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Abstract: Problem: All optimal control work involving ecological models involves single 

objective optimization. In this work, we perform multiobjective nonlinear model predictive 

control (MNLMPC) in conjunction with bifurcation analysis on an ecosystem model. Methods: 

Bifurcation analysis was performed using the MATLAB software MATCONT MATLAB 

CONTINUITION, while multiobjective nonlinear model predictive control was performed by 

using the optimization language PYOMO (PYTHON OPTIMIZATION). Results: Rigorous 

proof showing the existence of bifurcation (branch) points is presented along with 

computational validation. It is also demonstrated (both numerically and analytically) that the 

presence of the branch points was instrumental in obtaining the Utopia solution when the multi-

objective nonlinear model prediction calculations were performed. Conclusions: The main 

conclusions of this work are that one can attain the utopia point in MNLMPC calculations 

because of the branch points that occur in the ecosystem model, and the presence of the branch 

point can be proved analytically. 

Keywords: ecosystem; bifurcation; optimal control 

1. Introduction 

Sustainability is a significant factor to be considered in almost all physical and 

chemical phenomena. Beneficial activities and situations must be sustained over a 

considerable amount of time. This is especially true in ecosystem management, where 

the conservation of natural species is essential for ensuring a healthy environment for 

the long-term well-being of the human population. The issue of sustainability should 

be implemented in optimization and control studies of ecosystems. In this work, 

MNLMPC calculations are performed in conjunction with bifurcation analysis 

maximizing sustainability. 

2. Literature review 

Cabezas and co-workers [1–9] have applied the fisher index [10] as a 

sustainability criterion for ecosystems. Specifically, the sustainability concept has 

been applied in the management of ecosystems by controlling the population of 

various species. 

Shastri and DIwekar [11] and Sorayya et al. [12] performed single objective 

optimal control calculations on ecological models maximizing the fisher index to 

ensure maximum sustainability. 

In this article, bifurcation analysis and multiobjective nonlinear model predictive 

control tasks on the ecological model described in Shastri and Diwekar [11]. The 

bifurcation analysis reveals the existence of branch points. A rigorous mathematical 

analysis (which is also computationally validated) demonstrating the existence of 
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branch points is presented. The branch point causes the multiobjective nonlinear 

model predictive control calculations to converge to the utopia solution. This 

demonstrates that one can maximize the conservation of the natural habitat and 

maintain maximum sustainability. 

3. Equations in ecological model 

The equations are the following: 

𝜙12 =
𝑎2𝑥2𝑥1
𝑏2 + 𝑥1

;𝜙
23
=
𝑎3𝑥3𝑥2

𝑏3 + 𝑥2

 (1) 

𝑑𝑥1
𝑑𝑡

= 𝑓1 = 𝑥1(𝑟(1−
𝑥1
𝐾
) −

𝑎2𝑥2
𝑏2 + 𝑥1

) = 𝑥1(𝑟(1−
𝑥1
𝐾
)) − 𝜙12 = 𝑟𝑥1 −

𝑟𝑥1
2

𝑘
− 𝜙12 

𝑑𝑥2

𝑑𝑡
= 𝑓2 = 𝑥2(𝑒2

𝑎2𝑥1

𝑏2 + 𝑥1

−
𝑎3𝑥3

𝑏3 + 𝑥2

− 𝑑2) = (𝑒2𝜙12) − 𝜙23 − 𝑑2𝑥2 

𝑑𝑥3

𝑑𝑡
= 𝑓3 = 𝑥3(𝑒3

𝑎3𝑥2

𝑏3 + 𝑥2

− 𝑑3) = 𝑒3𝜙23 − 𝑑3𝑥3 

(2) 

The base parameter values are 𝑎2 = 2.0; 𝑎3 = 0.1;  𝑏2 = 235.50; 𝑏3 =

250; 𝑒2 = 1.35; 𝑒3 = 1.29; 𝑑2 = 1.0;  𝑑3 = 0.04;  𝑘 = 710; 𝑟 = 1.2. 

4. Computational procedures used 

4.1. Bifurcation analysis 

Bifurcations that lead to multiple steady-state solutions can be classified as a) 

branch points and b) limit points. At these bifurcation points, the Jacobian matrix of 

the set of steady-state equations has a determinant of 0. There are 2 tangents at a branch 

point. At a limit point, there is only one tangent software to locate these bifurcations: 

CL_MATCONT [13,14] (a MATLAB software) is commonly used to locate limit 

points, branch points, and Hopf bifurcation points. Hopf bifurcation points do not 

cause multiple steady states. 

For a dynamic system, 

𝑥̇ = 𝑓(𝑥, 𝛽)   𝑥 ∈ 𝑅𝑛 (3) 

Let the tangent plane at any point x be [𝑣1, 𝑣2, 𝑣3, 𝑣4, . . . . 𝑣𝑛+1] . Defining matrix, 

A as: 
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 
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 
 
 
 
 
      
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      
 
 

 (4) 

A can be written as: 

𝐴 = [𝐵|
𝜕𝑓

𝜕𝛽
] (5) 

The tangent plane, being orthogonal to the gradient vector, will satisfy the 

equation. 

𝐴𝑣 = 0 (6) 

For both limit and branch points, the matrix B must be singular. For a limit point 

(LP), the n+1th component of v; 𝑣𝑛+1 = 0 the branch point (BP) condition is that the 

matrix [
𝐴
𝑣𝑇
] must be singular [15–17]. MATCONT detects all the singularities. 

4.2. Multiobjective nonlinear model predictive (MNLMPC)M algorithm 

In this article, the MNLMPC strategy [18,19] does not involve the use of 

weighting functions or impose additional constraints [20]. For an optimization 

problem: 

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) = (𝑥1, 𝑥2. . . . 𝑥𝑘) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑢) 

(7) 

First, the dynamic optimization problems are independently 

minimizing/maximizing each variable 𝑧𝑖  individually. The 

minimization/maximization of 𝑧𝑖  will provide the values 𝑧𝑖
∗. Then the optimization 

problem: 

𝑚𝑖𝑛{ 𝑧𝑖 − 𝑧𝑖
∗}2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑢)  

(8) 

Will be solved. 

This will provide the control values for various times. The first obtained control 

value is implemented, and the remaining are discarded. This procedure is repeated 

until the implemented and the first obtained control value are the same.  

The optimization package, Pyomo [21], was used for the calculations, Pyomo 

automatically differential equations to a Nonlinear Program (NLP) using the 

orthogonal collocation method [22]. 10 finite elements are chosen, and the Lagrange-
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Radau quadrature with three collocation points is used to solve the optimal control 

problems. The resulting nonlinear optimization problem was solved using the IPOPT 

[23], and the globality of the solutions is confirmed with BARON [24]. The algorithm 

is as follows: 

1) Optimize 𝑧𝑖 with Pyomo to obtain the 𝑧𝑖
∗. 

2) Minimize {𝑧𝑖 − 𝑧𝑖
∗}2. 

3) Implement only the first obtained control values. 

4) Repeat until there is no difference between the implemented and the first obtained 

control values. 

The utopia point is when 𝑧𝑖 = 𝑧𝑖
∗  for all i. Sridhar [25] has shown that the 

presence of branch points will cause the MNLMPC algorithm to converge to the 

uptopia point. 

5. Results and discussion 

5.1. Bifurcation analysis of ecological model 

The software CL_MATCONT was used to perform the bifurcation analysis. Two 

cases were considered. In the first case, d3 was the bifurcation parameter while k was 

the bifurcation parameter in the second case. Figures 1 and 2 show the bifurcation 

diagrams that were obtained. In both instances, branch points from which two different 

branches originated are shown. 

The derivatives of 𝑓1, 𝑓2 , 𝑓3 with respect to the variables 𝑥1, 𝑥2, 𝑥3 are: 

𝜕𝑓1
𝜕𝑥1

= 𝑟 −
2𝑟𝑥1
𝑘

−
𝜕𝜙12
𝜕𝑥1

;  
𝜕𝑓1
𝜕𝑥2

= −
𝜕𝜙12
𝜕𝑥2

;  
𝜕𝑓1
𝜕𝑥3

= 0 

𝜕𝑓2
𝜕𝑥1

= 𝑒2
𝜕𝜙12
𝜕𝑥1

;  
𝜕𝑓2
𝜕𝑥2

= 𝑒2
𝜕𝜙12
𝜕𝑥2

−
𝜕𝜙23
𝜕𝑥2

− 𝑑2;  
𝜕𝑓2
𝜕𝑥3

= −
𝜕𝜙23
𝜕𝑥3

 

𝜕𝑓3
𝜕𝑥1

= 0; 
𝜕𝑓3
𝜕𝑥2

= 𝑒3
𝜕𝜙23
𝜕𝑥2

;  
𝜕𝑓3
𝜕𝑥3

= 𝑒3
𝜕𝜙23
𝜕𝑥3

− 𝑑3 

(9) 

The Jacobian matrix is: 

𝐽 =

(

 
 
 
 
(𝑟 −

2𝑟𝑥1
𝑘

−
𝜕𝜙12
𝜕𝑥1

) (−
𝜕𝜙12
𝜕𝑥2

) 0

(𝑒2
𝜕𝜙12
𝜕𝑥1

) (𝑒2
𝜕𝜙12
𝜕𝑥2

−
𝜕𝜙23
𝜕𝑥2

− 𝑑2) (−
𝜕𝜙23
𝜕𝑥3

)

0 𝑒3(
𝜕𝜙23
𝜕𝑥2

) (𝑒3
𝜕𝜙23
𝜕𝑥3

− 𝑑3))

 
 
 
 

 (10) 

The determinant is given by: 
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𝑑𝑒𝑡( 𝐽) = (𝑟 −
2𝑟𝑥1
𝑘

−
𝜕𝜙12
𝜕𝑥1

)(𝑒2
𝜕𝜙12
𝜕𝑥2

−
𝜕𝜙23
𝜕𝑥2

− 𝑑2)(𝑒3
𝜕𝜙23
𝜕𝑥3

− 𝑑3) 

+𝑒3(
𝜕𝜙23
𝜕𝑥2

)(
𝜕𝜙23
𝜕𝑥3

) + (
𝜕𝜙12
𝜕𝑥2

)(𝑒2
𝜕𝜙12
𝜕𝑥1

)𝑒3(
𝜕𝜙23
𝜕𝑥2

) 

= (𝑟 −
2𝑟𝑥1
𝑘

−
𝜕𝜙12
𝜕𝑥1

)(𝑒2
𝜕𝜙12
𝜕𝑥2

−
𝜕𝜙23
𝜕𝑥2

− 𝑑2)(𝑒3
𝜕𝜙23
𝜕𝑥3

− 𝑑3) 

+{𝑒3((
𝜕𝜙23
𝜕𝑥3

) + (
𝜕𝜙12
𝜕𝑥2

)(𝑒2
𝜕𝜙12
𝜕𝑥1

)𝑒3}(
𝜕𝜙23
𝜕𝑥2

) 

= (𝑟 −
2𝑟𝑥1
𝑘

−
𝜕𝜙12
𝜕𝑥1

)(𝑒2
𝜕𝜙12
𝜕𝑥2

−
𝜕𝜙23
𝜕𝑥2

− 𝑑2)(
𝑒3𝑎3𝑥2
𝑏3 + 𝑥2

− 𝑑3) 

+{𝑒3((
𝜕𝜙23
𝜕𝑥3

) + (
𝜕𝜙12
𝜕𝑥2

)(𝑒2
𝜕𝜙12
𝜕𝑥1

)𝑒3}(
𝑎3

𝑏3 + 𝑥2
−

𝑎3𝑥2
𝑏3 + 𝑥2

)𝑥3 

(11) 

For steady-state to be attained 
𝑑𝑥3

𝑑𝑡
= 𝑓3 = 0 This implies that (

𝑒3𝑎3𝑥2

𝑏3+𝑥2
− 𝑑3) = 0; 

and/or 𝑥3 = 0. 

If both these terms are 0 det(J)=0 and the Jacobian matrix is singular. This is the 

only singular point because: 

a) (
𝑒3𝑎3𝑥2

𝑏3+𝑥2
− 𝑑3) = 0; and det (J)=0 t will imply that 𝑥3 = 0; and 

b) det (J)=0 and 𝑥3 = 0; will imply that (
𝑒3𝑎3𝑥2

𝑏3+𝑥2
− 𝑑3) = 0; 

This singular point will be a branch point with 2 branches that (
𝑒3𝑎3𝑥2

𝑏3+𝑥2
− 𝑑3) =

0; and𝑥3 = 0. 

5.2. Computational validation 

Case 1 d3 bifurcation parameter 

At the branch point (singular point) 𝑥1 = 138.529412; 𝑥2 = 180.631105; 𝑥3 =

0;𝑑3 = 0.054110. 

𝑏3 = 250; 𝑒3 = 1.29; 𝑎3 = 0.1 b3 = 250; the value of (
𝑒3𝑎3𝑥2

𝑏3+𝑥2
− 𝑑3) = 0. 

Case 2 K is a bifurcation parameter 

At the branch point (singular point) 𝑥1 = 138.529412;  x2 = 112.359551;  

x3 = 0;  k=277.431490. 

d3 = 0.04; 𝑏3 = 250; 𝑒3 = 1.29; 𝑎3 = 0.1; 𝑥2 = 112.359551  b3 = 250; the 

value of (
𝑒3𝑎3𝑥2

𝑏3+𝑥2
− 𝑑3) = 0. 

In both cases, at the singular point, 𝑥3 = 0 and (
𝑒3𝑎3𝑥2

𝑏3+𝑥2
− 𝑑3) = 0. 

Figures 1 and 2 show the bifurcation diagrams when d3 and K are the bifurcation 

parameters. 
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Figure 1. Bifurcation diagram with d3 as bifurcation parameter. 

 

Figure 2. Bifurcation diagram with K as bifurcation parameter. 

5.3. Multiobjective nonlinear model predictive control of the ecological 

model 

The averaged fisher index (FI) is given by: 

𝐹𝐼 =
1

𝑡𝑓
∫

(𝑎(𝑡))2

(𝑣(𝑡))4

𝑡𝑓

0

𝑑𝑡 

𝑣(𝑡) = √∑(
𝑑𝑥𝑖
𝑑𝑡
)2

3

𝑖=1

= √∑(𝑓𝑖)
2

3

𝑖=1

 

𝑎(𝑡) =
1

𝑣(𝑡)
∑(

𝑑𝑥𝑖
𝑑𝑡
)(
𝑑2𝑥𝑖
𝑑𝑡2

)

3

𝑖=1

 

(
𝑑2𝑥𝑖
𝑑𝑡
) =

𝑑𝑓𝑖
𝑑𝑡
=∑(

𝑑𝑓𝑖
𝑑𝑥𝑗
)(𝑓𝑗)

3

𝑗=1

. . . 𝑖 = 1,2,3 

(12) 
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The expressions of the functions 𝑓𝑖  and the derivatives 
𝑑𝑓𝑖

𝑑𝑥𝑗
 are provided in 

equation sets 2 and 3. Both d3 and k were used as control variables. Both ∑ 𝑥3
𝑡𝑓
0  and 

the Fisher index (FI) were maximized individually. The maximization of ∑ 𝑥3
𝑡𝑓
0  

resulted in a value of 716.534, while the maximization of FI resulted in a value of 

3.965 × 10−5. For the multiobjective nonlinear model predictive calculations, the 

function minimized was (∑ 𝑥3
𝑡𝑓
0 − 716.534)2 + (𝐹𝐼 − 3.965𝑒 − 05)2 subject to the 

equation set 2. The resulting objective function value obtained was the utopia point 0. 

The multiobjective nonlinear model control variables obtained were d3 = 0.0274 and 

k = 680.00. 

Figures 3–6 show the profiles for the MNLMPC calculations. 

 

Figure 3. X1, X2, X3 profiles for MNLMPC calculations. 

 

Figure 4. FI versus t. 
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The bifurcation points are instrumental in maximizing the sustainability and the 

amount of prey. 

 

Figure 5. d3 versus t. 

 

Figure 6. K versus t. 
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6. Conclusions 

The main conclusions of this work are that one can attain the utopia point in 

MNLMPC calculations because of the branch points that occur in the ecosystem 

model, and the presence of the branch point can be proved analytically. The use of 

rigorous mathematics to enhance sustainability will be a significant step in 

encouraging sustainable development and a significant addition to the work of 

Manioudis and Meramveliotakis [26] and Meramveliotakis and Manioudis [27]. The 

main practical implication of this work is that the strategies developed here can be 

used by all researchers involved in maximizing sustainability. The future work will 

involve applying these mathematical strategies to other ecosystem models and food 

chain models, which will be a huge step in developing strategies to address problems 

involving nutrition. The broader impact of this work is that the MNLMPC calculations 

can be performed for other problems in conjunction with the bifurcation analysis. 

Conflict of interest: The author declares no conflict of interest. 

References 

1. Ahmad N, Derrible S, Eason T, et al. Using Fisher information to track stability in multivariate systems. Royal Society Open 

Science. 2016; 3(11): 160582. doi: 10.1098/rsos.160582 

2. Cabezas H, Fath BD. Towards a theory of sustainable systems. Fluid Phase Equilib. 2002; 194–197: 3–14. 

3. Cabezas H, Pawlowski CW, Mayer AL, et al. Sustainability: ecological, social, economic, technological, and systems 

perspectives. Clean Technologies and Environmental Policy. 2003; 5(3-4): 167-180. doi: 10.1007/s10098-003-0214-y 

4. Cabezas H, Pawlowski CW, Mayer AL, et al. Simulated experiments with complex sustainable systems: Ecology and 

technology. Resources, Conservation and Recycling. 2005; 44(3): 279-291. doi: 10.1016/j.resconrec.2005.01.005 

5. Cabezas H, Pawlowski CW, Mayer AL, et al. Sustainable systems theory: ecological and other aspects. Journal of Cleaner 

Production. 2005; 13(5): 455-467. doi: 10.1016/j.jclepro.2003.09.011 

6. Cabezas H, Whitmore HW, Pawlowski CW, et al. On the sustainability of an integrated model system with industrial, 

ecological, and macroeconomic components. Resources, Conservation and Recycling. 2007; 50(2): 122-129. doi: 

10.1016/j.resconrec.2006.06.011 

7. Doshi R, Diwekar U, Benavides PT, et al. Maximizing sustainability of ecosystem model through socio-economic policies 

derived from multivariable optimal control theory. Clean Technologies and Environmental Policy. 2014; 17(6): 1573-1583. 

doi: 10.1007/s10098-014-0889-2 

8. Fath BD, Cabezas H. Exergy and Fisher Information as ecological indices. Ecological Modelling. 2004; 174(1-2): 25-35. 

doi: 10.1016/j.ecolmodel.2003.12.045 

9. Fath BD, Cabezas H, Pawlowski CW. Regime changes in ecological systems: An information theory approach. J. Theor. 

Biol. 2003; 222: 517–530. 

10. Fisher RA. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. A. 1922; 222: 309–368. 

11. Shastri Y, Diwekar U. Sustainable ecosystem management using optimal control theory: Part 1 (deterministic systems). 

Journal of Theoretical Biology. 2006; 241(3): 506-521. doi: 10.1016/j.jtbi.2005.12.014 

12. Rawlings ES, Barrera-Martinez JC, Rico-Ramirez V. Fisher information calculation in a complex ecological model: An 

optimal control-based approach. Ecological Modelling. 2020; 416: 108845. doi: 10.1016/j.ecolmodel.2019.108845 

13. Dhooge A, Govaerts W, Kuznetsov YuA. MATCONT. ACM Transactions on Mathematical Software. 2003; 29(2): 141-164. 

doi: 10.1145/779359.779362 

14. Dhooge A, Govaerts W, Kuznetsov YWA, et al. CL_MATCONT; A continuation toolbox in Matlab. Available online: 

https://www.researchgate.net/publication/221001145_Cl_matcont_A_Continuation_Toolbox_in_Matlab (accessed on4 July 

2023). 

15. Kuznetsov YA. Elements of applied bifurcation theory. Springe; 1998. 

16. Kuznetsov YA. Five lectures on numerical bifurcation analysis. Utrecht University; 2009. 



Sustainable Ecology 2024, 1(1), 1751.  

10 

17. Govaerts WJF. Numerical Methods for Bifurcations of Dynamical Equilibria. Springer; 2000. doi: 

10.1137/1.9780898719543 

18. Flores-Tlacuahuac A, Morales P, Rivera-Toledo M. Multiobjective Nonlinear Model Predictive Control of a Class of 

Chemical Reactors. Industrial & Engineering Chemistry Research. 2012; 51(17): 5891-5899. doi: 10.1021/ie201742e 

19. Sridhar LN. Multiobjective optimization and nonlinear model predictive control of the continuous fermentation process 

involving Saccharomyces Cerevisiae. Biofuels. 2019; 13(2): 249-264. doi: 10.1080/17597269.2019.1674000 

20. Miettinen K. Nonlinear Multiobjective Optimization. Springer; 1998. doi: 10.1007/978-1-4615-5563-60 

21. Hart WE, Laird CD, Watson JP, et al. Pyomo—Optimization Modeling in Python. Springer International Publishing; 2017. 

doi: 10.1007/978-3-319-58821-6 

22. Biegler LT. An overview of simultaneous strategies for dynamic optimization. Chemical Engineering and Processing: 

Process Intensification. 2007; 46(11): 1043-1053. doi: 10.1016/j.cep.2006.06.021 

23. Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear 

programming. Mathematical Programming. 2005; 106(1): 25-57. doi: 10.1007/s10107-004-0559-y 

24. Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut approach to global optimization. Mathematical Programming. 

2005; 103(2): 225-249. doi: 10.1007/s10107-005-0581-8 

25. Sridhar LN. Coupling Bifurcation Analysis and Multiobjective Nonlinear Model Predictive Control. Austin Chem Eng. 

2024; 10(3): 1107. 

26. Manioudis M, Meramveliotakis G. Broad strokes towards a grand theory in the analysis of sustainable development: a return 

to the classical political economy. New Political Economy. 2022; 27(5): 866-878. doi: 10.1080/13563467.2022.2038114 

27. Meramveliotakis G, Manioudis M. History, Knowledge, and Sustainable Economic Development: The Contribution of John 

Stuart Mill’s Grand Stage Theory. Sustainability. 2021; 13(3): 1468. doi: 10.3390/su13031468 


