Bifurcation analysis and multiobjective nonlinear model predictive control of forests global warming and carbon dioxide emission

  • Lakshmi N. Sridhar Chemical Engineering Department, University of Puerto Rico, Mayaguez 00681, PR, USA
Ariticle ID: 1640
8 Views, 3 PDF Downloads
Keywords: bifurcation; optimal control; multiobjective; global warming; carbon dioxide

Abstract

Bifurcation analysis and multiobjective nonlinear model predictive control calculations are performed on problems involving forestation, human population growth, global warming and carbon dioxide emission. The bifurcation analysis confirms the existence of the oscillation causing Hopf bifurcations. An activation factor involving the tanh function is shown to eliminate the Hopf bifurcations. The multiobjective nonlinear model predictive control (MNLMPC) calculations were performed taking into account the inevitable human population growth and reduction in forest area to obtain control parameters that can be most beneficial. Bifurcation analysis was performed using the MATLAB software MATCONT while the multiobjective nonlinear model predictive control was performed by using the optimization language PYOMO.

References

[1] IPCC. The Carbon Cycle and Atmospheric Carbon Dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (editors). Climate Change 2001: The ScientificBasis, Contribution of Working Group Ito the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2001.

[2] Tans P, NOAA/ESRL. https://www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed on 27 February 2012).

[3] Casper JK. Greenhouse Gases: Worldwide Impacts. Facts on File; 2010McMichael AJ, Woodruff RE, Hales S. Climate change and human health: present and future risks. International Institute for Environment and Development; 2006. pp. 859–869.

[4] Kurane I. The Effect of Global Warming on Infectious Diseases. Osong Public Health and Research Perspectives. 2010; 1(1): 4–9. doi: 10.1016/j.phrp.2010.12.004

[5] Khasnis AA, Nettleman MD. Global Warming and Infectious Disease. Archives of Medical Research. 2005; 36(6): 689–696. doi: 10.1016/j.arcmed.2005.03.041

[6] Martens WJW, Jetten TH, Rotmans J, Niessen LW. Climate change and vector-borne diseases: aglobal modelling perspective; 1995. pp. 195–209.

[7] Effects of global warming. Available online: http://en.wikipedia.org/wiki/Effects_of_global_warming#Health (retrieved on 27 February 2012).

[8] IPCC. Technical Summary. In: Solomon S, Qin D, Manning M, et al (editors). Climate Change 2007: The Physical Science Basis, Contribution of Working Group Ito the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2007.

[9] Woodwell GM, Hobbie JE, Houghton RA, et al. Global Deforestation: Contribution to Atmospheric Carbon Dioxide. Science. 1983; 222(4628): 1081–1086. doi: 10.1126/science.222.4628.1081

[10] Malhi Y, Grace J. Tropical forests and atmospheric carbon dioxide. Trends in Ecology & Evolution. 2000;15(8): 332–337. doi:10.1016/S0169-5347(00)01906-6

[11] Tennakone K. Stability of the biomass-carbon dioxide equilibrium in the atmosphere: mathematical model. Applied Mathematics and Computation. 1990; 35: 125–130. doi: 10.1016/0096-3003(90)90113-H

[12] Alexiadis A. Global warming and human activity: A model for studying the potential instability of the carbon dioxide/temperature feedback mechanism. Ecological Modelling. 2007; 203(3–4): 243–256. doi: 10.1016/j.ecolmodel.2006.11.020

[13] Caetano MAL, Gherardi DFM, Yoneyama T. An optimized policy for the reduction of CO2 emission in the Brazilian Legal Amazon. Ecological Modelling. 2011; 222(15): 2835–2840. doi: 10.1016/j.ecolmodel.2011.05.003

[14] Devi S, Gupta N. Dynamics of carbon dioxide gas (CO2): Effects of varying capability of plants to absorb CO2. Natural Resource Modeling. 2018; 32(1). doi: 10.1111/nrm.12174

[15] Devi S, Gupta N. Comparative study of the effects of different growths of vegetation biomass on CO2 in crisp and fuzzy environments. Natural Resource Modeling. 2020; 33(2). doi: 10.1111/nrm.12263

[16] Devi S, Mishra RP. Preservation of the Forestry Biomass and Control of Increasing Atmospheric CO2 using Concept of Reserved Forestry Biomass. International Journal of Applied and Computational Mathematics. 2020; 6(1). doi: 10.1007/s40819-019-0767-z

[17] Misra AK, Verma M. Impact of environmental education on mitigation of carbon dioxide emissions: a modelling study. International Journal of Global Warming. 2015; 7(4): 466–486. doi: 10.1504/ijgw.2015.070046

[18] Misra AK, Verma M, Venturino E. Modeling the control of atmospheric carbon dioxide through reforestation: effect of time delay. Modeling Earth Systems and Environment. 2015; 1(3). doi: 10.1007/s40808-015-0028-z

[19] Shukla JB, Lata K, Misra AK. Modeling The Depletion of a Renewable Resource by Population and Industrialization: Effect of Technology on Its Conservation. Natural Resource Modeling. 2011; 24(2): 242–267. doi: 10.1111/j.1939-7445.2011.00090.x

[20] Shukla JB, Chauhan MS, Sundar S, et al. Removal of carbon dioxide from the atmosphere to reduce global warming: a modelling study. International Journal of Global Warming. 2015; 7(2): 270. doi: 10.1504/ijgw.2015.067754

[21] Verma M, Misra AK. Optimal control of anthropogenic carbon dioxide emissions through technological options: a modeling study. Computational and Applied Mathematics. 2018; 37(1): 605–626. doi: 10.1007/s40314-016-0364-2

[22] Panja P. Fuzzy Parameter Based Mathematical Model on Forest Biomass. Biophysical Reviews and Letters. 2018; 13(04): 179-193. doi: 10.1142/s1793048018500108

[23] Angelsen A, Kaimowitz D. Rethinking the Causes of Deforestation: Lessons from Economic Models. The World Bank Research Observer. 1999; 14(1): 73–98. doi: 10.1093/wbro/14.1.73

[24] Pimm SL, Russell GJ, Gittleman JL, et al. The Future of Biodiversity. Science. 1995; 269(5222): 347–350. doi: 10.1126/science.269.5222.347

[25] Angelsen A, Brown S, Loisel C. Reducing Emissions from Deforestation and Forest Degradation (REDD): an options assessment report. Meridian Institute for the Government of Norway; 2009. pp.75–77.

[26] DeFries R, Achard F, Brown S, et al. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environmental Science & Policy. 2007; 10(4): 385–394. doi: 10.1016/j.envsci.2007.01.010

[27] van der Werf GR, Morton DC, DeFries RS, et al. CO2 emissions from forest loss. Nature Geoscience. 2009; 2(11): 737–738. doi: 10.1038/ngeo671

[28] Lonngren KE, Bai EW. On the global warming problem due to carbon dioxide. Energy Policy. 2008; 36(4): 1567–1568. doi: 10.1016/j.enpol.2007.12.019

[29] Ghommem M, Hajj MR, Puri IK. Influence of natural and anthropogenic carbon dioxide sequestration on global warming. Ecological Modelling. 2012; 235–236: 1–7. doi: 10.1016/j.ecolmodel.2012.04.005

[30] Florides GA, Christodoulides P. Global warming and carbon dioxide through sciences. Environment International. 2009; 35(2): 390–401. doi: 10.1016/j.envint.2008.07.007

[31] Newell ND, Marcus L. Carbon Dioxide and People. PALAIOS. 1987; 2(1): 101. doi: 10.2307/3514578

[32] Dhooge A, Govaerts W, Kuznetsov YA. MATCONT. ACM Transactions on Mathematical Software. 2003; 29(2): 141–164. doi: 10.1145/779359.779362

[33] Dhooge AW, Govaerts Y, Kuznetsov A, et al. CL_MATCONT: A continuation toolbox in MATLAB. DPLP; 2004.

[34] Kuznetsov YA. Elements of applied bifurcation theory. Springer, NY; 1998.

[35] Kuznetsov YA. Five lectures on numerical bifurcation analysis. Utrecht; 2009.

[36] Govaerts WJF. Numerical Methods for Bifurcations of Dynamical Equilibria. Published online January 2000. doi: 10.1137/1.9780898719543

[37] Kuznetsov, YA., Trends in bifurcation software: From CONTENT to MATCONT.

[38] In: U. Kummer et al. (eds.) "Proceedings of the 4th Workshop on Computation of Biochemical Pathways and Genetic Networks", Villa Bosch, Heidelberg, September 12–13, 2005. Logos Verlag Berlin, 49–57

[39] Szandała, T. Review and Comparison of Commonly Used Activation Functions for Deep Neural Networks. ArXiv; 2020.

[40] Kamalov F, Nazir A, Safaraliev M, et al. Comparative analysis of activation functions in neural networks. In: Proceedings of the 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS); 2021. pp. 1–6.

[41] Dubey SR, Singh SK, Chaudhuri BB. Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing. 2022; 503: 92–108. doi: 10.1016/j.neucom.2022.06.111

[42] Sridhar LN. Multi Objective Nonlinear Model Predictive Control of Diabetes Models Considering the Effects of Insulin and Exercise. Archives of Clinical and Medical Microbiology. 2023; 2(3): 23–32. doi: 10.33140/acmmj.02.03.02

[43] Sridhar LN. Multiobjective nonlinear model predictive control of microalgal culture processes. J OilGas Res Rev. 2023; 3(2): 84–98.

[44] Sridhar LN. Elimination of oscillations in fermentation processes. AIChE Journal. 2010; 57(9): 2397–2405. doi: 10.1002/aic.12457

[45] Sridhar LN. Bifurcation Analysis and Optimal Control of The Crowley Martin Phytoplankton-Zooplankton Model That Considers the Impact of Nanoparticles. Exploratory Materials Science Research. 2023; 5(1): 54–60. doi: 10.47204/emsr.5.1.2023.054-060

[46] Sridhar LN. Bifurcation Analysis and Optimal Control of the Tumor Macrophage Interactions. Biomedical Journal of Scientific & Technical Research. 2023; 53(5). doi: 10.26717/bjstr.2023.53.008470

[47] Sridhar LN. Coupling Bifurcation Analysis and Multiobjective Nonlinear Model Predictive Control. Austin Chem Eng. 2024; 10(3): 1107. doi: 10.22541/au.170666578.85047850/v1

[48] Flores-Tlacuahuac A, Morales P, Rivera-Toledo M. Multiobjective Nonlinear Model Predictive Control of a Class of Chemical Reactors. Industrial & Engineering Chemistry Research. 2012; 51(17): 5891–5899. doi: 10.1021/ie201742e

[49] Sridhar LN. Multiobjective optimization and nonlinear model predictive control of the continuous fermentation process involving Saccharomyces Cerevisiae. Biofuels. 2019; 13(2): 249–264. doi: 10.1080/17597269.2019.1674000

[50] Miettinen K. Nonlinear Multiobjective Optimization. Springer US; 1999. doi: 10.1007/978-1-4615-5563-6

[51] Hart WE, Laird CD, Watson JP, et al. Pyomo—Optimization Modeling in Python, 2nd ed. Springer International Publishing; 2017.

[52] Biegler LT. An overview of simultaneous strategies for dynamic optimization. Chemical Engineering and Processing: Process Intensification. 2007; 46(11): 1043–1053. doi: 10.1016/j.cep.2006.06.021

[53] Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming. 2005; 106(1): 25–57. doi: 10.1007/s10107-004-0559-y

[54] Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut approach to global optimization. Mathematical Programming. 2005; 103(2): 225–249. doi: 10.1007/s10107-005-0581-8

[55] Misra AK, Verma M. A mathematical model to study the dynamics of carbon dioxide gas in the atmosphere. Applied Mathematics and Computation. 2013; 219(16): 8595–8609. doi: 10.1016/j.amc.2013.02.058

[56] Panja P. Deforestation, Carbon dioxide increase in the atmosphere and global warming: A modelling study. International Journal of Modelling and Simulation. 2019; 41(3): 209–219. doi: 10.1080/02286203.2019.1707501

[57] Verma M, Verma AK. Effect of plantation of genetically modified trees on the control of atmospheric carbon dioxide: A modeling study. Natural Resource Modeling. 2021; 34(2). doi: 10.1111/nrm.12300

[58] Misra AK, Lata K. A mathematical model to achieve sustainable forest management. International Journal of Modeling, Simulation, and Scientific Computing. 2015; 06(04): 1550040. doi: 10.1142/s1793962315500403

Published
2024-11-12
How to Cite
Sridhar, L. N. (2024). Bifurcation analysis and multiobjective nonlinear model predictive control of forests global warming and carbon dioxide emission. Sustainable Resource, 1(1), 1640. https://doi.org/10.59400/sr1640
Section
Article