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Abstract: Prognosis and health management (PHM) is a comprehensive technique for fault 

detection, prediction, and health management. However, achieving accurate predictions of 

remaining useful life (RUL) under complex working conditions such as is still High-Noise 

Environment a challenge. Therefore, this paper proposes a feature transfer model based on 

Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory Neural 

Networks (BiLSTM) to predict RUL. In the feature extraction stage, On the basis of signal 

decomposition using local mean values，CNN is used to extract the degradation features. 

Secondly, the health factors are constructed by monotonicity and correlation to filter the 

features again. Thirdly, it uses BiLSTM to model the time series data in the RUL prediction 

stage. Then, it introduces the transfer learning algorithm to solve the problem of different data 

distribution due to the inconsistent working conditions of mechanical equipment data and 

estimates the confidence interval of the RUL by the Monte Carlo simulation technique. Finally, 

the effectiveness of our constructed framework via CNN-BiLSTM model on a publicly 

available degradation simulation dataset of turbine engines. 

Keywords: high-noise environment; prognostic and health management (PHM); remaining 

useful life (RUL); transfer learning; convolutional neural networks (CNN); bidirectional long 

short-term memory (BiLSTM) 

1. Introduction 

Prognosis and health management (PHM) is a comprehensive fault detection, 

prediction, and health management technology that not only monitors and diagnoses 

faults but also anticipates the occurrence of faults in advance [1,2]. Enable the system 

to take safe fault-tolerant control means or maintenance and repair before failure, thus 

achieving autonomous safety and security and minimal cost loss [3–5]. As one of the 

key technologies of PHM, remaining useful life (RUL) prediction technology can 

predict the RUL of machinery and equipment in advance by analyzing the operational 

data of machinery and equipment collected by sensors. In order to prevent catastrophic 

events caused by sudden equipment failure, maintenance strategies must be developed 

based on the RUL prediction model [6,7]. Therefore, improving the accuracy of RUL 

prediction is of great practical value in reducing the risk of maintenance decisions [8]. 

RUL is the prediction of future failure events of a system based on currently obtained 

monitoring information, thus determining the effective time interval from the current 

moment to the moment of system failure [9,10]. However, the complex operating 

conditions, variable failure modes, and measurement noise or random disturbances in 

the detection data make the prediction results inevitably uncertain [11]. Therefore, the 

CITATION 

Jiang Z, Zhao Y, Yu W. A remaining 

useful life prediction method based 

on CNN-BiLSTM feature transfer in 

a high-noise environment. Sound & 

Vibration. 2025; 59(1): 1685. 

https://doi.org/10.59400/sv.v59i1.1685 

ARTICLE INFO 

Received: 4 September 2024 

Accepted: 13 September 2024 

Available online: 4 November 2024 

COPYRIGHT 

 
Copyright © 2024 by author(s). 

Sound & Vibration is published by 

Academic Publishing Pte. Ltd. This 

work is licensed under the Creative 

Commons Attribution (CC BY) 

license. 

https://creativecommons.org/licenses/

by/4.0/ 



Sound & Vibration 2025, 59(1), 1685. 
 

2 

quantification of uncertainty is a core issue in the field of RUL and is the key to 

ensuring that the equipment can operate safely and reliably for a long period of time 

[12]. 

RUL prediction is mainly using the historical monitoring data of mechanical 

equipment, and the RUL prediction of mechanical equipment is carried out based on 

the monitoring data. However, through the analysis of historical monitoring data of 

mechanical equipment, which can be found that historical monitoring data present the 

following features: with time series features, monitoring data are mostly collected 

from sensors, sensor data are characterized by changes over time, with temporal 

correlation and regularity [13]; High dimension, due to the complex internal structure 

of most mechanical equipment, most equipment exists with 20 or more dimensions of 

sensor state data [14]; more total data, the equipment sensors in the process of 

operation of machinery and equipment to collect real-time equipment status 

information data in seconds, the total amount of data saved is huge [15]; different data 

features distribution, machinery and equipment in the actual process of operation of 

variable operating conditions, the parameters between the equipment is not the same, 

which means that the same equipment at different times to obtain different monitoring 

data features distribution [16–18]. 

Although statistical data-driven and deep learning-based methods are widely used 

in RUL forecasting and have achieved many results, there is still no systematic and 

effective solution to the problem of quantifying forecast uncertainty [19]. This is 

mainly reflected in the insufficient ability of statistical data-driven methods to handle 

big data and the insufficient ability of deep learning methods to quantify prediction 

uncertainty [20]. For example, traditional machine learning prediction models assume 

that the data of different engines are from the same operating conditions and that the 

training and testing sets are independently and identically distributed. However, there 

are differences in the distribution of engine degradation data under different operating 

conditions, which leads to a dramatic decrease in the performance of traditional RUL 

prediction models [21,22]. In the past, such problems were mainly solved by fine-

tuning the model parameters, but this requires a large number of labeled training 

samples, a prerequisite that is difficult to meet in practical application scenarios, so 

more effective methods are needed for predicting the RUL under different operating 

conditions. Transfer learning can transfer features from the source domain to the target 

domain and reduce the distribution differences between the source and target domains 

by learning features that are invariant across domains [23,24]. Zhang et al. [25] 

implemented the transfer of source domain information by sharing parameters. Shen 

et al. [26] used a model transfer strategy to build a neural prediction model to achieve 

RUL prediction under different working conditions. Mao et al. [27] used transfer 

component analysis to find the common features between different bearings to achieve 

RUL prediction by constructing a support vector machine-based prediction model. The 

device degradation process is a continuous change process with backward and forward 

dependence on time, and the current information must be processed while predicting 

future information [28]. For the prediction problem of RUL, scholars usually use long 

short-term memory (LSTM) models [29]. 
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In this paper, we propose a transfer learning-based method for RUL to address 

the RUL uncertainty. Firstly, the common degradation features are extracted from the 

source domain by using the convolutional neural (CNN). Secondly, the extracted 

degradation features are re-screened by the monotonicity and correlation indicator. 

Since the bidirectional long short-term memory (BiLSTM) model is suitable for 

mining time-series information, the filtered features are input into the BiLSTM model. 

Finally, the confidence interval of the remaining lifetime is estimated by Monte 

Carlo’s (MC) simulation. 

The contributions of this research are as follows: 

1) Compared with the point estimation of remaining life, the proposed method can 

effectively solve the problem that the uncertainty of model prediction results is 

difficult to measure, which is of great practical value for reducing the risk of 

maintenance decisions. 

2) Introduces the transfer learning algorithm to solve the problem of different data 

distribution brought by the non-uniform working conditions of mechanical 

equipment data, and the transfer learning-based BiLSTM method is proposed to 

solve the problem of RUL prediction under multiple working conditions. 

The remainder of this paper is organized as below. In section 2, the methods are 

briefly described. Section 3 introduces the RUL prediction model based on domain 

adaptive. In section 4, the RUL prediction based on CNN-BiLSTM is put forward. In 

section 5, by taking the turbofan engine as an example, the proposed CNN-BiLSTM 

based on the transfer learning framework is verified. The conclusions are given in 

section 6. 

2. Methods 

2.1. Local mean decomposition 

Let the vibration signal obtained by monitoring be 𝑥(𝑡), 𝑡 = 1,2⋯ , 𝐿 ， 𝑡 is 

the sampling time，𝐿 is the total sampling time. The steps to implement the LMD 

method are as follows: 

(1) The mean im  and envelope estimates 𝜒𝑖 of the extreme points are smoothed 

by applying the sliding average method to obtain the local mean function 𝑚11(𝑡) and 

the envelope estimate function 𝜒11(𝑡). 

(2) The local mean function 𝑚11(𝑡)  is separated from the rolling bearing 

vibration signal 𝑥(𝑡) and demodulated to obtain a pure FM signal 𝑠11(𝑡). 

ℎ11(𝑡) = 𝑥(𝑡) − 𝑚11(𝑡) (1) 

𝑠11(𝑡) = ℎ11(𝑡)/𝜒11(𝑡) (2) 

Repeat until the envelope function 𝜒𝑖 satisfies 𝑙𝑖𝑚
𝑛→∞

𝜒1𝑛(𝑡) = 1. 

(3) Multiplying the envelope function of the above iterative process yields the 

envelope signal. 

𝜒1(𝑡) = 𝜒11(𝑡) × 𝜒12(𝑡)⋯𝜒1𝑛(𝑡) (3) 
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(4) FM signal Multiplied with the envelope signal 𝜒1(𝑡), Product Functions (PF) 

component. 

𝑃𝐹1(𝑡) = 𝑠1𝑛(𝑡) × 𝜒1(𝑡) (4) 

(5) The new signal 𝜇1(𝑡) is obtained by separating it from the vibrational signal 

𝑃𝐹1(𝑡) and repeating it as a vibrational signal until the iteration stops as a monotonic 

function 𝜇𝑞(𝑡). 

{

𝜇1(𝑡) = 𝑥(𝑡) − 𝑃𝐹1(𝑡)
𝜇2(𝑡) = 𝜇1(𝑡) − 𝑃𝐹2(𝑡)

⋮
𝜇𝑞(𝑡) = 𝜇𝑞−1(𝑡) − 𝑃𝐹𝑞(𝑡)

 (5) 

(6) The rolling bearing vibration signal is decomposed into a series of PF 

components and a residual component 𝜇𝑞(𝑡). 

𝑥(𝑡) = ∑𝑃𝐹𝑖

𝑞

𝑖=1

(𝑡) + 𝜇𝑞(𝑡) (6) 

2.2. Particle filter 

In rolling bearing RUL prediction, it is often difficult to observe the state of 

degradation of rolling bearings [30]. In contrast, existing sensing technologies such as 

vibration sensors and acoustic emission sensors provide indirect measurements for the 

assessment of the degree of bearing degradation [31,32]. Based on the Bayesian 

framework, this scenario of indirectly reacting to the internal state of a device can be 

described by the following mathematical model. 

𝑥𝑘 = 𝑓(𝑥𝑘−1 , 𝜇𝑘−1) (7) 

𝑦𝑘 = ℎ(𝑥𝑘 , 𝜗𝑘) (8) 

where: 𝑘 is the time; 𝑓(⋅)and ℎ(⋅)is the transfer function of the system state values 

and observations; 𝑥𝑘 and 𝑦𝑘 is the system state and measurements at the moment 

𝑘; 𝜇𝑘−1and 𝜗𝑘 is the white noise in the model. 

Particle filtering is a Monte Carlo method based on lem of particle exhaustion. In 

this study, a regularized resampling method based on the Euclidean distance kernel 

function is designed based on the regularization idea. The method selects a number of 

steps of iterative update of particles before the current moment as the time scale, 

calculates the Euclidean distance between the observed value and the estimated value 

of each particle in the time scale, and then uses this distance as the basis for adjusting 

the weights of particles, which solves the problem that the original regularized 

resampling methods based on Epanechnikov kernel density function, Gaussian kernel 

function, etc., only pay attention to the current value of particles and ignore the 

updating trend. The implementation steps of the regularized particle filtering algorithm 

are as follows. 

(1) For 𝑖 = 1,2,⋯ ,𝑁 , generate particles {𝑥0
(𝑖)

}
𝑖=1

𝑁
 from the a priori 

distribution𝑝(𝑥0）. For 𝑘 = 1,2,⋯ ,𝑁, perform step2 → 4. 
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(2) Importance Sampling: Based on 𝑝 (𝑥𝑘|𝑥𝑘−1
(𝑖)

)sampling N particles to form a 

collection of particles {𝑥𝑘
(𝑖)

}
𝑖=1

𝑁
. 

(3) Weight Calculation and Normalization: Calculate the observation estimate 

𝑦𝑘
𝑖  for each particle, and after the current observation value is input, calculate the 

weight
( )i

k  of each sample in the sample set. 

𝜔𝑘
(𝑖)

=
1

√2𝜋
𝑒(−

(𝑦𝑘
𝑖 −𝑦𝑘)2

2𝜎
)
 (9) 

Normalize the computation to generate a collection of particles{𝑥𝑘
(𝑖)

, 𝜔𝑘
(𝑖)

}
𝑖=1

𝑁
. 

𝜔𝑘
(𝑖)

=
𝜔𝑘

(𝑖)

∑ 𝜔𝑘
(𝑖)𝑁

𝑖=1

 (10) 

(4) State estimation. 

𝑋𝑘 = ∑𝑥𝑘
(𝑖)

𝑁

𝑖=1

𝜔𝑘
(𝑗)

 (11) 

2.3. Dynamic modeling for RUL prediction 

Mathematical modeling can be applied to different data domains. The time-series 

data 𝑋𝑆 = [𝑥𝑆1 , 𝑥𝑆2, . . . , 𝑥𝑆𝑛] ∈ 𝛧𝛬×𝑛  from a labeled source domain under certain 

operating conditions and the unlabeled target domain data 𝑋𝑇 = [𝑥𝑇1, 𝑥𝑇2 , . . . , 𝑥𝑇𝑛] ∈

𝛧𝛬∗𝑛under another set of operating conditions, where   is the number of sensors 

and n  is the number of data samples. A model is trained on the labeled source 

domain data, which then yields the RUL prediction value �̂�𝑆 = [�̂�𝑆1, �̂�𝑆2, . . . , �̂�𝑆𝑛] for 

each instance in the source domain data. 

In transfer learning, given a data sample 𝑋 = [𝑥1 , 𝑥2, . . . , 𝑥𝑛] and its sample 

space 𝜒, the data domain 𝐷 is composed of the source domain data sample space and 

the target domain data sample space. Under different operating conditions, the sample 

feature spaces of the source domain 𝐷𝑆  and the target domain 𝐷𝑇  are different, 

leading to different edge probability distributions 𝑝(𝑋𝑆) ≠ 𝑝(𝑋𝑇), i.e., The transfer 

learning task is composed of the sample label space Y  and the sample conditional 

probability distribution 𝑝(𝑌|𝑋) . When the source domain sample label space is 

different, or the sample conditional probability 𝑝(𝑌𝑆|𝑋𝑆) ≠ 𝑝(𝑌𝑇|𝑋𝑇)  is different 

under different operating conditions, since the prediction label types corresponding to 

the source domain data and the target domain data are consistent, but the sample 

conditional probability distribution is different, the aim is to transfer the RUL 

prediction model trained on the source domain data to the target domain, i.e., the 

function 𝐹 makes 𝑝 satisfy the following formula: 

𝑝(𝐹(𝑋𝑆)) = 𝑝(𝐹(𝑋𝑇)) (12) 

𝑝(𝑋𝑆|𝐹(𝑋𝑆)) = 𝑝(𝑋𝑇|𝐹(𝑋𝑇)) (13) 



Sound & Vibration 2025, 59(1), 1685. 
 

6 

Thus, the model trained on the source domain data can effectively predict the 

RUL (Remaining Useful Life) of the target domain data, yielding the predicted RUL 

value �̂�𝑇 = [�̂�𝑇1, �̂�𝑇2, . . . , �̂�𝑇𝑛] for the target domain. 

2.4. Convolutional neural network 

The CNN is essentially an input-to-output mapping, which does not require any 

precise mathematical expression between input and output as long as the CNN is 

trained and has the ability to map between input and output pairs. A typical CNN 

mainly consists of an input layer, a convolutional layer, a down sampling layer 

(pooling layer), a fully connected layer, and an output layer. The composition structure 

is shown in Figure 1. 

Input Layer Convolutional

Layer
Batch 

normalization activation

Maximum

pooling

sigmoid

Softmax 

output layer

Fully connected 

layer

(Dropout)

Feature extraction layer

.

.

.

 

Figure 1. Composition of CNN. 

(1) Convolutional Layer 

By using multiple convolution kernels to perform convolution operations with 

the input matrix, feature vectors are obtained through an activation function. The 

mathematical expression for this is as follows: 

𝑋𝑗
𝑙 = 𝑓(∑ 𝑋𝑖

𝑙−1 × 𝑤𝑖𝑗
𝑙

𝑖∈𝑀𝑗

+ 𝑏𝑗
𝑙) (14) 

where 𝑋𝑗
𝑖 represents the jth element in the lth layer; 𝑀𝑗the jth convolutional region 

in the lth layer. 𝑤𝑖𝑗
𝑙  represents the weight matrix of the corresponding convolutional 

kernel. 𝑏𝑗
𝑙 represents the bias term. 𝑓(⋅)denotes the activation function, commonly 

using the ReLU function. 

(2) Pooling Layer 

After the input data goes through feature extraction with convolutional kernels, 

due to the large size of the data, it is often followed by a pooling layer to reduce the 

number of model weight parameters, improve computational speed, and mitigate 

overfitting issues. The calculation formula for the pooling layer is as follows: 

𝑋𝑗
𝑙 = 𝑓(𝛽𝑗

𝑙𝑑𝑜𝑤𝑛(𝑋𝑗
𝑙−1) + 𝑏𝑗

𝑙) (15) 

where 𝛽 represents weight matrix ,𝑑𝑜𝑤𝑛(⋅)represents the down sampling function. 
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Pooling can be mainly divided into two types: average pooling and max pooling. 

Among them, max pooling is the most commonly used method, and its expression is 

as follows: 

𝑋𝑙 = 𝑚𝑎𝑥
(𝑖−1)𝑙+1≤𝑡≤𝑖𝑙

𝑋𝑙−1(𝑡) (16) 

where 𝑙 represents the length of the pooling region. 

(3) Fully Connected Layer 

After the input data has been alternated with multiple convolutions and pooling, 

the extracted features are classified through a fully connected layer, which contains 

multiple implicit layers to improve the generalization performance of the model. 

(4) Dropout layer 

The dropout regularization technique ignores neurons in a certain proportion, 

added before the fully connected layer, which can prevent the model from overfitting 

the phenomenon. The standard process is shown by the following formula. 

𝑦 = 𝑓(𝑊𝑥) × 𝑚, 𝑚𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑛, 𝑝) (17) 

where x is the input, W is the input weights, and y is the output. 

In this paper, we first use the degradation features extracted by CNN for re-

screening to construct HI that can reflect the degree of deviation from the health state 

due to degradation. 

𝐻𝐼 = √∑(𝑓𝑡 − 𝑓ℎ𝑒𝑎𝑙𝑡ℎ)
2

𝑞

𝑡=1

 (18) 

where 𝑓𝑡  are the real-time degradation feature 𝑓ℎ𝑒𝑎𝑙𝑡ℎ and the initial health feature, 

and 𝑞is the length of the sequence of HI. Then, the similarity between the depth 

features of the target domain and the HI sequence is calculated to extract the common 

features for the purpose of degraded information migration. Specifically, Dynamic 

Time Warping (DTW) distance is used to measure the similarity. Different from 

traditional metrics, DTW can effectively solve the graph translation problem and is 

suitable for measuring the shape similarity of unequal sequences. 

The specific steps of the algorithm are as follows: 

(1) Calculate the DTW distance between the feature matrix 𝐹𝑖 and HI to obtain 

the similarity matrix 𝑄𝑖 = [𝑞1, 𝑞2, ⋯ 𝑞𝐿]
𝑇 , where is the 𝐿  -th dimension of the 

extracted features. 

(2) Construct the weight matrix 𝜔 = [𝜔1, 𝜔2 , ⋯ , 𝜔𝑛], which is calculated as 

follows: 𝜔 = ∑ 𝐿 − 𝐼𝑛𝑑𝑒𝑥𝑖
𝑛
𝑖=1 . Where iIndex  denotes the similarity matrix in 

ascending order, and the higher the similarity, the higher the corresponding weight. 

(3) Perform similarity ranking on the weight matrix to obtain the importance 

ranking of each feature. 

2.5. Construction of health indicators 

In order to effectively evaluate the HI constructed in this paper, correlation, and 

monotonicity indicators are used to measure it. 
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(a) Correlation 

The correlation portrays the degree of correlation between the features and the 

time series. The greater the correlation between the two, the better the corresponding 

feature describes the engine. In this paper, the correlation between the feature and the 

time series is noted. 

𝑐𝑜𝑟𝑟 =
|∑ (𝐹𝑡 − �̃�)(𝑙𝑡 − 𝑙)𝑇

𝑡=1 |

√∑ (𝐹𝑡 − �̃�)2 ∑ (𝑙𝑡 − 𝑙)2𝑇
𝑡=1

𝑇
𝑡=1

 
(19) 

where, 𝐹𝑡 and 𝑙𝑡  are the 𝑡  eigenvalues and corresponding moments of the first 

sample, respectively; �̃� and 𝑙 are the mean values of the sample eigenvalue series 

and time series, respectively; 𝑇 is the number of samples in the whole life cycle. The 

correlation indicator is between 0 and 1, and the better the correlation between features 

and time, the closer the value is to 1. 

(b) Monotonicity 

With the degradation of engine performance, the degree of failure will become 

more and more serious, and the corresponding feature values will also show a 

degradation trend. In this paper, the monotonicity of the features and time series is as 

follows: 

𝑀𝑜𝑛 = |
𝑛𝑢𝑚(𝑑𝐹 > 0)

𝑇 − 1
−

𝑛𝑢𝑚(𝑑𝐹 < 0)

𝑇 − 1
| (20) 

where 𝑛𝑢𝑚(𝑑𝐹 > 0) is the number of feature sequence difference values greater 

than zero; 𝑛𝑢𝑚(𝑑𝐹 < 0) is the number of feature sequence difference values less 

than zero; 𝑇 is the length of the feature sequence. The monotonicity indicator is 

between 0 and 1, and the better the monotonicity of the features, the closer to 1. 

Otherwise, the closer to 0. 

When making feature selection, correlation, and monotonicity need to be 

considered together. Therefore, in this paper, the above two indexes are linearly 

combined, and the comprehensive evaluation criterion is noted. 

𝐶𝑟𝑖 = 𝜔1𝐶𝑜𝑟𝑟 + 𝜔2𝑀𝑜𝑛 (21) 

where 𝜔1 and 𝜔2are the weights of the two weighting factors. 

2.6. Time-series prediction model based on BiLSTM 

BiLSTM is an improved model of LSTM. BiLSTM can consider the influence of 

time series in both past and future directions on the data of the current moment, which 

better captures the long-term dependence of time series [33]. 

The mathematical expression of LSTM. 

𝑓𝑡 = 𝜊(𝑤𝑓 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (22) 

𝑖𝑡 = 𝜊(𝑤𝑖 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (23) 

�̃�𝑡 = 𝜑（𝑤𝐶 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (24) 
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𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡�̃�𝑡 (25) 

𝑜𝑡 = 𝜊(𝑤𝑜 × [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑜) (26) 

ℎ𝑡 = 𝑜𝑡 × 𝜑(𝐶𝑡) (27) 

where 𝑤𝑓, 𝑤𝑖, 𝑤𝑜, and𝑤𝑐represent the weight matrices of the forgetting gate, input 

gate, output gate, and cell state, 𝑏𝑓、𝑏𝑖、𝑏𝑜 and 𝑏𝑐 represent the bias, 𝜎 and 𝜙 

represent the sigmoid activation function and the activation function, respectively. 

ℎ𝑡−1 is the output state at the previous moment, 𝑥𝑡 is the input at the current moment, 

𝑓𝑡  is the forgetting gate, 𝑖𝑡  is the input gate, 𝑜𝑡  is the output gate, �̃�𝑡  is the 

candidate state, 𝑐𝑡 is the memory cell, and 𝑐𝑡−1 is the cell state at the moment. 

The output ℎ⃗ 𝑡 of the forward LSTM layer and the output ℎ⃗⃖𝑡 of the backward 

LSTM layer are calculated separately, and then the output is obtained by concatenating 

ℎ⃗ 𝑡 and ℎ⃗⃖𝑡. 

The mathematical expression of BiLSTM: 

ℎ⃗ 𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ⃗ 𝑡−1) (28) 

ℎ⃗⃖𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ⃗⃖𝑡+1) (29) 

𝑦𝑡 = 𝑤
ℎ⃗ 𝑦ℎ⃗

 
𝑡 + 𝑤

ℎ⃖⃗𝑦 ℎ⃗⃖𝑡 + 𝑏𝑦 (30) 

where 𝑤ℎ⃗⃗ 𝑦 denotes the connection weight from the forward LSTM layer to the output 

layer, 𝑤
ℎ⃖⃗𝑦the connection weight from the backward LSTM layer to the output layer, 

and the output layer’s bias. 

3. RUL prediction model based on domain adaptive 

3.1. Domain adaptive framework 

An adaptive layer is introduced in the deep neural-based prediction model to 

develop the RUL model adapted to the requirements of the target class. The adaptive 

domain framework is shown in Figure 2. 

Source 

Domain Data

Source 

Domain

Feature 

Extractor

Source 

Domian

Nonlinear 

Remaining 

Useful Life

Target Domain 

Data

Target Domain Target

Domain 

nonlinear 

Regression

Remaining 

Useful Life

Loss Function

Extractor

Feature 

Regression

 

Figure 2. Domain adaptive framework. 



Sound & Vibration 2025, 59(1), 1685. 
 

10 

(a) The RUL prediction model is trained using the source domain data, i.e., the 

process monitoring signals with historical performance degradation patterns, and the 

Adam optimizer is used to train the loss function with the mean absolute error. 

ℓ𝑇𝑅𝐴𝐼𝑁 =
∑ |𝑦𝑖 − �̂�𝑖|

𝑛
𝑖=1

𝑚
 (31) 

where 𝑦𝑖  is the theoretical value of remaining life, �̂�  is the predicted value of 

remaining life, 𝑚 and is the training sample size of each batch. 

(b) The target domain model in the initial state shares the parameters of the source 

domain model. The adaptive layer is added after the model feature extractor, and the 

regression loss function is used to measure the distance between the features extracted 

by the feature extractor in the source and target domains. The loss functions of the 

source domain features 𝐷𝑆 = {𝑥𝑖}, 𝑥 ∈ 𝑅𝑑  and the target domain features 𝐷𝑇 =

{𝑢𝑖}, 𝑢 ∈ 𝑅𝑑 : 

ℓ𝐿𝑜𝑠𝑠 =
1

𝑁
∑|𝑥𝑖

𝑁

𝑖=1

− 𝜇𝑖| (32) 

During the model update, minimizing the source domain training loss itself is 

likely to lead to overfitting. Therefore, combining the source domain training loss and 

the loss between the two domains on the target domain model is trained jointly to 

update the parameters of the target domain feature extractor. 

ℓ = ℓ𝑇𝑅𝐴𝐼𝑁 + ∑𝜆𝑖

𝑡

𝑖=1

ℓ𝐿𝑜𝑠𝑠  (33) 

where 𝑡 denotes the number of loss layers in the deep; 𝜆𝑖 denotes the weight value 

that weighs the adaptive and training accuracy. 

3.2. Pre-training and fine-tuning methods 

If the target category data contains a small amount of labeled data, the RUL 

prediction model is adjusted by the labeled data within the target category through a 

pre-training-fine-tuning method. The pre-training-fine-tuning method refers to finding 

shared model parameter information from the source and target domains for the 

purpose of information transfer. The process of the pre-training-fine-tuning method 

for tuning the RUL prediction model is shown in Figure 3. In the process of fine-

tuning the parameters of the LSTM, the nonlinear regressor in the model is fine-tuned 

using the process monitoring signal with labels in the target domain as input. The fine-

tuning process is trained using the Adam optimizer with Equation (33) as the loss 

function. 
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Figure 3. Pre-training and fine-tuning method. 

4. RUL prediction model based on transfer learning 

4.1. Process of feature transfer learning 

In order to learn the common features between the source domain’s fault data and 

preserve the unique features of the target domain, this paper proposes the CNN-

BiLSTM prediction model based on transfer learning. The process of feature transfer 

learning is shown in Figure 4. 
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Figure 4. Schematic diagram of CNN-BiLSTM structure. 

In Figure 4, this paper updates the model parameters by sharing the implicit layer. 

Parameter transfer, also known as model transfer, is one of the most intuitive and 

commonly used methods in transfer learning. The basic idea is to directly transfer the 

model parameters that have been pre-trained on a large-scale dataset to a new target 

task, and then fine-tune them according to the characteristics of the target task. 

Specific operations are as follows: 

1) Load the pre-trained model: First, we need to load the pre-trained model. 

2) Modify the output layer: Replace the last layer of the pre-trained model (usually 

a fully connected layer) with a new layer that matches the cat and dog 

classification task. 

3) Freeze and fine-tune: Typically, we first freeze most of the layers of the pre-

trained model (these layers are responsible for extracting the basic features of the 

image), and then only train the new classification layer. During the training 

process, gradually unfreeze some layers for fine-tuning as needed. 

The parameters from the input layer to the hidden layer ensure that the target 

domain can learn features similar to the source domain while retaining features unique 

to the target domain. 
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4.2. Measure the uncertainty of the RUL model 

Assuming a normal prior distribution of probabilities about the random 

variables𝜔  in the BiLSTM and using Bayesian theory to determine the posterior 

distribution. The expression of the posterior distribution of the random variables 𝜔. 

𝑝(𝜔|𝑋, 𝑌) =
𝑝(𝑌|𝑋,𝜔)𝑝(𝜔)

𝑃(𝑌|𝑋）
 (34) 

where 𝑋 and 𝑌 correspond to the training set consisting of input and output samples, 

respectively. 

For a new input 𝑥∗, the predicted distribution is obtained from Equation (34). 

𝑝(𝑦∗|𝑥∗, 𝑋, 𝑌) = ∫𝑝 (𝑦∗|𝑥∗, 𝜔)𝑝(𝜔|𝑋, 𝑌)𝑑𝜔 (35) 

The posterior distribution of the random variable is difficult to obtain directly, 

which is necessary to construct an approximate distribution 𝑞∗(𝜔) based on the 

variational inference to approximate and minimize the KL dispersion 

𝐾𝐿(𝑞(𝜔)||𝑝(𝜔|𝑋, 𝑌)) to determine. 

𝑝(𝑦∗|𝑥∗, 𝑋, 𝑌) ≈ ∫𝑝(𝑦∗|𝑥∗, 𝜔)𝑞∗(𝜔)𝑑𝜔 (36) 

From Equation (36), to obtain the Bayesian posterior distribution, it is necessary 

to minimize the KL scatter, and minimizing the KL scatter is equivalent to maximizing 

the lower bound of the marginal likelihood function. 

𝐾𝐿(𝑞(𝜔)||𝑝(𝜔|𝑋, 𝑌)) = ∫𝑞(𝜔) 𝑙𝑜𝑔
𝑞(𝜔)

𝑝(𝜔|𝑋, 𝑌)
𝑑𝜔 

                                     = − ∑ ∫𝑞(𝜔) 𝑙𝑜𝑔( 𝑦𝑛|𝑥𝑛, 𝜔)𝑑𝜔 + 𝐾𝐿(

𝑁

𝑛=1

𝑞(𝜔)||𝑝(𝜔)) 

(37) 

KL scatter regularization to obtain the loss function: 

ℓ = − ∑ 𝑙𝑜𝑔𝑝 (𝑦𝑛

𝑁

𝑛=1

|𝑥𝑛, �̂�𝑛) + ∑(
𝑝𝑖𝑐

2

2

𝐿

𝑖=1

‖𝜇𝜔
𝑙 ‖

2

2
+

𝑐2

2
‖𝜇𝑏

𝑙 ‖
2

2
) (38) 

where c is the length coefficient a priori �̂�𝑛 ∼ 𝑞(𝜔) , 𝑝𝑖 ∈ [0,1] denotes the 

probability set in advance, 𝜇𝜔
𝑙  and 𝜇𝑏

𝑙  is the variational parameter of the weight 

matrix 𝜔𝑖 and the bias vector 𝑏𝑖, respectively. 

Set 𝜉 denote the weight decay parameter and obtain the loss function of the 

neural model using dropout as follows. 

ℓ ∝ ℓ𝑑𝑟𝑜𝑝𝑜𝑢𝑡 =
1

𝑁
∑ ℓ(𝑦𝑛, �̂�𝑛

𝑁

𝑛=1

) + 𝜉 ∑(‖𝜔𝑖‖2
2

𝐿

𝑖=1

+ ‖𝑏𝑖‖2
2) (39) 

Prediction uncertainty can be quantified by adding a dropout with probability 

𝑝and a regular term with a weight recession coefficient 𝜉 in the fully connected layer. 

The resulting loss function ℓ is equivalent to ℓ𝑑𝑟𝑜𝑝𝑜𝑢𝑡 . The loss function ℓ can be 

obtained by the gradient descent method to obtain the optimal weight matrix 𝜔𝑖
∗. 
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Given a new input 𝑥∗ , MC performs V times to obtain the predicted mean and 

variance, i.e., 

𝑝(𝑜∗|𝑥∗, 𝑋, 𝑂) ≈ ∫𝑝(𝑜∗|𝑥∗, 𝑋, 𝜔)𝑞(𝜔)𝑑𝜔 ≈
1

𝑉
∑ 𝑝

𝑉

𝑣=1

（𝑜∗|𝑥∗, �̂�𝑣) (40) 

where, �̂�𝑣 ∼ 𝑞(𝜔), 𝑂 is the training data set. 

4.3. Flow of RUL prediction model based on transfer learning 

In this paper, propose a framework including feature extraction and RUL 

prediction, which consists of two main parts: the first part uses the CNN to extract 

degradation features and then filter them by HI; the second part uses the BiLSTM to 

mine timing information to predict the RUL of the engine. The flow of the proposed 

RUL prediction framework is shown in Figure 5. we propose a transfer learning-based 

method for RUL to address the RUL uncertainty. Firstly, the common degradation 

features are extracted from the source domain by using the convolutional neural 

(CNN). Secondly, the extracted degradation features are re-screened by the 

monotonicity and correlation indicator. Since the bidirectional long short-term 

memory (BiLSTM) model is suitable for mining time-series information, the filtered 

features are input into the BiLSTM model. Finally, the confidence interval of the 

remaining lifetime is estimated by Monte Carlo’s (MC) simulation. 
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Figure 5. Flow chart of RUL prediction based on CNN-BiLSTM. 

The specific steps are as follows: 

Step 1: Acquisition and pre-processing of raw data. The data collected by 

multiple sensors are normalized as the original data of the source and target domains. 

Step 2: The normalized data set is input into the CNN, and the extracted common 

degradation features are obtained by adjusting the hyperparameters of the model to 

minimize the reconstruction error. 

Step 3: Construction of HI and re-screening of degenerate features. Consider the 

monotonicity and correlation between the features and the Health indicator. 

Step 4: Select the BiLSTM as a decoder and introduce dropout into the BiLSTM 

model to generate the BiLSTM-based prediction model. 

Step 5: Use the prediction error to optimize the BiLSTM model parameters. 

Step 6: Input the source and target domain data into the BiLSTM-based 

prediction model to obtain the prediction results and measure the uncertainty of the 

RUL prediction results by the MC simulation technique. 

5. Experimental verification 

5.1. Dataset description 

Because of the complex structure of aero engines, degradation data often present 

high dimensionality and large data volume [34]. In this paper, we take the CMAPSS 

dataset provided by NASA as an example, which contains four sub-data (FD001-

FD004) of engines in different operating states and failure modes, and each sub-dataset 

contains full-life data of multiple engines sampled by 21 sensors under different 

operating conditions and divided into training and test sets, with specific information 

shown in Table 1. The C-MAPSS (Commercial Modular Aero-Propulsion System 

Simulation) dataset is published by the National Aeronautics and Space 

Administration (NASA) and is specifically designed for predicting the RUL of aircraft 

engines. The data is generated by simulating the operation of large commercial 

turbofan engines, encompassing sensor data under various working conditions and 

fault modes. The C-MAPSS dataset includes four sub-datasets (FD001, FD002, 

FD003, FD004), each containing different numbers of working conditions and fault 

states. These datasets are widely used in the fields of machine learning and data mining 

to support the health management systems of aircraft engines. The parameters in the 

dataset include operational parameters of the engine, such as vibration and temperature 

information, with a total of 24 sensor data points, which can be used to train and test 

fault diagnostic and RUL prediction models. The purpose of the experiment is to train 

a model based on the test data to achieve the estimation of the remaining running time 

of the test set data. 

Perform an adaptive LMD (Local Mean Decomposition) decomposition on the 

accelerated life data of the aforementioned rolling bearing, and the results are shown 

in Figure 6. 
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Table 1. Aero engine dataset. 

Number Training Set Testing Set Operating Condition Failure Mode 

FD001 100 100 1 1 

FD002 260 259 6 1 

FD003 100 100 1 2 

FD004 249 248 6 2 

 

Figure 6. LMD decomposition results. 

5.2. Parameter setting 

The performance of the constructed model is influenced by the setting of the 

model parameters, and in order to measure the performance of the proposed prediction 

model and to improve the efficiency of parameter adjustment, the score function (SF) 

and the root mean square error (RMSE) are usually used to evaluate the prediction 

effect. 

The formula for calculating SF: 

𝑆𝐹 = {
𝑒−

ℎ𝑖
13 − 1, ℎ𝑖 < 0

𝑒
ℎ𝑖
13 − 1, ℎ𝑖 ≥ 0

 (41) 

where, ℎ𝑖 = 𝑅�̂�𝐿𝑖 − 𝑅𝑈𝐿𝑖, 𝑅�̂�𝐿𝑖is the predicted value of RUL and 𝑅𝑈𝐿𝑖 is the true 

value of RUL. 

The forecast results are measured using RMSE, which is calculated as 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ ℎ𝑖

2

𝑁

𝑖=1

 (42) 

Smaller values of SF and RMSE mean better prediction accuracy. 
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The sliding time window is set to 30, and the number of iterations is set to 500. 

the structural parameters of the BiLSTM are set as shown in Table 2, and the model 

training process is shown in Figure 7. 

Table 2. Parameters of BiLSTM. 

BiLSTM Parameter 

Number of hidden layers 3 

Network structure 50–50–50 

Optimizer Adam 

Activation function Loss function Dropout sigmoid-sigmoid-tanh Mean Square Error {0.2，0.5} 

5.3. Model training and result analysis 

The test data contains 100 incomplete sequences, and the RUL of the 

corresponding engine is at the end of each sequence. Sort the training data by sequence 

length, as shown in Figure 7. 

 

Figure 7. Sorted data. 

The pre-processed high-dimensional time series are input into the CNN for 

feature extraction. The original data has 21 features, and 17 features were obtained 

after the dimensionality reduction process. Then, the dimensionality reduction features 

are input into the BiLSTM for temporal information learning. The changes in training 

error during the training process are shown in Figure 8, and the RMSE of training 

gradually tends to be smooth as the number of training periods increases. 

The RUL prediction results for four randomly selected engines in the FD003 

dataset are shown in Figure 8. The deep convolutional structure of the CNN-BiLSTM 

model can effectively extract the deep features of engine degradation. However, the 

initial historical data is small and difficult to predict. However, with the increase of 

running time and data, the model combines the advantages of spatial and time features, 

which can effectively improve the prediction accuracy over a long period of time. 
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Figure 8. Model training process. 

5.4. Model comparison analysis 

Step 1: Construction of HI 

Firstly, FD002 data from working state six is utilized as the training set to 

construct the HI model in the source domain, while FD003 data from working state 

one serves as the training set for constructing the HI model in the target domain. The 

HI curves in both source and target domains undergo processing with a sliding time 

window of size 30, which are then inputted into the CNN to extract the engine 

degradation features and obtain the HI. Subsequently, these results are fed into the 

BiLSTM based on transfer learning for RUL prediction. The effectiveness of feature 

extraction using both the CNN method and the principal component analysis (PCA) 

method is compared by using correlation (Corr) and monotonicity (Mon) metrics. The 

results are displayed in Table 3. 

Table 3. Evaluation of two methods of HI construction. 

Methods Corr Mon 

PCA 0.85 0.15 

CNN 0.93 0.25 

As can be observed from Table 3, the values of Corr and Mon achieved by the 

HI method, as constructed using the CNN prediction model, surpass those of the PCA 

method. This validates that the method developed in this paper is capable of effectively 

extracting features, which significantly contributes to enhancing the prediction 

accuracy of the model. 

Step 2: RUL prediction of CNN-BiLSTM based on transfer learning 

In this paper, the RUL prediction results of one full test cycle of the No.53 unit, 

which has more test cycles, are selected. Then, the RMSE metric, which measures the 

error between the predicted and true values, is calculated according to Equation (31), 

and the histogram of prediction error based on RMSE is given in Figure 9. 
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Figure 9. Histogram of prediction error. 

Finally, the prediction results have been estimated by the MC simulation 

technique for the interval. The 95% confidence interval of the RUL prediction 

obtained by the MC simulation technique for the No.53 engine is given in Figures 9 

and 10, respectively. The prediction results of RUL for the No.53 engine based on the 

SVR method are given in Figure 10. 

 

Figure 10. RUL prediction results of Engine 53 based on CNN-BiLSTM. 

In order to verify the effectiveness of the proposed method, the CNN model is 

applied to perform RUL prediction for engine No. 53 of FD003, and the prediction 

results are shown in Figure 10. 

By comparing Figures 11 and 12, it can be seen that there is a large deviation 

between the prediction and the true value at the early stage of the operation due to the 

small amount of performance monitoring data. However, the proposed method in this 
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paper is able to capture its degradation features better with the help of the source 

domain data, and therefore, the prediction results are better. The traditional prediction 

method SVR only provides a single point estimate rather than a probability distribution 

when predicting the URL, so the uncertainty of the prediction result cannot be 

measured, which increases the risk of maintenance decisions. 

 

Figure 11. RUL prediction results of engine 53 based on CNN. 

 

Figure 12. RUL prediction results of engine 53 based on SVR. 

Step 3: Uncertainty Metric 

Each engine in the dataset has a different degree of initial wear, and a large 

amount of random noise is introduced into the data, leading to inevitable uncertainty 

in the RUL prediction results. Therefore, it is necessary to quantify the uncertainty of 

the RUL prediction process, which in turn can guide the next maintenance decision. 

The RUL prediction results based on CNN-BiLSTM and LSTM models for the four 

engines in the test set with different amounts of monitoring data are presented in 
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Tables 4 and 5, respectively. Moreover, the 95% confidence intervals (CI) of RUL are 

calculated by the MC simulation technique. 

Table 4. RUL prediction results based on CNN-BiLSTM model for different cycles. 

Engine Cycle number Actual RUL Estimated RUL 95% CI 

1 31 112 103.3 [85.3, 121.5] 

11 83 97 89.2 [61.5, 117.9] 

17 165 50 47.6 [39.6, 55.6] 

34 203 7 6.5 [3.5, 9.3] 

Table 5. RUL prediction results based on the CNN model for different cycles. 

Engine Cycle number Actual RUL Estimated RUL 95% CI 

1 31 112 98.9 [62.3, 135.5] 

11 83 97 85.7 [51.5, 119.7] 

17 165 50 45.1 [30.6, 60.3] 

34 203 7 5.9 [3.0, 9.5] 

From the comparison between Tables 4 and 5, it can be seen that at the early 

stage of engine degradation. There are large deviations between the predicted and true 

values based on the CNN model and SVR model due to the small number of training 

samples. The CNN-BiLSTM model proposed in this paper can effectively extract 

information on the degradation mechanism from the data of different operating 

conditions, which can improve the accuracy of RUL prediction with the limited 

amount of training sample data. The training sample size increases with the increase 

of engine operation cycles, and both prediction methods achieve better prediction 

results with sufficient training sample data, but the CNN-BiLSTM model proposed in 

this paper has better prediction results. The interval estimation results in Table 5. are 

valuable for reducing the maintenance decision risk. 

To verify the role of temporal characteristics in feature transfer, Task A is 

selected with seven bearings under operating condition 1 as the source domain and 

bearings No. 1–3 under operating condition 2 as the target domain. Task B takes 7 

bearings under operating condition 1 as the source domain and bearings No. 4–7 under 

operating condition 2 as the target domain. Three classic domain adaptation methods, 

SA, GFK, and KMM are used for comparison. As demonstrated in Figures 13 and 14, 

the domain-adaptive feature transfer learning approach surpasses traditional statistical 

features in both RMSE and MAPE metrics of RUL prediction. This indicates that 

compared with the conventional method of directly identifying the common feature 

subspace for sequence data, incorporating the temporal features inherent in the 

sequence itself aids in enhancing the transfer effect and reducing the RUL prediction 

error. 
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Figure 13. Comparison results of RMSE of RUL for different domain adaptive 

algorithms. 

 

Figure 14. Comparison results of MAPE of RUL for different domain adaptive 

algorithms. 

Finally, four representative RUL prediction methods have been selected for 

comparison, and the results are shown in Table 6. The average RUL prediction error 

on seven target domain bearings was adopted. The four methods include one shallow 

model feature selection method and three deep feature learning methods. Cheng et al. 

[35] have used a CNN to extract features and a BiLSTM to construct a rolling-bearing 

RUL prediction model. Cheng et al. [36] have used a transferable convolutional neural 

network to extract time-frequency domain degradation features from bearing vibration 

signals and achieved RUL prediction. Fu et al. [37] have employed a domain-invariant 

deep residual LSTM to realize RUL prediction across domains. Yang et al. [38] have 

proposed an LSTM-based bearing RUL prediction method and improved the 

prediction accuracy by modifying the dropout module during the training process. 

Comparing the RMSE error and MAPE error, these two indicators demonstrate the 

superiority of the proposed methods in the paper. 
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Table 6. Comparison of RUL prediction results of five different methods. 

Methods Document[32] Document[33] Document[34] Document[35] CNN-BiLSTM 

MAPE 39.51 31.05 35.25 45.15 30.33 

RMSE 0.37 0.59 0.33 0.65 0.29 

6. Conclusion 

In order to solve the problem that insufficient training samples affect the 

prediction accuracy of the RUL model, this paper presents a CNN-BiLSTM model 

prediction RUL method based on feature transfer. It is validated using the CMAPSS 

dataset, leading to the following conclusions: 

(1) During the feature extraction stage, On the basis of signal decomposition 

using local mean values，we initially use CNN to extract degradation features. 

Subsequently, health factors are constructed by evaluating monotonicity and 

correlation to refine the features further. Compared to the commonly used PCA 

dimensionality reduction method, the features extracted using CNN exhibit superior 

performance in terms of correlation and monotonicity. 

(2) In the RUL prediction stage, we have enhanced the conventional LSTM 

prediction algorithm by employing BiLSTM to model the time series data. This 

effectively mines the degradation mechanism information from data under different 

operational conditions. We have introduced the transfer learning algorithm to tackle 

the problem of different data distributions caused by non-uniform working conditions 

of mechanical equipment data. Consequently, a transfer learning-based BiLSTM 

method has been proposed to solve the challenge of RUL prediction under multiple 

working conditions. 

(3) The confidence interval of the RUL is estimated using the Monte Carlo 

simulation technique. Our proposed method effectively addresses the difficulty of 

measuring the uncertainty of model prediction results, which holds significant 

practical value for reducing the risk associated with maintenance decisions. 

Although the rolling bearing RUL prediction model constructed in this paper 

performs well for different bearings, there is a problem of prediction lag for some 

bearings. Therefore, subsequent research will optimize the GCN-LSTM model 

structure to improve the prediction effect of rolling bearing RUL. 
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