2𝜋
 (16) 

𝐾 × 𝑉𝑚 = 𝑀 × 𝑉𝑚 × 𝐷𝑚 (17) 

where Dm and Vm are eigenvalues and eigenvectors of K and M, and fulfills the 

Equation (17). 

3. FE model reduction 

The order of the structural finite element model system is excessively high due 

to the GHM model’s large number of dissipative degrees of freedom, making the 

system unobservable and uncontrollable. The control effectiveness may decrease or 

become uncontrollable. As a result, the order of the dimensions of the model desires 

to be reduced. 

3.1. Dynamic condensation in physical space 

The z direction displacement of the x and y direction linear displacement of the 

constraint layer in the structure of the ACLD element is taken as the primary degree 

of freedom [25], and other physical degrees of freedom and dissipative degrees of 

freedom are taken as the secondary degrees of freedom. 

where Equation (15) can be written as： 

[
𝑀𝑚𝑚 𝑀𝑚𝑠

𝑀𝑠𝑚 𝑀𝑠𝑠
] {

�̈�𝑚(𝑠)

�̈�𝑠(𝑠)
} + [

𝐷𝑚𝑚 𝐷𝑚𝑠

𝐷𝑠𝑚 𝐷𝑠𝑠
] {

�̇�𝑚(𝑠)

�̇�𝑠(𝑠)
} + [

𝐾𝑚𝑚 𝐾𝑚𝑠

𝐾𝑠𝑚 𝐾𝑠𝑠
] {

𝑋𝑚(𝑠)
𝑋𝑠(𝑠)

}

= {
𝐹𝑚(𝑠)
𝐹𝑠(𝑠)

} 

(18) 

The dynamic condensation matrix E between the primary and secondary degrees 

of freedom of ACLD element structure is： 

𝐸 = 𝐾𝑠𝑠
−1[(𝑀𝑠𝑠 + 𝑀𝑠𝑠𝑅)𝑀𝐸

−1𝐾𝐸 − 𝐾𝑠𝑚] (19) 

The kinetic equation after polycondensation is： 

𝑀𝐸
(𝑖)

�̈�𝑚 + 𝐷𝐸
(𝑖)

�̇�𝑚 + 𝐾𝐸
(𝑖)

𝑋𝑚 = 𝐹𝐸
(𝑖)

 (20) 

3.2. The model reduction process in state space 

Even if physical space order is reduced, the systematic dimensions are still too 

much for the controller design. Therefore, it is still essential to lower the model’s 



Sound & Vibration 2024, 59(1), 1765.  

8 

order, remove the unobservable and uncontrollable degrees of freedom from the 

system, and decrease the model’s size. 

Because the complex mode truncation method can supply a steady skill of order 

reduction, and the modal system is extra fine at each resonant frequency [26], it can 

completely abandon the unobservable and uncontrollable dimensions in the model, 

and has a broad variety of applications. 

Decoupling and truncation of complex modes in the state space 

Introducing auxiliary equation𝑀𝐸�̇� − 𝑀𝐸�̇� = [0] into Equation (20). 

The sandwich structure system model can be expressed as： 

{�̈�
�̇�
} = [

0 𝑀𝐸

𝑀𝐸 𝐷𝐸
]
−1

[
𝑀𝐸 0
0 −𝐾𝐸

] {�̇�
𝑋
} + [

0 𝑀𝐸

𝑀𝐸 𝐷𝐸
]
−1

{
𝐹𝐸

0
} 

                                + [
0 𝑀𝐸

𝑀𝐸 𝐷𝐸
]
−1

{
𝐹𝐸

0
} 

(21) 

Equation (21) can be written as： 

{�̇� = 𝐴𝑌 + 𝐵𝑓
𝑍 = 𝐶𝑌

 (22) 

where： 

𝐴 = [−𝑀𝐸
−1𝐷𝐸 −𝑀𝐸

−1𝐾𝐸

0 𝐼
] , 𝐵 = [𝑀𝐸

−1𝐹𝐸

0
] , 𝑌 = [�̇�

𝑋
] (23) 

3.3. Active controller design 

Viscoelastic materials undergo temperature and frequency-dependent property 

changes as a result. In dynamic modeling, there are a lot of unknowns regarding the 

assumptions, models, and order reduction. Because this work uses the finite element 

approach, physical space, and state space method. A provided system in the state space 

structure is a LQR controlled object, which offers exceptional comfort for the active 

control of the system. Multiple indications can be taken into account simultaneously 

by LQR, which is a developed aspect of the growth of contemporary control theory. 

LQR control 

LQR (linear quantitative regulator) is shown in Figure 3. The optimal control 

strategy is that the designed state feedback controller should minimize the quadratic 

objective function J [27,28], and the gain K is uniquely determined by the weighting 

matrices Q and R. 

 
Figure 3. LQR control. 

The expression form of common objective function J is： 

Disturbance +
-

x x u

x u

A B

y C D

= +

= +

LQR 

Controller

Input

State-Space
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𝐽 = ∫ (𝑥𝑇(𝑡)𝑄𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡))𝑑𝑡
∞

0

 (24) 

where the Q and R scalar weighted matrix. 

4. Model validation and numerical analysis 

In order to demonstrate the accuracy of the vibration dynamic analysis of this 

structural model under various parameters and to confirm the viability and efficacy of 

controlling LQR vibration of sandwich structures and ACLD element placed at various 

locations, the vibration of sandwich beams with various geometric parameters, such 

as placement position and length, are each individually analyzed in this chapter. The 

control objective is to investigate the free vibration displacement response of 

viscoelastic sandwich beams with fixed-free boundary conditions. 

4.1. Model validation 

In order to verify the accuracy of the model, this paper adopts a 2-node 8 degrees 

freedom element model with the clamped-free boundary. The position of the partial 

coverage patch of the ACLD element is shown in Figure 4. The vibration analysis of 

the sandwich beam is carried out based on the method in this paper and the natural 

frequencies of the ACLD cantilever beam in the comparative literature to verify the 

accuracy of the model. 

 

Figure 4. Viscoelastic sandwich cantilever beam. 

The model example is an ACLD cantilever beam, Table 1 shows specific 

material parameters. Table 2 compares the natural frequencies in this method and 

literature. For the calculation of the first four natural frequencies of the sandwich 

structure with the boundary condition clamped-free, the error range difference 

obtained by the method in this paper is 0.25%–3.21% so the finite element model in 

this paper has good accuracy. 

Table 1. Material and geometrical properties of ACLD beam. 

 Base beam layer PZT layer VEM layer 

length (m) 0.35 0.35 0.35 

width (m) 0.015 0.015 0.015 

thickness (m) 0.002286 0.000762 0.00025 

density (kg) 7600 7600 1250 

Elastic modulus (Gpa) 7.4 × 1010 6.67 × 1010  

Poisson ratio 0.3 0.3 0.3 
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Table 1. (Continued). 

 Base beam layer PZT layer VEM layer 

Piezoelectric constant (m/V)  −1.75 × 1010  

G∞   5 × 105 Pa 

α   6.0 

   4.0 

   10000rad/s 

Table 2. Frequencies of the four first modes for ACLD cantilever beam. 

The modal [9] this paper Error(%) 

1 mode 27.90 27.83 0.25% 

2 mode 150.12 147.83 1.52% 

3 mode 442.97 429.66 3.00% 

4 mode 831.76 805.08 3.21% 

4.2. Model reduction 

With Table 1 as the structural parameters, the clamped-free boundary sandwich 

beam model is obtained by using the finite element method. The physical space 

dimension is 54 × 54, and the state space dimension is 108 × 108. Before designing 

the controller, the order of the model must be reduced, and the reduced range must 

conform to the characteristics of system observability and controllability. 

Table 3 compares the model’s natural frequencies before and after the order 

reduction. Naturally, the model’s natural frequency is essentially unchanged between 

before and after order reduction. The minimum and highest mistakes among them are 

0 and 0.056%. It shows that the structure’s physical characteristics are correctly 

reflected following order reduction. 

Table 3. Model comparison before and after order reduction. 

Mode Before order reduction(Hz) After order reduction(Hz) Relative error(%) 

1 27.83 27.83 0.0 

2 147.83 147.85 0.013 

3 429.66 429.78 0.028 

4 805.08 805.53 0.056 

Figure 5 shows how the model’s frequency coincidence accuracy is high both 

before and after the decrease of physical space. Additionally, it demonstrates that the 

system’s accuracy has increased as a result of the addition of complicated mode. The 

control system can still be observed, controlled, and maintained accurately after the 

state space reduction. Each mode is a separate genuine mode that can be used directly 

in the construction of an active controller. 
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(a) (b) 

Figure 5. (a) Model reduction in physical space; (b) Model reduction in state space (—reduce order model, —full 

order model). 

5. Effect of different ACLD patch placement and length on active 

vibration control 

The content of this chapter is to study the influence of the ACLD patch position 

and length of sandwich beams on the LQR control of the first three modes. The 

boundary condition is still clamped-free. The parameter sets the length of the 

foundation beam of Table 1 as 0.45m. Other characteristics do not vary, only the 

length of the piezoelectric and viscoelastic layers are affected by the construction. 

5.1. Effect of different positions of ACLD patch on vibration 

In this paper, the sandwich beam structure of ACLD patches at six different 

positions is shown in Figure 6 from (1) to (6). (1) and (6) ACLD patches are 

respectively arranged at the clamped end and the free end, and the rest (2) to (5) are 

arranged at 1/7, 2/7, 3/7, 4/7 along the x direction. 

 
Figure 6. Sandwich beam structures with ACLD arranged in different positions. 

The first 6 natural frequencies of each structure in Figure 6 are calculated for the 

dynamic analysis of each structure. Because the dynamic properties of the structure 

can be rather completely described by the first few natural frequencies. The first six 

natural frequencies of six ACLD placement structures are determined and contrasted 



Sound & Vibration 2024, 59(1), 1765.  

12 

in Table 1 condition. The modal characteristics of each order are changed according 

to the change of ACLD patch position and the intrinsic frequency is also changed and 

the results are shown in Table 4. The position of the ACLD patch will alter the 

stiffness matrix K when the total mass is constant. The natural frequency decreases 

with increasing structural stiffness, and the amount of control force needed for active 

control increases. 

Table 4. First 6 natural frequencies of different structures. 

Structure Natural frequency （Hz） 

Mode (1) (2) (3) (4) (5) (6) 

1 10.64 9.51 9.08 8.50 7.81 7.08 

2 59.98 52.08 50.11 52.39 55.96 53.40 

3 150.50 144.07 149.66 152.85 154.41 148.64 

4 292.19 287.89 294.98 295.75 298.69 294.63 

5 439.11 475.60 429.78 491.96 481.88 494.61 

6 590.95 590.89 590.85 590.80 590.75 590.71 

Effect of ACLD patch placement on active vibration control 

In order to study the influence of ACLD placement on active vibration control, 

this paper conducts active vibration control on the structures (1)–(6) in Figure 6. In 

this paper, the LQR controller is used to control the free vibration of the sandwich 

beam. The initial displacement is applied to the structure, and the control parameters 

are weighted matrix Q = 1  105I, R = 0.5; Other conditions remain unchanged. The 

output is the lateral displacement response of the free end of the cantilever beam. 

The performance of a structure at passively reducing vibration is shown in Figure 

7 by the amplitude attenuation curves of six uncontrolled constructions. Since the 

structure of the sandwich beam is clearly recognized to be essentially the same under 

free vibration, the response convergence of these six constructions is not remarkably 

different and occurs within 0.5 s. With a vibration attenuation time of 0.115 s and a 

vibration amplitude of 0.107 meters, structure 6 has the best passive vibration 

reduction effect. Structure 5 comes in second with a vibration attenuation time of 0.13 

s. The structures (3) and (4) perform the poorest in terms of passive vibration 

reduction. Structure (3)’s attenuation duration is 0.4 s, Structure 4’s maximum 

beginning amplitude is 0.144 meters, and Structures 1 and 2’s passive vibration 

reduction performance is average. 
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Figure 7. Different structure of sandwich beam amplitude attenuation without 

control. 

The simulation outcomes for active control for various ACLD patch structures 

are displayed in Figure 8. Intuitively, it shows that active control has significantly 

improved the vibration of the six structures that were the subject of this work. Based 

on the identical control effect, the active control effect of structure (2) is the best, the 

vibration reduction effect is extremely significant, the initial amplitude reduction is 

44.8% less than the uncontrolled effect, and the vibration attenuation time is 73.3% 

shorter than the original. Second, compared to structure 2, the effects of structures (1) 

and (5) on vibration reduction are marginally worse. The peak amplitude and 

attenuation time are, respectively, 0.1218 m, 0.1003 m, 0.05 s, and 0.043 s. Structures 

(3) and (6) have a worse impact on vibration reduction than other structures. The 

results are consistent with the vibration theory and it is evident that the active control 

performance of the structure with the patch close to the clamped end is marginally 

better than that of the patch close to the free end. Table 5 shows the precise vibration 

values for different structures. 

  

(a) (b) 

Figure 8. Comparisons of amplitude attenuation of different structures with active control. (a) Sandwich beam 

amplitude attenuation of structural (1)–(3); (b) Sandwich beam amplitude attenuation of structural(4)–(6). 
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Table 5. Vibration values of different structures. 

 Uncontrol Active control 

Structure Peak amplitude(m) Decay Time(s) Peak amplitude (m) Decay Time (s) 

(1) 0.132m 0.154s 0.122m 0.050s 

(2) 0.128m 0.147s 0.071m 0.039s 

(3) 0.139m 0.336s 0.119m 0.082s 

(4) 0.150m 0.234s 0.122m 0.063s 

(5) 0.145m 0.130s 0.100m 0.043s 

(6) 0.107m 0.121s 0.096m 0.082s 

It may be inferred that the ACLD patch’s location within the structure 

significantly affects the control effect of active vibration control. There is a clear 

separation between the active control effects associated with various patch placements. 

Effective and acceptable patch placement can enhance the dampening effect and 

reduce costs. 

5.2. Effect of ACLD patch length on active vibration control 

In order to further study the ACLD patch of the sandwich beam, this paper also 

explored the influence of ACLD patch length on active control. The specific structure 

is shown in Figure 9. The length of the PZT layer and viscoelastic layer gradually 

increases from 2/7L (0.129m) to L (0.45m). The length of the ACLD element increases 

by 1/7L each time until it is completely covered. Other parameters are the same as the 

previous text. 

 
Figure 9. Schematic of cantilever sandwich beam with coverage of ACLD. 

Figure 10 shows amplitude attenuation curves of the cantilever ACLD patch 

from 2/7L to the full without active vibration control. With the ACLD patch from 2/7L 

to full, the vibration decreases significantly. During the process of patch from 2/7L to 

4/7L, the average amplitude attenuation of each 2/7L increase of ACLD patch is 6.5%, 

and the attenuation time is shortened by 50% on average; The damping effect is 

slightly lower when the length of the patch is from 4/7L to 5/7L. When the ACLD 

patch is fully covered, the minimum vibration peak value is 0.0878m, and the 

attenuation time is also the shortest 0.05s, indicating that the ACLD patch has a very 

significant effect on the passive vibration reduction performance of sandwich beams. 

ACLD

BEAM2/7L

L
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Figure 10. Schematic of cantilever sandwich beam with coverage of ACLD without 

control. 

As for the influence of the length of the ACLD patch on the amplitude of active 

control, as shown in Figure 11, the control parameters are the same as above. It is easy 

to see the difference between the effect of passive and active control. 

  

(a) (b) 

Figure 11. Schematic of cantilever sandwich beam with coverage of ACLD with active control; (a) Amplitude of the 

sandwich beam covering 2/7L–4/7L ACLD patch; (b) Amplitude of the sandwich beam covering 5/7L–L ACLD 

patch. 

Table 6. Vibration values of different ACLD patch coverage structures. 

 

structures 

Uncontrol Active control 

Peak amplitude(m) Decay Time(s) Peak amplitude (m) Decay Time (s) 

2/7L 0.132m 0.154s 0.122m 0.050s 

3/7L 0.123m 0.088s 0.102m 0.058s 

4/7L 0.115m 0.086s 0.060m 0.022s 

5/7L 0.114m 0.071s 0.089m 0.037s 

6/7L 0.114m 0.041s 0.102m 0.028s 

L 0.087m 0.044s 0.065m 0.023s 

The values in Table 6 and Figure 11a demonstrate that, with the increase in the 

length of the ACLD patch, it’s not that the more patches, the better the active control 
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effect may be improved. The active control effect of the three structures in Figure 1b 

is slightly worse than that in Figure 11a. The vibration attenuation time of the fully 

covered structure is slightly better than that of the 4/7L patch structure, but the 

maximum amplitude is 8.9% higher. 

It can be shown that the length of the ACLD patch has no absolute influence on 

active vibration control, the patch coverage rate is close to 50%, and the damping 

effect is good. Proper patch length can better play the damping performance 

viscoelastic sandwich, and too long patch may lead to reduced damping effect and 

even waste of materials. Therefore, specific analysis is required for different 

engineering problems, and ACLD patches should be arranged reasonably. 

6. Conclusions 

Based on the first-order shear deformation theory and Hamilton principle, this 

paper combines the GHM model and the finite element method, generates model of 

the ACLD cantilever beam. And the order of model is reduced in physical space and 

state space. LQR is used to control the vibration of the system. 

The model’s accuracy is confirmed by comparing it to previously published 

natural frequencies. Analyzed the influence of different patch positions and coverage 

rates on the vibration of viscoelastic sandwich cantilever beams. Finally, some 

conclusions are drawn from the current numerical results: 

1) The joint order reduction of physical space and state space is accurate and 

effective. The state space order reduction method can make up for the 

unobservable and uncontrollable state of the physical model and has a high 

accuracy for the characteristics of the main modes. 

2) The influence of ACLD patches on the vibration of the structure has been greatly 

improved, whether active or passive, and the different positions of ACLD patches 

will have a great impact on the natural vibration mode of sandwich beams. With 

the gradual principle of the patches to move away from the edges, the trend of 

lower order natural frequencies decreasing is approximately linear. The structure 

of the patch near the free end has better passive performance but poorer active 

control of vibration attenuation. The patch is 1/7L from the fixed end for the best 

active control. The initial peak amplitude of the laminated joint beams was 

reduced by 44.8% and the vibration decay time was reduced by 73.3% compared 

to the uncontrolled. In reality, especially in the vibration damping design of 

aircraft wings, this conclusion provides a reference for quickly finding the 

optimal control position.  

3) When the coverage of the ACLD patch is as large as possible, the passive anti-

vibration performance of the sandwich structure is better, and the damping effect 

gain is lower when the patch is close to full coverage. The results show that 

among the active controls, the structure with ACLD patch length at 4/7L has the 

best effect of active control on amplitude attenuation, with 47.8% reduction in 

maximum amplitude and 74.4% reduction in vibration attenuation time compared 

to uncontrolled. The active control performance of the structures with patch 

lengths of 5/7L and 6/7L was slightly lower than that of the full-coverage 

structures. This finding has important implications for the vibration damping 
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design for aircraft wings and automobile bodies. Provides a reference for the 

economics of vibration control systems, reducing materials while still achieving 

the desired control. 

The results show that the finite element model and the reduced order method have 

good accuracy and effectiveness in predicting the vibration of the ACLD cantilever 

beam. It can be used to analyze the dynamics of real piezoelectric viscoelastic 

sandwich structures and active control implementations. However, there are some 

challenges and limitations of the model, which is not applicable in cases where there 

are relative displacements between the layers considered. Future research can consider 

modeling with interlayer displacements for in-depth study, and can also consider 

improving the algorithm to get better control results. In conclusion, the finite element 

model of a partially covered actively constrained layer damped laminated beam 

developed in this paper is instructive for further research. 
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