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Abstract: This study presents a novel approach to achieve complete system observability by 

optimizing the placement of Phasor Measuring Units (PMUs), reducing the risk of fault 

identification. The process considers both the redundancy and the cost of installation. The 

proposed solution methodology improves upon existing algorithms by utilizing the Butterfly 

Optimization Algorithm (BOA), which identifies optimal PMU locations. Resilient fault 

detection techniques are employed to detect and mitigate disruptions in the power grid swiftly. 

Addressing transmission line faults, the research integrates a Deep Learning Network (DLN) 

to enhance the state estimation process during fault conditions. Simulations of fault transients, 

including LG (Line-to-Ground), LLG (Line-to-Line-to-Ground), and LL (Line-to-Line) faults, 

are conducted using MATLAB Software. The Neural Network (NN) response is evaluated 

based on two key hyperparameters—the number of hidden layers and the number of neurons 

utilized for feature extraction. Results demonstrate the superiority of the proposed method, 

with approximately 85% fault detection accuracy and a system performance metric of 90%. 

Additionally, the processing time required for training the network is small in the order of 

micro seconds. 

Keywords: PMU; state estimation; fault detection; optimization; distribution system; 

machine learning 

1. Introduction 

1.1. Distribution power system faults 

There are numerous encounters observed when the phasor measurement units 

(PMUs) are located for full network observability. Most of the researchers perceived 

communication facilities as the most noteworthy feature that affects the PMU 

procurement and installation costs [1]. The second most substantial issue is the 

security requirements where the users built an either mission critical or mission-

support system that determines voltage stability, the major delinquent over earlier 

ages that regulates the maximum loadability limit of the buses. If the PMUs are 

placed on the critical buses, then the Fast Voltage Stability Index (FVSI) [2] is 

minimized, and the Weak Bus Observability Index (WBOI) [3–5] is maximized. 

Even though the placement of PMUs offers complete network observability, the cost 

of placing the PMUs should be condensed because the typical overall cost of PMUs1 

ranges from $14,000 to $30,000 [6]. In most developing countries, if the cost of 

PMU placements at a particular location is high, then it is not conceivable to place 
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the PMUs in the chosen location. Therefore, the cost of placement of PMUs should 

be less than the overall cost of the connected synchrophasor system outlays. [7] 

The precise location of faults is determined using techniques such as fault 

current analysis, [8] time-domain reflectometry, [9,10] and travelling wave 

analysis[11,12]. In this study, we use Optimal PMU Placement (OPP) alongside the 

Butterfly Optimization Algorithm. By incorporating Machine Learning (ML), the 

fault identification process is further enhanced, providing improved security and 

reliability in power system management. 

1.2. Challenges in present distribution system state estimation 

Monitoring multiple buses simultaneously in an active grid is essential for 

preventing faults [11,12]. This can be achieved by placing PMUs in optimal 

locations and minimizing the System Maximizing Redundancy Index (SMRI) [13]. 

While existing fault detection systems simulate and train based on specific scenarios, 

advanced deep learning and machine learning algorithms offer better detection 

capabilities. By leveraging these technologies, the grid can be better understood, 

providing enhanced control and fault prevention. Figure 1 represents the PMU 

placements in the Smart grid. 

 

Figure 1. Sustainable PMU placements for smart grid development. 

1.3. Research review on distribution system state estimation 

This study begins by examining the shortcomings of the traditional Fault Data 

Self Synchronization (FDSS) algorithm [14], which estimates the initial delay 

difference at both terminals using zero-crossing time and current polarity. To 

improve the speed and accuracy of fault detection, we propose a centralized backup 

protection system combining delta algorithms with the least-squares method [15,16]. 

PMUs and micro-PMUs [17,18] are emerging technologies that enhance real-time 

grid monitoring, fault detection, and overall grid safety. Ongoing research focuses on 

integrating micro-PMUs with control systems for more efficient fault detection. 

The research also explores PMU-based Distributed State Estimation (DSE)[19–

21] methods, which introduce equality constraints to reduce numerical instability and 

improve computational efficiency. By integrating machine learning models and 
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advanced optimization techniques, the study seeks to refine PMU placements and 

enhance the accuracy of fault detection. The Table 1 depicts the literature survey of 

the proposed work. 

Table 1. Consolidated research review. 

Ref Year Author Algorithm/Approaches 

Objectives 

Min OPP 
Resilience and 

Fault Detection 

Artificial Neural 

Network 

OPP and ML-

based Fault 

detection 

3 2023 Andic, C., et al. Crow Search Algorithm Yes No No 

Absence of Prior 

Reports 

8 2021 Chavez, J. J., et al. 

Fault Locator for 

Transmission Backup 

Protection 

No Yes No 

12 2021 F. G. Duque, et al. 
Modified Monkey Search 

Algorithm 
Yes No No 

13 2023 G. S. Dua, et al. 
Fault Detection Technique 

for Distribution Networks 
No Yes  

18 2023 
M. Mukherjee and B. K. 

S. Roy 

Binary Carnivorous Plant 

Algorithm 
Yes No No 

22 2023 Pattanaik, V et al. 
Artificial Bee Colony 

Algorithm 
Yes No No 

23 2006 Peng, J et al. Tabu Search Algorithm Yes No No 

24 2023 Q. -H. Ngo, et al. Graph Neural Networks No No Yes 

27 2023 Rezapour, H., et al. 
Artificial Intelligence-Based 

Fault Location Methods 
No Yes Yes 

28 2021 Sonal and Ghosh, D. 
Resilience Assessment of a 

Distribution System 
Yes Yes No 

29 2023 Tshenyego, O., et al. Binary Firefly Algorithm Yes  No No 

30 2017 
V. Basetti and A. K. 

Chandel 

Taguchi Binary Bat 

Algorithm 
Yes No No  

32 2023 
Y Raghuvamsi, Kiran 

Teeparthi, A 

State Estimation Uncertainty 

Issues Using Deep Learning 
No No Yes  

33 2023 Puvikko et al. 
Butterfly Optimization 

Algorithm 
Yes Yes Yes Yes 

In addition, various metaheuristic algorithms have been applied to address the 

challenge of optimizing PMU (Phasor Measurement Unit) placement. These include 

the Crow Search Algorithm [22], Modified Monkey Search [23], Binary Carnivorous 

Plant Search Algorithm [24], Artificial Bee Colony Algorithm [25], Tabu Search 

Algorithm [26], Binary Firefly Algorithm [27], and Taguchi Binary Bat Algorithm 

[28]. These algorithms are employed to find the best configuration for PMU 

placement, optimizing the monitoring of power systems. 

1.4. Research hiatus 

Despite advancements in power system monitoring, achieving optimal power 

system resilience remains a significant challenge, particularly in radial networks. The 

methods discussed in this paper address critical limitations in current fault location 

and PMU placement techniques. Traditional fault detection approaches often fail to 

fully influence the potential of deep learning. This research aims to fill these gaps by 
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optimizing PMU placement and enhancing fault detection using machine learning 

models. 

1.5. Problem statement 

This research addresses the gaps in current fault detection methods by providing 

a comprehensive framework for improving power system resilience. By using deep 

learning methods and optimizing PMU placement, authors are targeting to improve 

fault detection and system monitoring, particularly in radial networks. 

1.6. Motivation and objectives 

The primary objectives of this study are: 

⚫ To determine optimal PMU placements in radial networks for improved 

observability and control. 

⚫ To enhance machine learning models for accurately locating and classifying 

faults. 

⚫ To ensure quick fault detection and system recovery through deep learning 

models, minimizing downtime. 

⚫ Ultimately, to strengthens the power system’s resilience, enabling it to 

withstand and recover from faults. 

1.7. Organization of the work 

The organization of this paper is carried out as follows. Section 2 describes the 

recent research works related to the OPP and metaheuristics. The proposed 

methodology is explained in Section 3 as a BOA. Section 4 is enclosed with a 

performance analysis of the proposed system 4 and the overall conclusion of the 

proposed algorithm is given in Section 5.The functioning flow chart of the proposed 

method as shown  in Figure 2. 
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Figure 2. Flow chart: Functioning of the current method. 

2. Formulation of the distribution system state estimation 

In an N-bus power system configuration equipped with m voltage and current 

phasor measurements, the relationship between these measurements and the system 

state vector can be expressed through a nonlinear matrix equation [29]. This equation 

reflects the interaction between the measured data and the internal variables of the 

system. 

The following nonlinear equation describes the relationship: 

δ𝑍 =

[
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= ℎ(ẍ) + 𝑒𝑟 (1) 

where h represents the nonlinear measurement function, x denotes the state vector, 

and r represents measurement errors. When the system is fully observable, the rank 

of the Jacobian matrix H matches the size of the state vector. In this context, the 

Weighted Least Squares (WLS) [30] state estimation method is commonly employed 

to minimize the weighted sum of the squares of the measurement residuals. Each 

residual is weighted according to its associated error covariance. 

The WLS objective function is expressed as: 
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𝐽(𝑥) = (δ𝑍 − h(ẍ))𝑇𝑅−1(δ𝑍 − h(ẍ)) (2) 

The Gain matrix is constructed by combining the Jacobian matrix (H) and the 

error covariance matrix (R) measurement. The covariance matrix is presumed to 

have a diagonal structure, with the variances of measurements occupying its diagonal 

entries. This results in the formation of the Gain Matrix as follows: 

𝐽(𝑥𝑘) = 𝐻𝑇𝑅−1 (3) 

Its where H = 
𝜕հ(ẍ)

𝜕𝑥
 = 
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is the Jacobian matrix, and R is the 

diagonal matrix with a value ϵi
2, where [

ϵi
2 ⋯ .
⋮ ⋱ ⋮
. ⋯ ϵm

2
] is the standard deviation of the 

error associated with ith measurement. m is the number of measurements, and n is the 

number of state variables. 

2.1. Objective function-1: Optimal PMU placement 

The objective of the OPP problem is to determine the minimum number of 

PMUs needed to achieve full system observability. This objective can be formulated 

as a nonlinear optimization problem within the WLS framework: [31,32] 

𝑊𝐿𝑆𝑥 = 𝑚𝑖𝑛 ∑𝑊𝑖

𝑁

𝑖=1

∗𝑋𝑖
2 (4) 

subject to the constraint that each bus is observed by at least one PMU: 

∑𝑋i

N

i=1

≥ 1 (5) 

where Pi is a binary variable that indicates whether a PMU is placed at bus i (1 if 

placed, 0 otherwise), and ci represents the cost associated with placing a PMU at bus 

i. The constraint ensures that each bus is observed by at least one PMU, either 

directly or indirectly. 

2.2. Objective function-2: SMRI optimization 

In this scenario, the SMRI is maximized to enhance system observability. SMRI 

is defined as the number of times each bus is observed, either directly or indirectly, 

through the placement of PMUs. It is mathematically represented as: [33,34] 

𝑆𝑀𝑅𝐼𝑚𝑎𝑥 =
1

𝑛
∑𝑅𝑗

𝑘

𝑁

𝑗=1

 (6) 

where n is the number of buses in the system, and Oj represents the number of times 

bus j is observed by the installed PMUs. The goal is to maximize the SMRI while 

minimizing the number of PMUs used. 
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3. Optimal PMU locations for distribution system state estimation 

3.1. Why optimization 

The placement of PMUs in the distribution system is a complex, non-linear 

problem[35]. A major factor in placing PMUs in optimal locations. Several 

algorithms have been proposed to address this challenge in the literature which have 

low time response, as an attempt we utilize BOA [36] which emergingas a highly 

effective method for determining optimal PMU locations. The BOA mimics the 

natural foraging behaviour of butterflies, using both global and local search 

strategies to find the best locations for PMU installation. 

The BOA’s strengths lie in its adaptability to various optimization problems, 

ease of implementation, and scalability. These attributes make it well-suited for the 

task of optimizing PMU placement, ensuring that the system remains fully 

observable under different operating conditions. 

3.2. Implementation of BOA for PMU locations 

The BOA is based on the natural movements of butterflies, which rely on 

sensory receptors to detect food sources. The global search process involves 

butterflies moving towards the best-known location, while the local search process 

involves movement based on the fragrances released by nearby butterflies. 

3.3. Optimal PMU locations using BOA 

In the context of PMU placement, the global search process represents the 

exploration of potential PMU locations across the entire system, while the local 

search focuses on refining the placement of PMUs in specific regions. 

The BOA’s optimization process includes the following steps: 

STEP 1: Initialization of the algorithm and problem parameters. 

STEP 2: Initialization of the population of butterflies (PMU placements). 

STEP 3: Calculation of fitness values (system observability). 

STEP 4: Updating the population based on global and local search strategies. 

STEP 5: Checking for convergence and terminating the process when the 

optimal solution is found. 

All of the above-mentioned steps are mentioned in the below Flowchart of 

Figure 3. 
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Figure 3. Flowchart of the general BOA steps. 

4. Fault identification and classification 

The BOA has proven to be an efficient tool for optimizing PMU placement, 

yielding a high SMRI in various test scenarios, including the IEEE 33-bus system. 



Sound & Vibration 2024, 59(1), 1728.  

9 

However, to maximize the benefits of optimal PMU placement, it is essential to 

employ a reliable learning algorithm for fault identification, as grid conditions are 

constantly evolving. ML algorithms, particularly Artificial Neural Networks (ANN), 

offer the flexibility and adaptability necessary for efficient fault detection. 

4.1. Learning algorithm 

In this work, the fault identification process is enhanced using machine learning 

algorithms, which operate through iterative trial-and-error approaches to achieve 

high efficiency. Given that the system is constantly subject to changes and fault 

conditions, the adaptability of machine learning makes it a suitable choice for 

improving fault detection accuracy. 

The training process for machine learning models is crucial. In our case, 

repeated training with variations in the dataset allows the model to generalize better, 

reaching an accuracy of around 85%. Without an adaptable algorithm, the 

improvements made during the OPP process would not be fully utilized. As system 

faults vary over time, it is essential to have a machine learning algorithm capable of 

adapting to these dynamic changes, ensuring both accuracy and speed in fault 

detection. 

4.2. Implementation 

The implementation of the learning algorithm for fault location is closely tied to 

the quality and size of the dataset, as well as the choice of neural network 

architecture. The steps involved in implementing the machine learning approach 

include: 

Data Collection and Preparation: Data is collected from transmission lines, 

including fault locations and relevant features such as voltage, current, and power 

measurements. The dataset is labelled, and data is divided into training, validation, 

and test sets. 

Data Pre-processing: Input and output data are normalized to bring them to a 

similar scale. Fault location labels are encoded, and the data is prepared for the 

neural network model. 

Neural Network Architecture: The chosen architecture is a feed-forward neural 

network, which connects input features to output classifications through hidden 

layers. The number of hidden layers and neurons in each layer is determined based 

on the complexity of the problem. 

Training: The neural network is trained using the Bayesian regularization 

algorithm, implemented via the Levenberg-Marquardt optimization method. This 

method adjusts the weights and biases of the network to minimize error. Training is 

terminated once the maximum number of epochs is reached or the desired level of 

performance is achieved. Figure 4 mentioned the machine learning flowchart. 
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Figure 4. Machine learning flowchart. 

4.3. Levenberg-Marquardt algorithm 

The Levenberg-Marquardt algorithm is designed to minimize the sum of 

squared residuals in nonlinear least-squares problems. The objective function is 

formulated as: 

Minimize ∑ [f (x; p) −y] ^2 

where 

⚫ f (x; p) represents the model function with parameters p and input x, and 

⚫ y represents the observed data. 

The Algorithm 1 combines aspects of gradient descent and the Gauss-Newton 

method, adjusting parameters iteratively to reach the optimal solution. 

In our system, the algorithm modifies the weights and biases of the neural 

network based on the following update rule: 

Algorithm 1 Levenberg-Marquardt algorithm 

1: jj = jX * jX 

2: je = jX * E 

3: dX = −(jj + I*mu)\je 
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where J is the Jacobian matrix, I is the identity matrix, and e is the error vector. The 

adaptive variable μ ensures stability and prevents the algorithm from getting stuck in 

local minima. Training is completed when one of the following conditions is met: 

⚫ Maximum training time is reached. 

⚫ The desired performance level is achieved. 

⚫ The performance gradient becomes too small. 

4.4. ML utilization over the OPP  

Figure 5 Illustrates the single-line circuit diagram of the IEEE 33-bus system, 

which includes bus classification into three zones and the corresponding locations of 

PMU placement. The system data are taken from the paper [37] 

 

Figure 5. Bus classification scheme. 

Selected PMU measurements for fault identification include voltage, current, 

angle, and power information. These variables are stored in a matrix structure to 

mitigate storage and memory issues associated with ANN. 

The PMU reading selection is as follows. 

⚫ Zone 1 controller ANN1 - (PMUmat1 PMU2 PMU 3 ...... PMU10 ) -  

⚫ Zone 2 controller ANN2 - (PMUmat1 PMU2 PMU 3 ...... PMU10 ) –  

⚫ Zone 3 Controller ANN3- (PMU 3 ...... PMU10 ) 

Figure 6 shows the implementation of PMU in Matlab. Short circuit faults are a 

primary cause of power outages in electrical networks, typically classified into four 

main types: LG, LL, LLG, and LLL, primarily analyzed at the transmission level. 

However, at the distribution level, these fault types result in ten different phase 

combinations due to their imbalance and asymmetry. In the proposed system, LG 

and LLG faults are analyzed, following the same procedure for other types of faults. 

Consequently, the case studies do not include faults other than LG and LLG. Faults 

are generated at each bus and a MATLAB model is employed to compute the voltage 

and magnitude for each bus. The data collected from all buses is then used as the 

ANN input. 

The Figure 7 illustrates a simulation of a fault occurring at bus 1. This means 

that in the depicted visual diagram, a fault scenario, such as a short circuit or another 

type of electrical fault, is simulated at the specific location denoted as “bus 1.” The 

purpose of the simulation is to analyze the impact of the fault on the electrical 
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system and its components at this particular bus within the more extensive power 

network. 

The ANN is trained using input data collected from the PMUs after the fault 

analysis. When a fault occurs in the system, the ANN promptly compares the 

received input data from the PMUs with the trained data. This comparison allows the 

ANN to accurately identify the fault type in the system and pinpoint the fault’s 

location. This process involves the ANN recognizing deviations in the 

measurement’s indicative of a fault. By analysing these deviations, the ANN can 

classify the fault type (e.g., LG, LLG) and determine the specific location within the 

system where the fault has occurred.  

5. Simulation findings, analysis, and discussion 

To validate the proposed model, a variety of systems, including conventional 

IEEE test cases, were analyzed. All simulations were performed using MATLAB, 

and fault identification was tested across multiple test systems, including the IEEE 

33-bus system. 

Test Case 1: IEEE RBTS -2; 

Test Case 2: IEEE 15 Bus system; 

Test Case 3: IEEE 33 Bus system; 

Test Case 4: IEEE 69 Bus system; 

Test Case 5: IEEE 85 Bus system. 

5.1. Sensor (PMU) location strategy for distributed state estimation 

The BOA successfully identified the optimal PMU locations for several IEEE 

test systems, ensuring maximum system observability. The results, summarized in 

Table 2, show the efficiency of the BOA in minimizing the number of PMUs 

required for complete system monitoring. For example, nine PMUs were sufficient 

to monitor the entire IEEE RBTS-2 Test System, with optimal placement at buses 1, 

4, 7, 10, 13, 16, 19, 21, and 23. The below Table 3 shows the comparison PMU 

spots and Redundancy Evaluation. 

Table 2. Optimal PMU spots ensuring maximum system observability through BOA 

algorithm. 

Test System No. of PMUs PMU Location SMRI Latency in Sec 

IEEE 15 5 2, 4, 9, 11, 13 20 0.023 

IEEE RBTS -2 9 1, 4, 7, 10, 13, 16, 19, 21, 23 24 0.050 

IEEE 33 10 2, 5, 8, 11, 14, 17, 21, 24, 27, 30 34 0.071 

IEEE 69 23 

1, 3, 5, 8, 12, 15, 18, 21, 24, 27, 30, 33, 

38, 41, 44, 48, 50, 52, 55, 58, 61, 64, 

69 

81 0.144 

IEEE 85 32 

2, 4, 6, 8, 10, 12, 13, 15, 17, 19, 22, 24, 

26, 27, 29, 32, 35, 37, 41, 45, 47, 50, 

53, 55, 58, 62, 64, 67, 70, 73, 81, 84 

102 0.196 
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Table 3. Comparison of optimal PMU spots and redundancy evaluation. 

Methods 
IEEE 15 Bus IEEE 33 Bus IEEE 69 Bus IEEE 85 Bus 

No. of PMU SMRI No. of PMU SMRI No. of PMU SMRI No. of PMU SMRI 

Proposed Method 5 20 10 34 23 81 32 102 

AGA [23] - - 11 33 26 84 - - 

Greedy Algorithm [24] 7 22 14 38 27 85 - - 

CES [25] - - 11 33 25 82 - - 

NSGA [26] 5 19 11 32 23 80 - - 

MST [10] 5 19 11 32 23 80 - - 

ACO [2] 6 21 12 36 24 82 - - 

5.2. Fault detection using machine learning in distributed state 

estimation 

The machine learning model was trained using the MATLAB Simulink toolbox 

to detect faults using input data from PMUs. The model was tested on the IEEE 33-

bus system, where short-circuit faults, including LG and LLG faults, were simulated. 

The ANN was able to accurately classify and locate faults in the system by analysing 

deviations in voltage and current measurements from the PMUs. 

 

Figure 6. Implementation of PMU unit in MATLAB. 
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Figure 7. MATLAB model for fault simulation in BUS 1. 

 

Figure 8. PMU voltage and current for LG fault. 
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Figure 9. Machine learning model’s training performance. 

 

Figure 10. Error histogram with 20 bins. 

 

Figure 11. Machine learning model’s performance on a validation dataset. 
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For instance, Figure 8 illustrates the PMU voltage and current measurements 

during an LG fault. The machine learning model demonstrated a high level of 

accuracy in identifying faults, with training performance reaching a peak accuracy of 

99.8% after 182 epochs, as shown in Figure 9. Furthermore, Figure 10’s error 

histogram confirms that most predictions had errors close to zero, indicating strong 

model performance. 

5.3. Certain observations 

The following key observations can be drawn from the simulation results: 

⚫ The use of the BOA significantly improved efficiency over other optimization 

methods. This resulted in better placement of PMUs for dynamic state 

estimation modules. 

⚫ The SMRI calculated for the IEEE 33-bus system showed higher efficiency 

compared to other methods, primarily due to the superior optimization 

capabilities of BOA. 

⚫ Repeated training of the ML model, based on dynamic situations, improved 

fault detection accuracy. This adaptability allowed the system to respond to a 

variety of real-world fault conditions more effectively than single, simulated 

processes. 

⚫ Machine learning models, particularly neural networks, proved to be an open-

source and flexible solution that can be continually refined and adapted over 

time for better performance. 

⚫ The graphical results shown in Figure 11 demonstrated that the training and 

performance of the machine learning model remained consistent, even in 

dynamic estimation systems. This reliability makes it applicable to real-world 

grid management scenarios. 

⚫ From a practical standpoint, this research offers a solution that can be directly 

implemented in distribution systems. The proposed method, with its integrated 

use of BOA for PMU placement and machine learning for fault detection, helps 

enhance grid stability by predicting and preventing faults. 

6. Conclusions 

The integration of deep learning techniques for fault detection and PMU 

placement optimization in radial power distribution networks significantly enhances 

system resilience. In this study, we leveraged advanced artificial intelligence 

methods to improve two critical aspects of power system management: fault 

detection and real-time monitoring. 

Through the use of the BOA, we were able to determine optimal PMU 

placements, maximizing system observability while minimizing the number of 

required units. At the same time, the machine learning models, particularly neural 

networks, demonstrated high efficiency in detecting and classifying faults with an 

accuracy rate of around 85%. The use of MATLAB-based simulations for fault 

conditions, such as LG and LLG faults, provided a robust validation framework for 

the proposed approach. 
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By implementing these techniques, power systems can detect and locate faults 

more accurately and in real-time. This significantly reduces system downtime and 

enhances the overall resilience of the grid, ensuring that it can quickly recover from 

disturbances while maintaining continuous operation. 

6.1. Core takeaways 

Optimized PMU Placement: The use of BOA enables the strategic placement of 

PMUs, minimizing cost and maximizing system observability.Enhanced Fault 

Detection: Deep learning models, such as neural networks, can identify and classify 

faults with high accuracy, improving fault management in radial power 

networks.System Resilience: The proposed framework enhances the power system’s 

ability to withstand and recover from faults, reducing disruptions to end-users and 

increasing grid stability. 

Contributions and societal implications 

The research findings contribute directly to the practical implementation of fault 

detection and monitoring systems within distribution grids. The improvements in 

system observability and fault detection efficiency pave the way for more reliable 

electricity networks, which is crucial in reducing energy poverty and ensuring 

sustainable energy supplies. The application of green energy, supported by real-time 

monitoring with PMUs, also has the potential to significantly reduce emissions and 

promote the use of renewable resources. 
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