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Abstract: Urban sustainable development faces significant challenges, with low Resident 

Value Perception (RVP) acting as a major barrier to the rapid growth and sustainability of 

cities. This study aims to identify the key factors influencing RVP and assess their impacts, 

focusing on Wuhan as the case study. An RVP indicator system is developed, integrating 

three dimensions, and the Fuzzy Comprehensive Evaluation-Attribute Hierarchy Model 

(FCE-AHM) method is employed to calculate the RVP index. Additionally, a novel GINI-

out-of-bag (GINI-OOB) coupling assessment method is introduced to determine the influence 

of each indicator, using data from Wuhan’s 2022 social satisfaction survey in China. Special 

emphasis is placed on the relationship between these factors and the acoustic environment. 

The research findings highlight the following: (1) The proposed methodology effectively 

identifies the key factors influencing residents’ value perceptions and quantifies their levels 

of influence; (2) Hospital waiting times, housing price acceptability, and parking 

management emerge as the top three factors affecting residents’ value perception, with a 

combined GINI-OOB index score of 0.4914. Notably, parking management has a significant 

influence, directly exacerbating traffic noise issues. These factors collectively impact the 

acoustic environment, thereby influencing residents’ quality of life and overall satisfaction. 

This study introduces an innovative theoretical framework for evaluating urban sustainability, 

offering valuable insights for enhancing the assessment of residents’ value perceptions and 

supporting policy recommendations aimed at optimizing urban acoustic environments. 

Keywords: urban acoustic environment; urban sustainable development; resident’s value 

perception; FCE-AHM; GINI-OOB 

1. Introduction 

Resident Value Perception (RVP) is influenced by multiple factors. Firstly, the 

quality of the urban environment plays a pivotal role. Inadequate air and water 

quality, along with severe environmental pollution, can significantly diminish RVP 

[1]. Therefore, it is imperative to implement effective measures for environmental 

protection and pollution control in order to enhance RVP. Secondly, optimal urban 

infrastructure and public services encompassing efficient transportation [2], 

education, healthcare, and cultural facilities can augment resident’s satisfaction 

levels. Additionally, social equity, economic opportunities, and social inclusivity 

also hold substantial significance in this regard. The presence of inequalities and 

social injustices within a city can adversely impact RVP. 

Urban planning and management departments can utilize this research to gain a 

deeper understanding of resident’s needs and expectations, thereby formulating 

policies and plans that are more aligned with the prevailing circumstances. This will 

enable cities to better cater to resident’s requirements and enhance resident’s 
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satisfaction. Understanding the factors influencing RVP can effectively address 

urban challenges such as environmental protection, traffic congestion, and housing 

issues [3]. By meeting resident’s needs, cities can successfully achieve sustainable 

development goals [4]. Therefore, investigating RVP constitutes a crucial step 

towards achieving sustainable urban development. 

The research on RVP has attracted significant attention in the fields of urban 

planning and sustainable development. Studies in this area encompass a wide range 

and can be classified based on various research methodologies and perspectives. 

In terms of research methods, they can be classified into quantitative research 

and qualitative research. In relation to quantitative research, Vorkinn and Riese [5] 

utilized questionnaire surveys to measure the relationship between resident’s 

environmental concerns and their attachment to specific places, uncovering a 

significant correlation between individual’s emotional connections and their 

concerns regarding environmental issues. Moudon et al. [6] suggested an empirical 

approach for identifying quantifiable attributes and thresholds of walkable 

communities. The study employed bivariate and multivariate analysis methods to 

define “walkable communities” and explored factors related to resident’s walking 

behavior. In qualitative research, Devine-Wright and Howes [7] used in-depth 

interviews and content analysis methods to understand community resident’s views 

on wind energy projects and their perceptions of the potential impacts of these 

projects on the environment and sense of place. Additionally, Williams and Vaske 

[8] developed a psychological measurement method to assess resident’s attachment 

to specific locations. 

In addition to variations in research methodologies, studies on RVP have 

yielded divergent findings from multiple perspectives. Specifically, these can be 

summarized through the lenses of environmental factors, societal aspects, and 

economic considerations. Regarding environmental factors, Buttazzoni et al. [9] 

focused on the influence of the urban environment on the psychological well-being 

of young city dwellers and emphasized its significance for RVP. Furthermore, 

Gifford [10] examined how environmental psychology affects RVP by highlighting 

the impact of environmental factors on resident’s emotions and behaviors. From a 

social perspective, Putnam [11] explored the concept of social capital with a 

particular focus on community and social participation’s effect on RVP. In other 

dimensions within this factor, Pretty et al. [12] investigated the impact of physical 

exercise in natural environments on both health and psychological well-being from a 

social perspective. Furthermore, focusing on the economic aspect, Kahneman and 

Deaton [13] examined the happiness levels of urban residents, emphasizing the 

interaction between economic conditions and RVP. 

Despite some progress in existing research on the influencing factors of RVP, 

the current methods primarily rely on traditional factor analysis [14], multiple 

regression analysis [14], and structural equation modeling [15], which are considered 

simplistic data mining techniques. These approaches have limitations in deeply 

exploring and explaining the complexity of RVP’s influencing factors. Therefore, it 

is crucial to introduce machine learning techniques for a more profound 

understanding and comprehensive analysis of these factors. Assessing resident’s 

value perception poses several challenges such as data heterogeneity, nonlinear 
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relationships, and the multi-level nature of influencing factors. Simple questionnaire 

surveys and basic statistical analyses struggle to accurately capture and explain the 

intricate interactions between these factors [14]. Hence, constructing an effective and 

universal system along with a methodology for mining RVP’s influencing factors 

becomes essential. Machine learning emerges as a powerful tool for data analysis 

that can automatically identify patterns through algorithms while effectively 

predicting unknown data behavior [16]; thus uncovering hidden relationships 

between variables. Machine learning possesses robust capabilities in handling 

nonlinear relationships and exhibits adaptability to complex data structures, thereby 

significantly enhancing our understanding of the formation mechanisms underlying 

resident’s perception of value. 

Commonly employed techniques in the field of machine learning include 

Support Vector Machines (SVM), Decision Trees (DT), Artificial Neural Networks 

(ANN), and Light Gradient Boosting Machine (LightGBM). SVM and DT are 

algorithms that classify data by partitioning hyperplanes, showcasing remarkable 

computational efficiency [17,18]. However, when dealing with multidimensional 

complex indicator data, these algorithms exhibit certain limitations in handling 

nonlinear relationships and intricate high-dimensional data interactions, resulting in 

reduced robustness. ANN employs a multi-layered network structure to learn 

intricate relationships between inputs and outputs [19]. However, ANN algorithms 

typically require substantial training data to avoid overfitting and have stringent 

requirements for the quantity of training data as well as a strong reliance on factor 

independence. LightGBM enhances model prediction performance through gradient 

optimization but is susceptible to noise and outliers; moreover, its high model 

complexity may lead to overfitting [20]. These methods have constraints in 

elucidating the degree of influence exerted by independent variables on dependent 

variables, making them unsuitable for analyzing the influencing factors of RVP and 

their impact. Random Forest (RF), an ensemble learning method, improves 

prediction accuracy by constructing multiple decision trees and using voting 

mechanisms [21]. RF can effectively handle numerous features and classification 

problems while exhibiting high resilience towards noise and missing values. 

Additionally, RF evaluates model performance through Out-of-Bag (GINI-OOB) 

estimation, effectively mitigating the risk of overfitting. RF has been extensively 

applied across various domains such as finance [22], healthcare [23], climate change 

analysis [24], and image feature recognition [25] due to its broad applicability 

potential alongside practical value. 

The objective of this study is to propose an RF-based RVP assessment model 

and investigate the key factors influencing RVP. Firstly, the RVP indicator system 

was constructed using Wuhan as a case city. In order to quantitatively assess RVP, 

this paper employs a dynamic evaluation method called the Fuzzy Comprehensive 

Evaluation-Attribute Hierarchy Model (FCE-AHM), which is experimentally 

validated using data from the 2022 Wuhan Social Satisfaction Survey. By integrating 

qualitative and quantitative analysis, the FCE-AHM method accurately determines 

the weights of various indicators [26], thereby establishing a comprehensive RVP 

evaluation system. Moreover, this paper employs the GINI index and OOB error of 

RF to identify the significance of different indicators [27]. The GINI index can 
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pinpoint the most important variables for RVP, while the OOB error validates their 

actual contribution and performance in relation to RVP. Furthermore, coupling 

analysis using the Lagrange multiplier method allows for a deeper understanding of 

each variable’s role in shaping RVP. These methodologies have been successfully 

applied in urban planning [28], real estate, public policy, and consumer behavior 

research, offering novel perspectives and approaches to comprehending urban 

resident’s value perception. 

Wuhan, a pivotal city in central China and one of the pilot cities for the “urban 

physical examination” [29,30], has been chosen as the focal point of this study. The 

emphasis is on exploring the role of RVP in fostering urban sustainability. By 

examining resident’s satisfaction levels regarding essential urban services such as 

education, healthcare, transportation, and environmental protection, we can gain 

insights into how these services influence resident’s quality of life—a crucial aspect 

for effective urban management and policy formulation [31]. Through a 

comprehensive analysis of resident’s value perceptions, it becomes feasible to 

allocate urban resources more rationally [32]. Furthermore, investigating resident’s 

value perceptions contributes to enriching theoretical frameworks within fields like 

urban sociology and social psychology while providing novel perspectives for urban 

research. Ultimately, it equips urban planners, policymakers, and managers with 

practical tools and strategies to promote sustainable development in cities. 

The paper is structured as follows: The Section 2 delineates the indicator system 

for constructing RVP and discusses the key factors influencing RVP, providing a 

comprehensive analysis of the formation mechanism of RVP. Section 3 elaborates on 

the principles and formulas of the FCE-AHM comprehensive evaluation model and 

the GINI-OOB coupled factor mining model utilized in this study. Section 4 

analyzes prominent factors influencing RVP using 2022 survey data from Wuhan. In 

Section 5, feasible recommendations for enhancing the RVP in Wuhan City are 

provided based on the results of data analysis. Finally, Section 6 summarizes 

research findings and provides an outlook on future research directions regarding 

resident’s value perception. 

2. Materials and methods 

2.1. RVP index system construction 

In the context of rapid urbanization and economic development, there has often 

been a predominant focus on advancing the economy, while the well-being of the 

residents who are supposed to benefit from it is frequently overlooked [33]. 

Dempsey et al. [34] introduce a model of “Urban Social Sustainability”, which 

examines the relationship between economic development and resident’s well-being 

from a social perspective. Consequently, studying RVP becomes immensely 

important as it provides valuable insights into how residents perceive the benefits of 

urban development. From a social sustainability viewpoint, Xu et al. [35] examined 

the social well-being of urban residents from various dimensions, emphasizing social 

factors such as community cohesion, social inclusion, social equity, and quality of 

life. They also proposed the components of RVP, which include crucial aspects like 

ecological livability, health and comfort, and convenient transportation. These 
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factors collectively shape individual’s overall experience and satisfaction with their 

living environment. Understanding these elements fosters a more resident-centered 

approach to urban development, ensuring that growth aligns with the goal of 

improving the quality of life for city dwellers. Ecological livability encompasses 

fresh air, tree-lined streets, and abundant natural resources. Residents value the 

surrounding green spaces, water quality, and the health of ecosystems [36]. 

Ecologically livable communities not only benefit individual physical health but also 

contribute to an enhanced overall quality of life. Additionally, health and comfort are 

other critical components of RVP. A healthy and comfortable living environment 

considers factors such as housing structure, maintenance of community infrastructure 

[37], education [38], and elderly care [39], as these directly influence resident’s 

physical and psychological well-being. The availability of convenient transportation 

within a community enables residents to easily access their workplaces, commercial 

areas, and other key destinations, thereby improving the convenience of daily life. 

Convenient transportation includes the accessibility and quality of public transport 

services, road conditions, and pedestrian and cycling infrastructure [36]. A well-

developed transport network not only saves time and money but also enhances the 

overall accessibility of the community. To summarize, Table 1 provides a quantified 

indicator system for RVP. 

Table 1. RVP index system construction. 

Criterion layer Primary indicator Secondary indicator Reference 

Resident Value Perception (L) 

Ecologically livable (L1) 

Open space (L11) [37,40] 

Water-related ecosystem (L12) [41] 

Air pollution (L13) [36,42] 

Population density (L14) [40,43] 

Building height (L15) [44] 

Park accessibility (L16) [36] 

Noise pollution (L17) [36] 

Water pollution (L18) [45] 

Health and comfort (L2) 

Integrated community (L21) [38] 

Proximity marketing (L22) [37] 

Shopping mall (L23) [37] 

Senior dining services 

at communities (L24) 
[39] 

Universal preschool (L25) [38] 

Community health center (L26) [37] 

Community sports facilities (L27) [37] 

Community charging stations (L28) [46] 

Community infrastructure maintenance (L29) [37] 

Community event organization (L210) [37] 

Neighborhood relations (L211) [47] 

Housing quality and housing maintenance 

level (L212) 
[38] 

Renovation in old communities (L213) [48] 
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Table 1. (Continued). 

Criterion layer Primary indicator Secondary indicator Reference 

 Accessibility in transport (L3) 

Walkable environments (L31) [38,49] 

Cycling environment (L32) [49] 

Bus punctuality (L33) [49] 

Public transit transfer(L34) [38] 

Rail transit station area (L35) [37] 

Road traffic flow (L36) [49] 

Home parking convenience (L37) [49] 

Commuting time (L38) [38,49] 

2.2. RVP influence factor 

The RVP is influenced by various factors such as urban safety resilience, 

aesthetic characteristics of the cityscape, inclusiveness and diversity within the 

community fabric as well as cleanliness and orderliness in an urban setting along 

with its innovative vitality [16]. Urban safety resilience has a direct impact on 

resident’s sense of security and their overall quality of life. This includes aspects like 

emergency response systems within cities to tackle unforeseen situations or natural 

calamities along with ensuring adequate public safety facilities are available [33]. 

Moreover, cities that possess distinct aesthetic features have the potential to instill 

cultural pride among their inhabitants while also enhancing their overall image 

which further encourages active participation in this exceptional living environment 

[35]. Simultaneously, urban areas must accommodate residents from diverse cultures 

and backgrounds, fostering social integration and the coexistence of diversity [36]. 

Considering the needs of various groups in urban planning fosters a just and 

equitable social environment. The cleanliness and orderliness of cities form the 

foundation for human habitation. Sustaining the tidiness and organization of urban 

spaces can provide inhabitants with a habitable living environment [37]. Lastly, the 

innovation vitality of cities directly correlates with their economic development and 

resident’s quality of life. A city imbued with innovation vitality can attract the 

growth of high-tech industries and creative sectors [38], offering residents increased 

job opportunities as well as a richer array of cultural and entertainment activities, 

thereby promoting sustainable urban development. The summarized table illustrating 

factors influencing RVP is presented in Table 2. 

Table 2. RVP influence factor. 

Criterion layer Primary indicator Secondary indicator Reference 

RVP influence factor Urban safety resilience (K1) 

Public safety (K11) [50] 

Traffic order (K12) [50] 

Fire hazard safety (K13) [50] 

Emergency evacuation shelter (K14) [37,50] 

Hospital waiting times (K15) [50] 

Urban flooding (K16) [50] 

Responses to natural disasters (K17) [50] 
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Table 2. (Continued). 

RVP influence factor 

Urban safety resilience (K1) Safety accident management (K18) [50] 

Urban  

landscape character (K2) 

Landmark building (K21) [51] 

Cultural facility (K22) [51] 

Preservation of historic districts (K23) [52] 

Adaptive reuse and restoration of heritage buildings (K24)  [51,52] 

Tourist appeal (K25) [53] 

Urban diversity and inclusivity (K3) 

Housing price inequality (K31) [50,54,55] 

Rental affordability (K32) [54] 

Regulation and professional in the rental housing market (K33) [54] 

Levels of migrant-friendliness (K34) [56] 

Care for vulnerable groups (K35) [50,57] 

Minimum living standard guarantee (K36) [58] 

Affordable housing development (K37) [59] 

Shantytown and urban village regeneration (K38) [57] 

Occupancy of tactile paving (K39) [60] 

Ramp installation (K310) [61] 

Urban governance (K4) 

Community waste sorting (K41) [62] 

Property management (K42) [63] 

Street cleanliness (K43) [64] 

Manhole cover detection (K44) [65,66] 

Vertical pole management (K45) [67] 

Streetlight management and maintenance (K46) [68] 

Parking management (K47) [69] 

Management and installation of street signs (K48) [70] 

Emergency Planning for water and Power Outages (K49) [71,72] 

Urban innovation vitality (K5) 

Attracting talent (K51) [73] 

Employment opportunities (K52) [74] 

Market environment (K53) [75] 

Technological innovation (K54) [76] 

Attracted young adults (K55) [73] 

Inclusive finance (K56) [75] 

2.3. RVP mechanism analysis 

RVP includes three main dimensions: ecological livability, health and comfort, 

and convenient transportation. These dimensions are influenced by various indicators 

such as urban innovation vitality, cleanliness, and orderliness, as well as safety 

resilience. A schematic diagram that illustrates the mechanism of influence is 

presented in Figure 1. 
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Figure 1. RVP mechanism. 

i. The assessment of a city’s ecological environment should consider the direct 

influence of its innovation vitality [77]. Cities with high levels of innovation 

vitality are more likely to adopt green technologies and sustainable 

development strategies, thereby promoting environmental protection and 

ecological balance. Additionally, the cleanliness and orderliness of a city serve 

as indicators of its proficiency in urban management and planning, exerting 

positive influences on ecological livability [78]. A clean and well-organized 

environment contributes to the enhancement of air and water quality, thereby 

fostering a more robust ecological milieu. Simultaneously, cities equipped with 

safety resilience are better equipped to withstand natural disasters and 

environmental fluctuations, thus bolstering ecosystem stability. The 

incorporation of green infrastructure and the establishment of ecological buffer 

zones within urban areas can augment ecological resilience while mitigating 

disaster risks. 

ii. The vitality of urban innovation has a profound impact on urban planning and 

healthcare services, promoting health and well-being [79]. Innovative medical 

technology and healthcare services have the potential to enhance the quality of 

life for urban residents. A clean and organized urban environment plays a 

crucial role in preventing environmental pollution, mitigating the adverse 

effects of air and water pollution on resident’s health, thereby creating a more 

comfortable living space [80]. Safety-resilient cities are better equipped to 

respond effectively to emergency medical situations and public health crises, 

fostering resident’s sense of security in an urban setting. 
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iii. Urban innovation drives the advancement of transportation technology and 

intelligent transportation systems, thereby enhancing transportation efficiency 

and convenience [79]. Furthermore, the cleanliness and orderliness of a city 

directly impact the seamless functioning of its transportation system [81]. 

Effective urban planning and road management can alleviate traffic congestion 

and improve transportation convenience. Cities that prioritize safety resilience 

are better equipped to address transportation challenges and emergencies, 

consequently reducing traffic accidents. 

3. Methodology 

The objective of this article is to develop a predictive model for the RVP index. 

Firstly, prior to constructing the model, we conducted a survey to ascertain resident’s 

perception of the relative importance of various value indicators, thereby 

establishing an evaluation index system for the RVP index. Secondly, we employed 

the AHM method which calculates indicator weights based on their hierarchical 

relationships [82]. Subsequently, we utilized the fuzzy comprehensive evaluation 

method to aggregate the weighted scores of each indicator and derive the final RVP 

index. Furthermore, after reviewing relevant literature and data, factors influencing 

RVP were identified and assessed using the GINI-OOB methodology. In this study, 

Wuhan will be used as the primary research subject. The scoring opinions in the 

urban health evaluation are inherently vague due to the use of an estimation system, 

classifying the data as fuzzy. Therefore, employing the FCE method effectively 

mitigates the challenges posed by such fuzzy data. The evaluation process is twofold, 

requiring consideration of both resident’s subjective perceptions and the influence of 

objective information entropy. Additionally, the GINI-OOB method is adopted 

because traditional regression algorithms struggle to explain the impact of 

multidimensional factors on RVP. In contrast, deep learning offers a robust ability to 

uncover the intrinsic relationships and associations between data. The entire 

framework is illustrated in Figure 2. 

 

Figure 2. RVP computational frameworks. 
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3.1. FCE-AHM method 

The fuzzy comprehensive evaluation method is a mathematical approach used 

to handle fuzzy information and multi-factor decision-making. Its main principle is 

based on fuzzy set theory, integrating various fuzzy factors, information, and weights 

to support decision-making [83]. The advantages of FCE include its effectiveness in 

dealing with incomplete information and fuzziness, allowing uncertain factors to be 

included in decision analysis. It can also comprehensively consider multiple factors 

and information sources, providing more comprehensive decision results. 

The steps of FCE are as follows: 

Step 1: Establish a multi-level evaluation indicator structure 

Firstly, it is imperative to identify the factors that influence RVP and establish a 

comprehensive set of relevant variables. Constructing a rational evaluation indicator 

system constitutes a pivotal step in developing the RVP framework. This indicator 

system typically encompasses three layers: the goal layer, the criterion layer, and 

indicator layer. Assuming we designate the evaluation indicator system for RVP as 

K, each constituent of K signifies a factor that exerts an impact on RVP, as shown in 

Equations (1) and (2). 

𝐾 = {𝐾1 , 𝐾2, . . . , 𝐾𝑛} (1) 

𝐾𝑛 = {𝑘𝑛1, 𝑘𝑛2, . . . , 𝑘𝑛𝑚} (2) 

The indicator system referred to as K in this section, influences RVP. 

𝐾1 , 𝐾2, . . . , 𝐾𝑛  represents the factors within set K that impact the standard layer, while 

representing the factors within the standard Kn that affect the index layer. The initial 

part of this section establishes the indicator system. 

Step 2: Determine evaluation criteria and levels 

The second step involves creating an annotation set that encompasses 

descriptions of diverse potential evaluation outcomes for the object under evaluation. 

The annotation set L can be represented by the Equation (3). It is presumed that there 

are m factors capable of influencing the assessment results. 

𝐿 = {𝑙1, 𝑙2, . . . , 𝑙𝑚} (3) 

In this section, 𝑙𝑖(𝑖 = 1,2, . . . , 𝑚) represents the possible evaluation results. 

Step 3: Calculate indicator weights 

Balancing the importance of different indicators is a crucial step in evaluating 

the RVP index. The allocation of weights essentially reflects the relative significance 

of each indicator and directly impacts the evaluation outcomes. This study employs 

the AHM to determine the weights assigned to each indicator within the indicator 

system. AHM inherits the advantages of the Analytic Hierarchy Process (AHP), 

while offering simplicity and convenience in terms of calculation and application 

compared to AHP [84]. AHM eliminates the need for computing eigenvectors or 

consistency checks, thereby avoiding extensive calculations, making it widely 

applicable across various decision-making scenarios. 

Considering that most indicators influencing RVP are qualitative and cannot be 

directly quantified, it is necessary to transform them into measurable indicators for 

assessment purposes. Following the established RVP evaluation indicator system, let 
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P denote the comprehensive evaluation objective of RVP; K denotes a set consisting 

of primary evaluation indicators referred to as 𝐾 = {𝐾1, 𝐾2 , . . . , 𝐾𝑛}; Kn denotes a set 

consisting of secondary evaluation indicators referred to as 𝐾𝑛 =

{𝑘𝑛1 , 𝑘𝑛2 , . . . , 𝑘𝑛𝑚}. 

In the AHM method, the primary task in establishing the attribute judgment 

matrix is to determine the relative importance levels among various evaluation 

indicators. Table 3 presents a specific scale and its corresponding meanings, using 

the Saaty scale as a reference. 

Table 3. Saaty scale. 

Importance level 𝒂𝒊𝒋 scale value 

Factors i and j are equally important. 1 

Factor i is slightly more important than factor j. 3 

Factor i is moderately more important than factor j. 5 

Factor i is significantly more important than factor j. 7 

Factor i is extremely more important than factor j. 9 

Factor i is slightly less important than factor j. 1/3 

Factor i is moderately less important than factor j. 1/5 

Factor i is significantly less important than factor j. 1/7 

Factor i is extremely less important than factor j. 1/9 

Equally important between adjacent scale values. 2, 4, 6, 8 

Equally unimportant between adjacent scale values. 1/2, 1/4, 1/6, 1/8 

For a scenario with n factors, according to the Saaty scale and expert scoring 

method, a judgment matrix of order n can be generated, denoted as matrix 𝐴 =

(𝑎𝑖𝑗)𝑛×𝑛. In this matrix, aij represents the importance value of factor i relative to 

factor j in achieving a specific goal. The comparison judgment matrix A should 

satisfy Equation (4): 

{
 

 
𝑎𝑖𝑗 > 0

𝑎𝑖𝑖 = 1
𝑎𝑗𝑖 = 1/𝑎𝑖𝑗
𝑖 ≠ 𝑗, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛

 (4) 

According to the AHM method, a matrix P of order n, called the attribute judg-

ment matrix, can be constructed, composed of relative attributes pij. These relative a-

ttributes pij can be determined by the values of scale aij, with the specific conversion 

formula detailed in calculation Equation (5). 

𝑝𝑖𝑗 =

{
  
 

  
 

2𝑘

2𝑘 + 1
, 𝑎𝑖𝑗 = 𝑘, 𝑖 ≠ 𝑗

1

2𝑘 + 1
, 𝑎𝑖𝑗 =

1

𝑘
, 𝑖 ≠ 𝑗

0.5, 𝑎𝑖𝑗 = 1, 𝑖 ≠ 𝑗

0, 𝑎𝑖𝑗 = 1, 𝑖 = 𝑗

 (5) 

In Equation (5), k is a positive integer greater than or equal to 2. Based on the a-

bove, the attribute judgment matrix P can be determined. 
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The relative attribute weights are represented as in Equation (6): 

𝑊𝐾𝑖
′ =

2

𝑛(𝑛 − 1)
∑𝑝𝑖𝑗 , 𝑖 = 1,2, . . . , 𝑛

𝑛

𝑗=1

 (6) 

The value of n in Equation (6) represents the number of sub-indicators that fall 

under the same parent indicator. Once the weights for each relative attribute are 

determined, it becomes possible to calculate composite weights. 

𝑊𝐴𝐻𝑀 =𝑊𝐵𝐴𝑖𝑗
′ ×𝑊𝐶𝐵𝑖𝑗

′  (7) 

In Equation (7),𝑊𝐴𝐻𝑀 represents the relative weights of each factor with respect 

to the target P in the secondary indicators Ki, while𝑊𝐵𝐴
′ represents the relative 

weights of each factor with respect to the target P in the primary indicators 

K.𝑊𝐶𝐵
′ denotes the relative weights of each factor with respect to the primary 

indicators K in relation to the secondary indicators Ki. 

Step 4: Determine the fuzzy evaluation matrix 

The relationship between evaluation indicators and evaluation sets is 

represented by the degree of membership, which can be defined as the proportion of 

experts who assign a specific RVP index score to the total number of experts. 

Assuming there is a sub-evaluation qij between ki and li, the evaluation result for ki 

can be expressed as Equation (8): 

𝑄𝑖 = {𝑞𝑖1, 𝑞𝑖2, . . . , 𝑞𝑖𝑛} (8) 

The fuzzy evaluation Matrix (9) can be derived by calculating the assessment 

results for each indicator based on the evaluation indicator system and criteria, where 

Qi represents the assessment outcome of factor Ki. 

𝑄 = [

𝑄1
𝑄2
⋮
𝑄𝑛

] = [

𝑞11 𝑞12 … 𝑞1𝑘
𝑞21 𝑞22 … 𝑞2𝑘
⋮
𝑞𝑛1

⋮
𝑞𝑛2

⋮
…

⋮
𝑞𝑛𝑘

] (9) 

Step 5: Calculate the comprehensive assessment score 

According to Equation (9), the weight vector and fuzzy evaluation matrix can 

be combined for result calculation. Once continuous evaluation results are obtained 

from both the indicator layer and standard layer, an overall perception index 

evaluation vector H can be generated. H can be expressed as Equation (10). To 

derive the final perception index evaluation value, it is necessary to aggregate and 

integrate the fuzzy vectors by applying a weighted average based on membership. 

H = 𝑊𝐴𝐻𝑀 × 𝑄 = (𝑤𝐴𝐻𝑀1,𝑤𝐴𝐻𝑀2,… ,𝑤𝐴𝐻𝑀𝑛) × [

𝑞11 𝑞12 … 𝑞1𝑘
𝑞21 𝑞22 … 𝑞2𝑘
⋮
𝑞𝑛1

⋮
𝑞𝑛2

⋮
…

⋮
𝑞𝑛𝑘

]

= (ℎ1, ℎ2, … , ℎ𝑘)
𝜕𝑦

𝜕𝑥

 

(10) 

𝐶 = 𝐻 × 𝐿𝑇  (11) 

In Equation (11), C denotes the ultimate RVP index. 
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3.2. GINI-OOB-RF method 

3.2.1. RF method 

RF is an ensemble learning method that constructs multiple decision trees and 

integrates them into a robust model, offering efficient classification and regression 

capabilities, as well as evaluating feature importance [85]. The principle of RF relies 

on the ensemble of decision trees, where the optimal split at each node is determined 

by randomly sampling training data and features. Ultimately, a comprehensive 

decision is made through voting or averaging. This inherent randomness mitigates 

over fitting risks while enhancing the generalization ability of the model. In the 

schematic diagram, multiple decision trees are built in parallel, and the final 

prediction result is obtained through voting or averaging, exemplifying the concept 

of ensemble in RF. The randomness within each decision tree manifests itself in 

bootstrapping sampling of training samples and features to improve overall model 

robustness. The workflow of RF is shown in Figure 3. 

 

Figure 3. RF flow chart. 

3.2.2. GINI method 

The GINI index is incorporated into decision tree algorithms, specifically the 

Classification and Regression Trees (CART) algorithm, in the field of machine 

learning. Within the context of decision trees, the GINI index serves as a metric for 

assessing dataset purity by evaluating class distribution among samples [85]. During 

decision tree construction, features are selected based on their ability to minimize the 

GINI index for node splitting, thereby generating a tree model with superior 

generalization performance. 

The GINI index is utilized during the process of node splitting in decision trees 

to assess the splitting capability of each feature. Features with lower GINI index 

values are selected for splitting in order to enhance the purity of the child nodes. 

Additionally, the GINI index guides the growth process of decision trees by 
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determining how to partition the dataset at each node until meeting the stopping 

criteria. 

Utilizing Variable Importance Measures (VIM) to quantify the significance of 

variables, the GINI index is denoted as GI. Assuming there are K features 

𝑀1 , 𝑀2, 𝑀3 , . . . , 𝑀𝐾, T decision trees, and A categories, we now need to compute the 

GINI index scores 𝑉𝐼𝑀𝐾
(𝐺𝑖𝑛𝑖)

 for each feature MK. 

𝐺𝐼𝑦
(𝑖) =∑∑ 𝑥𝑦𝑎

(𝑖)

𝑎′≠𝑎

|𝐴|

𝑎=1

𝑥𝑦𝑎′
(𝑖) = 1 −∑(𝑥𝑦𝑎

(𝑖))
2

|𝐴|

𝑎=1

𝑥 ∈ 𝑅 (12) 

The number of categories represented by A in Equation (12). Additionally, xya 

denotes the proportion of category a within node y. The significance of feature MK at 

node y in the i-th tree, referring to the change in GINI index before and after 

branching at node y, can be quantified as follows: 

𝑉𝐼𝑀𝑘𝑦
(𝐺𝑖𝑛𝑖)(𝑖) = 𝐺𝐼𝑦

(𝑖) −𝐺𝐼𝑠
(𝑖) − 𝐺𝐼𝑡

(𝑖) (13) 

The GINI indices of the two new nodes after branching are denoted 

as𝐺𝐼𝑠
(𝑖)

and𝐺𝐼𝑡
(𝑖)

in Equation (13).  

The importance of feature MK in the i-th tree, which occurs in the set of nodes 

Y. The calculation is presented in Equations (14)–(16). 

𝑉𝐼𝑀𝑦
(𝐺𝑖𝑛𝑖)(𝑖) =∑𝑉𝐼𝑀𝑦𝑎

(𝐺𝑖𝑛𝑖)(𝑖)

𝑦∈𝑌

 (14) 

Assuming there are I trees in the RF, then 

𝑉𝐼𝑀𝑦
(𝐺𝑖𝑛𝑖)(𝑖) =∑𝑉𝐼𝑀𝑦

(𝐺𝑖𝑛𝑖)(𝑖)

𝐼

𝑖=1

 (15) 

Finally, standardize all the obtained importance scores. 

𝑉𝐼𝑀𝑌
(𝐺𝑖𝑛𝑖) =

𝑉𝐼𝑀𝑦
(𝐺𝑖𝑛𝑖)

∑ 𝑉𝐼𝑀𝑦′
(𝐺𝑖𝑛𝑖)𝑦

𝑦′=1

 (16) 

3.2.3. OOB method 

In a RF, multiple decision trees are created using a bootstrapping method with 

replacement. Each sampling generates a bootstrap sample, and due to the inherent 

nature of replacement, certain training samples may not be selected in a specific 

sampling iteration, resulting in the formation of OOB data [86]. 

The performance of the RF model can be evaluated using OOB samples. These 

samples were not used in constructing a specific decision tree, so they serve as a 

validation set to estimate the generalization performance of the model without 

needing an additional validation set [87]. Furthermore, OOB data allows for 

assessing feature importance by observing their contribution to splits during each 

decision tree construction process. This helps estimate which features contribute 

most significantly to the overall model performance. By utilizing OOB data for 

model evaluation, it becomes possible to detect whether the model is overfitting to 

the training data. 
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The decision trees in the RF use training samples to construct the tree and 

evaluate the OOB prediction error rate. Afterwards, observations of variable MK are 

randomly permuted, resulting in a rebuilt tree and calculation of the permuted OOB 

prediction error rate. Finally, the difference between these two OOB error rates is 

standardized and computed as permutation importance for variable MK. This process 

is repeated across all trees to obtain comprehensive permutation importance for 

variable MK. 

Ultimately, averaging across all trees provides the overall permutation 

importance 𝑉𝐼𝑀𝑌
(𝑂𝑂𝐵)

 for variable MK in the x-th tree of the RF as shown in Equation 

(17). 

𝑉𝐼𝑀𝑦
(𝑂𝑂𝐵)

=
∑

𝑠=1
𝑛𝑠
′

𝑂(𝑇𝑠 = 𝑇𝑠
𝑥)

𝑛𝑥
−
∑

𝑠=1
𝑛𝑠
′

𝑂(𝑇𝑠 = 𝑇𝑠,𝜋𝑦
𝑥 )

𝑛𝑥
 

(17) 

where nx represents the number of samples in the OOB data for the x-th tree, O(x) is 

an indicator function that takes a value of 1 if two values are equal and 0 otherwise. 

𝑇𝑠
𝑥 ∈ {0,1}denotes the true value of the s-th sample, 𝑇𝑠

𝑥 ∈ {0,1}  represents the 

prediction of the s-th sample by the x-th tree before random permutation, and 

𝑇𝑠,𝜋𝑦
𝑥 ∈ {0,1} signifies the prediction after random permutation. If variable y does 

not appear in tree x, it is denoted as 𝑉𝐼𝑀𝑗
(𝑂𝑂𝐵)

= 0. 

The permutation importance 𝑉𝐼𝑀𝑌
(𝑂𝑂𝐵)

 of variable MK in a RF is defined as 

illustrated by Equation (18). The variable k represents the number of classification 

trees included in a RF. 

𝑉𝐼𝑀𝑌
(𝑂𝑂𝐵)

=
∑ 𝑉𝐼𝑀𝑥𝑦

(𝑂𝑂𝐵)𝑛
𝑥=1

𝑘
 (18) 

3.2.4. Lagrange multiplier method 

The Lagrange multiplier method can incorporate multiple constraints into the 

objective function to comprehensively consider each constraint [4]. After calculating 

the GINI and OOB indices for each variable, the GINI and OOB indices are used as 

constraints. The Lagrange multiplier method is employed to couple the GINI and 

OOB indices and integrate them into the variable importance evaluation system to 

further optimize the degree of variable influence. The decoupled importance is 

finally obtained as shown in Equation (19). 

𝑉𝐼𝑀𝑥 =
(𝑉𝐼𝑀𝑦

(𝑂𝑂𝐵)
𝑉𝐼𝑀𝑦

(𝐺𝑖𝑛𝑖))
0.5

∑ (𝑉𝐼𝑀𝑦
(𝑂𝑂𝐵)

, 𝑉𝐼𝑀𝑦
(𝐺𝑖𝑛𝑖))

0.5
𝑛
𝑥=1

 (19) 

The influence of variables on the perception system of Wuhan’s urban living 

environment can be determined using different evaluation indicators. 
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3.3. Setting of inspection criteria 

In order to comprehensively evaluate the performance of the RVP system, this 

study employs three regression evaluation indicators: Mean Absolute Error (MAE), 

Coefficient of Determination (R2), and Mean Absolute Percentage Error (MAPE). 

Statistical errors serve as a common method for assessing model prediction 

characteristics [88]. Without them, accurate measurement of the model’s predictive 

capability would be impossible. Neglecting indicator testing when applying the 

model directly for practical applications may lead to failure in meeting prediction 

requirements [89]. Moreover, it would hinder comparisons with other model's 

performance, making it challenging to identify further directions for improvement 

and optimization. The formulas for evaluating these indicators are provided in 

Equations (20)–(22). 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑌𝑖 − 𝑃𝑖)

𝑁

𝑖=1

2

 (20) 

𝑅2 = 1−
∑ (𝑌𝑖 − 𝑃𝑖)
𝑁
𝑖=1

2

∑ (𝑌𝑖 − 𝑌𝑖)
𝑁
𝑖=1

2 (21) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑|

𝑌𝑖 − 𝑃𝑖
𝑌𝑖

|

𝑁

𝑖=1

× 100% (22) 

In Equations (20)–(22), Yi and Pi respectively represent the observed values and 

predicted values. 

The mean squared error (MSE) calculates the absolute value of the square 

difference between predicted and actual values, indicating a smaller MSE when the 

model’s predictions are closer to the actual values. R² represents the ratio of 

regression sum of squares to total sum of squares, with an approaching value of 1 

indicating effective explanation for target variable variability. The mean absolute 

percentage error (MAPE) measures average absolute percentage errors between true 

and predicted values, where a larger MAPE signifies greater error. 

4. Results 

4.1. Study area 

The city of Wuhan (latitude 29°58′–31°22′ N, longitude 113°41′–115°05′ E) is 

the capital of Hubei Province in China and strategically located at the confluence of 

the Yangtze and Han rivers. It serves as a pivotal hub for politics, economy, culture, 

finance, and transportation within Hubei Province. Benefiting from its unique 

geographical advantage, Wuhan occupies a central position in China where nine 

provinces intersect. The historical roots of Wuhan can be traced back to the early to 

middle Neolithic period approximately 8000 to 6000 years ago when human 

settlements flourished amidst an intricate network of waterways [30]. 
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As the capital and mega-city of Hubei Province, Wuhan holds the status of a 

sub-provincial city, occupying a distinctive position in central China. Designated as 

a 'central center city’ by the country, Wuhan is presented with abundant 

opportunities and prospects for its urban development [90]. As of 2022, the city’s 

permanent resident’s population reached 13.739 million, influenced by various 

factors such as its economy, culture, and education. 

As the capital of Hubei Province, Wuhan exemplifies and represents the urban 

development status of the central region. Moreover, it has undergone rapid 

urbanization and economic transformation, grappling with similar challenges faced 

by other major cities such as traffic congestion and environmental pollution [90]. As 

one of China’s major megacities, Wuhan has a high population density, leading to 

traffic congestion, housing shortages, and unequal distribution of public services, all 

of which negatively impact resident’s quality of life and well-being. Although 

Wuhan has made progress in environmental governance, some areas still suffer from 

air pollution and declining water quality, affecting the comfort of living. 

Additionally, the uneven development of urban infrastructure, particularly the 

inadequate supply of educational and medical resources in new areas, further 

hampers the living experience of residents [29]. Therefore, studying Wuhan’s RVP 

can provide valuable insights into urban resident’s attitudes and perspectives when 

confronted with significant challenges. The surveyed sample area is depicted in 

Figure 4. 

 

Figure 4. Geographical location of Wuhan City. 

4.2. Data compilation 

The data used in this study was obtained from the 2022 Urban Health Survey 

conducted in Wuhan. Three aspects of the questionnaire, namely ecological 

livability, health comfort, and transportation convenience, were selected based on 

constructed indicators. Residents of Wuhan provided ratings for 67 indicators on a 
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scale ranging from 0 to 100, with higher scores indicating a greater perceived 

importance of the indicator. A total of 13,015 data points were initially collected, and 

after removing samples with missing values, 6976 valid data points remained. The 

findings are presented in Figures 5 and 6 where the horizontal axis represents the 

indicators and different colors denote resident’s satisfaction scores for each 

indicator. 

 

Figure 5. Statistics of RVP indicator scores. 

 

Figure 6. Statistical scoring of RVP indicator’s impact factor. 

The data reveals that the majority of indicators achieved scores of 80 or above, 

indicating a high level of overall satisfaction among Wuhan residents with these 

indicators. However, out of the 59 indicators examined, four received acceptability 

scores below 60: population density, building height, urban housing prices, and 

rents. This suggests that Wuhan’s large population and elevated housing prices may 

contribute to a diminished quality of life and increased living stress. Furthermore, 

there were nine indicators with scores of zero; notably, elderly dining halls were 
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rated as zero by 349 respondents which highlights the inadequate provision of such 

facilities in certain areas of Wuhan. 

4.2. RVP calculation 

4.2.1. Calculation of AHM weights 

Table 4. RVP Indicator weights. 

Primary 

indicator 
WBA Secondary indicator WCB WAHM 

L1 0.1429 

L11 0.1558 0.0223 

L12 0.0602 0.0086 

L13 0.0329 0.0047 

L14 0.1558 0.0223 

L15 0.1558 0.0223 

L16 0.0524 0.0075 

L17 0.3269 0.0467 

L18 0.0602 0.0086 

L2 0.4286 

L21 0.2012 0.0862 

L22 0.0846 0.0362 

L23 0.0846 0.0362 

L24 0.0433 0.0185 

L25 0.0365 0.0157 

L26 0.0957 0.0410 

L27 0.0336 0.0144 

L28 0.0309 0.0132 

L29 0.0336 0.0144 

L210 0.0309 0.0132 

L211 0.0309 0.0132 

L212 0.1950 0.0836 

L213 0.0993 0.0426 

L3 0.4286 

L31 0.1574 0.0675 

L32 0.1574 0.0675 

L33 0.0565 0.0242 

L34 0.0565 0.0242 

L35 0.0691 0.0296 

L36 0.1806 0.0774 

L37 0.0525 0.0225 

L38 0.2701 0.1157 

To ensure the precise and realistic determination of indicator weights, we 

conducted interviews with a panel of 13 experts, including 7 professionals from the 

Urban Planning Bureau and 6 academic experts. These individuals possess extensive 

experience exceeding a decade in urban planning, community services, infrastructure 

development, and urban environmental protection within Wuhan. By consulting 
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these aforementioned experts, an AHM weight matrix for the RVP independent 

indicators was formulated. The final calculation results for each independent 

variable’s weight are presented in Table 4. 

4.2.2. Quantify RVP 

In the Python environment, we integrated the scoring results of various 

indicators in RVP to derive comprehensive scores for four main dimensions: 

Ecological livability (L1), Health and comfort (L2), Transport accessibility (L3), and 

the overall RVP scoring index. A higher index value indicates better performance in 

a specific indicator, leading to a higher comprehensive evaluation. This approach 

allows for comparability among different indicators, facilitating comprehensive 

evaluation and comparative analysis. These scores provide a holistic understanding 

of regional conditions and serve as a scientific basis for development planning. The 

specific results are illustrated in Figure 7. 

 

Figure 7. RVP index. 

The comprehensive evaluation reveals that the average RVP index of Wuhan 

City is 0.666, indicating a relatively high overall satisfaction among residents with 

their living environment. Among the three sub-indicators, the average value of L1 is 

0.657, slightly lower than the overall RVP index, suggesting that although Wuhan 

City has made certain achievements in ecological construction, there is still room for 

improvement to further enhance resident’s perception of ecological livability. The 

performance of indicators L2 and L3 stands out remarkably well, with average values 

of 0.795 and 0.767 respectively. It is worth noting that the box plots for these two 

indicators demonstrate an upper quartile coinciding with the maximum value of 1, 

indicating a higher proportion of evaluations reaching an index score of 1 in the 

survey. This data not only reflects significant accomplishments by Wuhan City in 

providing a healthy and comfortable living environment as well as convenient 

transportation services but also showcases citizen’s exceedingly high satisfaction in 

these two aspects. 
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In conclusion, Wuhan City’s efforts to improve urban health comfort and 

transportation convenience have been widely acknowledged by its citizens. 

However, to achieve more balanced and harmonious development, it is imperative 

for Wuhan City to strengthen ecological construction and environmental 

enhancement measures to further enhance resident’s quality of life. 

4.3. GINI-OOB method 

In this study, the RF algorithm was utilized to train and analyze the structure by 

adjusting parameters based on MSE and R2. For feature selection, we employed the 

GINI index to determine the optimal split point of features. The GINI index is 

obtained by calculating the complement of the sum of squares of class sample 

proportions in the current node’s sample set. Additionally, each tree’s MSE was 

calculated using out-of-bag data, and an overall OOB error for RF was obtained by 

taking a weighted average of all tree’s errors. Furthermore, we integrated the GINI 

index with OOB error using Lagrange multipliers to form GO metric. The results 

corresponding to each indicator are presented in Figure 8a–c, while those related to 

RVP are shown in Figure 8d. Through this coupling method, we can incorporate 

trends from GO metric and mitigate extreme data point’s influence on data 

importance. The training results demonstrated that our model achieved a minimal 

MSE value approaching zero and a maximum R2 value approaching 1. Specifically, 

our model attained an overall accuracy exceeding 0.9312 for R2 while maintaining 

MSE below 0.0018. 

 

(a) Ecologically livable. 
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(b) Health and comfort. 

 

(c) Accessibility in transport. 

 
(d) Resident value perception. 

Figure 8. Degree of influence of each indicator. 

The impact of each indicator on Ecologically livable (L1) is illustrated in Figure 

8a, categorized into three ranges: 0~0.015 represents low impact; 0.015~0.060 
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indicates moderate impact, and values above 0.060 are considered high impact. 

Among all indicators, Employment opportunities (K34) exhibit the most significant 

influence. Regions with abundant job opportunities tend to attract more residents, 

thereby driving economic development and social progress. Simultaneously, the 

distribution of job opportunities closely relates to urban planning and construction, 

emphasizing the importance of considering industrial development and employment 

markets [91]. Notably, the waiting time for outpatient services at Hospital waiting 

times (K5), Housing price inequality (K14), and Regulation and professional in the 

rental housing market (K16) also demonstrate considerable impacts. Analysis reveals 

that regions providing convenient medical services, reasonable housing prices, and a 

standardized rental market can greatly enhance their ecological livability. Lastly, 

Safety accident management (K8) have the lowest degree of impact; however, this 

does not imply that they do not affect ecological livability but rather suggests a 

relatively low occurrence rate or less attention from individuals towards safety 

accidents in the studied area. Nonetheless, safeguarding people’s lives and property 

remains an important responsibility for governments and society. 

The impact of each indicator on Health and comfort (L2) is generally higher 

than that on L1 and L2, as shown in Figure 8b. This suggests that when assessing the 

overall livability of Wuhan City, health and comfort may hold greater significance 

compared to other factors. Notably, Vertical pole management (K28) exerts a 

substantial influence on the level of health and comfort due to its ability to enhance 

the city’s aesthetics, reduce visual pollution, and directly affect resident’s physical 

and mental well-being [92]. Therefore, urban managers should prioritize the 

cleanliness and management of street skylines during urban infrastructure planning 

and maintenance. Additionally, Emergency evacuation shelter (K4), Community 

waste sorting (K24), and Property management (K25) have a moderate impact on 

health and comfort. These indicators possess intricate relationships with health and 

comfort. For instance, emergency shelters provide safety assurance during 

emergencies while effective waste sorting practices along with good property 

management contribute to creating a clean and orderly living environment—crucial 

components for resident’s healthiness and quality of life. The remaining indicators 

exhibit similar impacts on healthiness and comfort which implies that comprehensive 

balance should be achieved by considering multiple aspects when evaluating the 

healthiness and comfort of an area. 

The results depicted in Figure 8c demonstrate that the factors exerting the most 

significant influence on Accessibility in transport (L3) have a greater impact 

compared to those influencing L1 and L2, suggesting that residents perceive a 

convenient and efficient transportation system as having a more direct and 

substantial effect on their daily lives. Regarding transportation convenience in 

Wuhan, apart from Parking management (K30), the effects of other indicators are 

generally similar. Effective management of motor vehicle and non-motorized vehicle 

parking can effectively alleviate traffic congestion and enhance road utilization 

efficiency, thereby directly enhancing resident’s travel convenience. Furthermore, K5 

and Ramp installation (K23) also exhibit notable impacts relative to other indicators. 

Comprehensive hospitals are typically situated in city centers or areas with high 

traffic volumes, attracting numerous patients, visitors, and medical staff who 
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frequently commute to these facilities. Prolonged waiting times for hospital visits 

result in increased concentration of people and vehicles near hospitals, consequently 

impeding traffic flow smoothness. The strategic placement of curb ramps at 

intersections and crosswalks plays an essential role in managing traffic flow by 

mitigating conflicts between pedestrians/non-motorized vehicles and motor vehicles 

[93]. 

The trends depicted in Figure 8a–c are integrated in Figure 8d to present a 

comprehensive overview of the impact of each indicator on resident’s perception of 

value. Among these indicators, K5, K14, and K30 exhibit the highest level of influence 

as evidenced by their combined GINI-OOB index of 0.4914. Notably, among them, 

parking management (K30) has the most significant impact. The analysis reveals that 

residents hold exceedingly high expectations regarding convenience and quality of 

life in their daily routines. Specifically, an excessively long wait time for 

appointments not only results in congestion and higher noise levels in the waiting 

area which adversely affect patient’s recovery but also directly impacts the perceived 

value of urban residents [94]. Additionally, high-density residential areas caused by 

overcrowding often experience elevated noise levels due to a dense population and 

heavy traffic which further influences resident’s perceived value [95]. Poor parking 

management can lead to traffic congestion and frequent vehicle honking thereby 

increasing traffic noise and diminishing resident’s quality of life [96]. Therefore, it is 

crucial to prioritize augmenting healthcare resources and optimizing hospital 

processes for reducing appointment waiting times; implementing housing subsidies 

along with market regulations for ensuring affordable house prices; and constructing 

additional parking facilities while promoting public transportation options as a 

means to alleviate parking difficulties. The individual impacts of other indicators 

may be relatively small, but they can still play a significant role in specific groups or 

circumstances that should not be overlooked. The average impact level across all 

indicators is 0.026, suggesting that while their individual effects may be limited on 

their own merits, their cumulative effect should not be disregarded. Therefore, it 

remains crucial to comprehensively enhance urban services and living environments, 

including improvements in acoustic surroundings, in order to effectively improve 

resident’s quality of life and strengthen their sense of belonging with the city. 

5. Discussions 

Combining Figure 8a, it is evident that K34 exerts a significant influence. The 

presence of ample employment opportunities not only attracts population migration 

but also enhances the ecological livability of the region, thereby promoting economic 

and social development. Moreover, K5, K14, and K16 are key factors that reflect the 

crucial impact of accessible medical services, reasonable housing prices, and a 

regulated housing market on ecological livability. This finding aligns with the 

research results of Nikoofam et al. [97], underscoring the importance of these aspects 

in urban planning and policy-making for improving urban ecological livability. 

Given their substantial impact, prioritizing these issues will establish a solid 

foundation for enhancing ecological livability while simultaneously improving 

overall living standards for residents. Therefore, it is imperative to prioritize job 
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market development in urban planning by creating more employment opportunities. 

Simultaneously, city managers should strive to enhance healthcare service systems to 

reduce waiting times for medical visits while ensuring reasonable housing prices and 

maintaining a regulated housing market. 

The results depicted in Figure 8b demonstrate that the key determinants 

influencing health comfort include K28, K4, K24, and K25. These factors represent the 

significant impact of urban management and infrastructure development on 

resident’s well-being. A meticulous analysis of Figure 8b reveals that these factors 

have a significant influence on health comfort across multiple dimensions. For 

example, proficient management of street aerial landscapes can enhance the city’s 

aesthetics, reduce visual pollution, and directly affect resident’s physical and mental 

health as well as their satisfaction with living conditions. Furthermore, providing 

emergency shelters ensures safety during unforeseen circumstances while efficient 

waste sorting and exemplary property management promote a clean and orderly 

living environment—all essential components contributing to resident’s health and 

quality of life. On the other hand, the remaining factors have relatively minor effects 

on health comfort signifying that when evaluating the level of health comfort in an 

area, comprehensive balanced development requires consideration of multiple 

aspects. Therefore, it is recommended for Wuhan City to promptly implement 

policies encouraging and supporting street aerial landscape management to enhance 

urban aesthetics while simultaneously exploring other infrastructure and 

management measures aimed at comprehensively improving resident’s levels of 

health comfort along with overall livability. This finding aligns with Zhao et al.’s 

research [98]. 

Based on the analysis presented in Figure 8c, notable disparities can be 

observed among the key determinants influencing transportation convenience. The 

influence of Parking management (K30) on transportation convenience signifies 

resident’s emphasis on efficient parking management systems, which not only 

effectively mitigates traffic congestion and enhances road utilization efficiency but 

also directly augments resident’s travel convenience. This finding aligns with the 

research conducted by Wang et al. [99], highlighting the pivotal role of well-

managed urban infrastructure in ensuring smooth traffic flow. Furthermore, both K5 

and K23 exhibit significant impacts on transportation convenience. This observation 

concurs with evidence from Wuhan, where comprehensive hospitals are typically 

situated in city centers or bustling areas, leading to increased gathering of people and 

vehicles due to longer medical appointment waiting times, thereby affecting traffic 

flow dynamics. Consequently, it becomes imperative to meticulously design 

roadside ramps at intersections and pedestrian crossings to minimize conflicts 

between pedestrians and motor vehicles while enhancing overall traffic safety and 

flow [100]. 

After analyzing Figure 8d, it becomes evident that K5, K14, and K30 are the three 

factors exerting the most significant influence on resident’s perceived value. 

Notably, Parking management (K30) exhibits the highest influence index in the graph, 

indicating a strong emphasis placed by residents on parking convenience. Effective 

parking management and ample parking facilities can not only alleviate traffic 

congestion but also enhance resident’s travel efficiency and life satisfaction [100]. 
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The importance of timely medical services is reflected through the significance of 

K5. Prolonged waiting times for medical treatment not only impact patient’s 

treatment outcomes but also have adverse effects on their mental well-being. 

Therefore, increasing medical resources and optimizing hospital processes assume 

paramount importance. The substantial impact of K14 underscores housing 

affordability’s major influence on resident’s life satisfaction. Ensuring reasonable 

housing prices through housing subsidies and market regulation can effectively 

mitigate economic pressure faced by residents while enhancing their overall quality 

of life [101]. 

In conclusion, urban administrators should enhance resident’s quality of life by 

optimizing the job market, increasing healthcare resources, regulating housing 

prices, and improving infrastructure management. Specific measures include 

providing more employment opportunities, streamlining medical service processes, 

ensuring affordable housing prices, and strengthening parking management. If these 

measures are effectively implemented and managed with government policy support 

and efficient resource allocation [102], they will significantly improve the livability 

of cities while achieving comprehensive and sustainable development as well as 

enhancing resident’s satisfaction with their lives. 

6. Conclusions and limitation 

6.1. Conclusions 

The sustainable development of cities faces numerous obstacles, among which 

the inadequacy of RVP significantly hampers the rapid and sustainable progress of 

urban areas, as it plays a crucial role in enhancing the well-being of urban dwellers. 

To promote sustainable urban development, researchers and urban managers are 

dedicated to uncovering the fundamental factors that influence resident’s value 

perception. Although existing research has provided valuable perspectives and 

methods for understanding RVP, these studies primarily rely on traditional factor 

analysis and basic data mining techniques, failing to fully exploit the advanced 

analytical capabilities offered by machine learning. In order to delve deeper into the 

factors influencing urban resident’s value perception, this study proposes an 

innovative research framework and algorithm for RVP assessment. This framework 

integrates FCE-AHP and GINI-OOB methods. The main findings are as follows. 

(1) The proposed method effectively identifies and quantifies the composite impact 

of natural environment, urban planning, social services, and economic 

conditions on urban resident’s value perception. By utilizing machine learning 

technology, we can more accurately identify and evaluate the specific role 

played by these key factors in enhancing resident’s life satisfaction and well-

being. This approach not only provides empirical evidence for urban managers 

on how to enhance resident’s value perception but also promotes the application 

of machine learning in urban research while offering a new perspective and 

technical means for comprehensively understanding complex mechanisms 

underlying resident’s value perception in cities. 

(2) The present study was conducted based on expert consultation and a thorough 

literature review, resulting in the development of a comprehensive system 
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comprising 29 specific indicators to quantitatively assess resident’s perception 

of urban value. These indicators were meticulously categorized into three 

primary dimensions, ensuring a comprehensive understanding of resident’s 

perception of urban quality. Through meticulous analysis, the study identified 

38 key factors that significantly influence resident’s perception of value, which 

were further classified into five distinct levels. At the macro level, core factors 

shaping resident’s positive value perception encompassed the cleanliness and 

orderliness of the city, as well as its diversity and inclusiveness. On a micro 

level, crucial determinants directly impacting daily satisfaction and quality of 

life for residents included waiting time for outpatient services at comprehensive 

hospitals, acceptability of housing prices among residents, and issues related to 

parking facilities for both motorized and non-motorized vehicles. 

(3) When dealing with RVP data, traditional factor analysis methods may 

encounter challenges such as multicollinearity, a limited ability to capture 

nonlinear relationships and interactions, as well as reliance on the assumption 

that data follows a normal distribution. To overcome these limitations, it is 

crucial to integrate machine learning techniques like the GINI-OOB algorithm. 

These algorithms excel at handling large and complex datasets while effectively 

identifying nonlinear relationships and interactions that uncover hidden patterns 

and trends influencing RVP. By utilizing these algorithms, researchers can gain 

a deeper understanding of the factors affecting RVP which in turn provides a 

more accurate and comprehensive scientific basis for urban planning and 

policy-making. 

6.2. Limitations and future work 

To enhance resident’s sense of well-being and promote sustainable urban 

development, this study has developed an evaluation system for RVP and proposed a 

novel approach to analyze the specific impact of each indicator on RVP, aiming to 

comprehensively uncover the key factors influencing resident’s perception of urban 

value. Although significant progress has been made in this study, future work needs 

to address several crucial issues. 

The current study conducted a static analysis of the influencing factors of RVP 

in urban areas. However, it should be noted that the formation of RVP is a dynamic 

process that evolves over time, with causes and states changing across different 

stages of development. Therefore, future research should adopt dynamic analysis 

methods such as structural equation modeling (SEM) [103] or system dynamics 

modeling (SDM) [104] to delve into the interdependent relationships between human 

settlement perception and its influencing factors.  

(1) This study did not incorporate spatial validation when applying machine 

learning or data mining techniques. Future research could consider integrating 

GIS technology to deepen the evaluation and analysis of human settlement 

perception. By integrating spatial and attribute data, GIS can enable real-time 

monitoring and prediction of resident’s value perception while providing 

precise geographic information support for urban planning, thus facilitating 

sustainable urban development. 
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(2) When analyzing resident’s value perception, this study primarily relies on 

survey data collected through questionnaires. However, it is important to 

acknowledge that relying solely on this single data source may not fully capture 

the complexity of resident’s true sentiments and perceptions towards the city. 

Therefore, future studies should consider integrating multiple data sources. In 

particular, incorporating sentiment analysis can effectively capture resident’s 

unstructured opinions and emotions expressed on social media platforms and 

other online channels, thereby supplementing and enriching traditional survey 

data. Additionally, combining macro-level statistical data such as economic 

growth, population mobility, and environmental indicators can provide a 

broader socio-economic context for understanding resident’s value perception. 

(3) While analyzing the influencing factors of resident’s value perception in this 

study, it is essential to recognize that there might be limitations in interpreting 

the results due to potential omitted variable bias or endogeneity issues caused 

by unobserved confounding variables. To address these concerns in future 

research endeavors, employing propensity score matching (PSM) [105] method 

could be beneficial as it allows for a more rigorous analysis of causal 

relationships between variables while reducing the impact of endogeneity 

problems. 
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