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Abstract: Diabetes mellitus, a  serious disease affecting millions of people worldwide, is a  

disease characterized by in-creased levels of glucose concentration in the blood. Monitoring 

blood glucose has been declared a crucial and important tool that makes diabetes management 

probable. A large number of suitable glucose biosensors have been developed so far. This 

research has particu-larly focused on covering achieving biocompatible and improved sensing 

platforms which are evolving with the contribution of novel materials. The motivation for 

writing this review is to discuss and review the recent advances in enzymatic and  non-

enzymatic glucose sen-sors evolved in the last few years. 
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1. Introduction 

Diabetes is one of the most common and challenging diseases in the 21st century 

globally. It is now considered a major death cause which seems to be an epidemic in 

many developing and newly industrialized nations. Complications from diabetes, such 

as coronary artery and peripheral vascular disease, stroke, diabetic neuropathy, 

amputations, renal failure, and blindness are resulting in increasing disability, reduced 

life expectancy, and enormous health costs for virtually every society [1]. Because of 

those, diabetes management which simply means maintaining a regular blood glucose 

level has developed rapidly. And monitoring the blood glucose level has turned into 

one of the most crucial tools in diabetes management. The normal range of blood 

glucose in a healthy body is found in the range of 4.9–6.9 mm. However, it can be 

increased by up to 40 mm in diabetic patients after glucose intake [2]. Although 

various types of glucose sensors have become commercially available, glucose 

biosensors have also made a huge improvement. Biosensors are devices that can 

analytically convert a biological response into an electrical signal.  

Researchers are being inspired to fabricate affordable, accurate, and user-friendly 

glucose monitoring instruments by advancements in point-of-care (POC) sensor 

technologies, microfluidics, nanotechnology, and miniaturization. Accurate on-site 

and timely detection based on several kinds of glucose sensor platforms has been made 

possible by the coupling of many glucose sensing techniques with POC biosensors. 

For patients with abnormalities of glucose metabolism, the incorporation of 

smartphone-integrated electronic readers into such devices or their enhancement using 

3D printing technology shows significant potential. POC biosensors enable people to 

monitor their blood glucose levels precisely and conveniently without the assistance 

of expert staff or hospital visit. 
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The industry has a persistent interest in creating novel glucose sensing devices 

since there is an enormous need for quick, affordable, and accurate ways to test blood 

glucose levels. Glucose sensors can be based on different types of transducers such as 

thermal, optical, electrochemical, acoustic and magnetic. Biosensors can be classified 

into different groups based on their transducer. Among all of them, the widely 

investigated one is electrochemical platforms which are divided into two main 

categories: enzymatic and non-enzymatic (as depicted in Figure 1). The categorizing 

factor is the presence of an enzyme as the sensing material in the biosensor.  

 

Figure 1. Different glucose biosensors based on their sensing material.  

The enzymatic diabetes biosensors have an enzyme that plays a crucial role. A 

group of these biosensors is glucose oxidase (GOx) depended which uses GOx as the 

glucose-sensing enzyme. A thin layer of GOx is utilized over an oxygen anode in these 

electrochemical biosensors, where the oxygen is consumed by the enzyme-catalyzed 

response. The mechanism of GOx action leads to gluconic acid production (Figure 2). 

To execute this oxidation reaction by GOx, a redox co-factor is needed with the input 

of flavin adenine dinucleotide (FAD+) which is an electron acceptor. It can be reduced 

to FADH2 by redox reactions. Subsequent reaction with oxygen that produces H2O2 

regenerates the FAD+ at the anode, which can sense the number of transferring 

electrons that are correlated with the amount of H2O2 production and hence, the 

amount of glucose present [3]. 
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Figure 2. The transition of glucose to gluconic acid using glucose oxidase, 

reprinted with permission. 

Recently, nanomaterials are introduced into enzymatic glucose sensors to 

enhance electron transfer rates. A wide range of nanomaterials can be used for this 

purpose, including the nanoparticles of noble and transition metals, the nanostructured 

metal-oxides or metal sulfides, conductive polymers, carbon nanotubes, and graphene. 

Table 1 summarizes the enzymatic biosensors [4]. 

Table 1. A summary of the enzymatic biosensors for detecting diabetes.  

Sensing material Linear range Detection limit References 

Ternary-graphene-PANI-TiO2 4–24 mm – [5] 

3D-NiO-hollow sphere/RGO 0.009–1.129 mm 0.082 nm [6] 

Graphene/MnO2 0.04–2 mm 10 µm [7] 

CHI-Pd@Pt core-shell nanocubes 1–6 mm 0.2 µm [8] 

RGO-Fe3O4 0.05–1 mm 0.1 µm [9] 

PANI-poly (ethylene oxide) nanocomposite 4–6 mm 820 μm [10] 

MnO2/graphene nanoribbons 0.1–1.4 mm 50 μm [11] 

ZnO-nanorods/graphene 0.2–1.6 mm – [12] 

GOx/RGO 0.01–1 mm 5.8 µm [13] 

GOx/3D graphene film < 6 mm 200 μm [14] 

MoS2/graphene aerogel 2–20 mm 290 μm [15] 

Pt@ CNOs 2–28 mm – [16] 

MWCNTs/CSF 0–5 mm 210 μm [17] 

GOx/Au-ZnO/GCE 1–20 mm 20 μm [18] 

GOx/Cu-MOFs 9.1 × 10–3–36 mm 2.73 µm [19] 

GOx/CHI/GS/PB 8.17 × 10–3–1 mm 2.45 μm [20] 

Au/NS on carbon fiber 8.17–1 mm 2.45 μm [21] 

CHI-GOx/APTES 0.01–50 mm 10 μm [22] 

PANI: polyaniline, RGO: reduced graphene oxide, CHI: chitosan, GOx: glucose oxidase, MOF: metal-organic frameworks, CNOs: carbon 

nano-onions, CNT: carbon nanotubes, GCE: glassy carbon electrode, PB: prussian blue, GS: graphene sponge, NS: nanostructures, APTES: (3-

Aminopropyl) triethoxysilane, dPIn: dPIn doped-polyindole, CSF: carbonized silk fabric. 

2. Non-enzymatic nanobiosensors 

Study on non-enzymatic biosensors as an alternative has started mainly due to 

the limited ranges of pH, temperature, and humidity conditions of the enzymatic 
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glucose sensors. Metal-based glucose sensors are the sensors using noble (e.g., Au, Pt) 

and transition (e.g., Ni, Cu) metals for glucose detection as they can facilitate 

electrocatalytic oxidation of glucose. The metals can be combined to form multi-

metallic electrodes for better electrocatalytic performance because of their synergistic 

activity for glucose electro-oxidation. Nevertheless, the application of transition metal 

glucose sensors is not attractive enough due to the high cost of transition metals. These 

metals in oxide form can be a cost-effective alternative. To enhance their electronic 

conductivity, conductive support materials (e.g., Ni foam, Cu foam, 3D-KSCs) are 

combined with them. Another large group of non-enzymatic biosensors is a conductive 

polymer including glucose sensors. These polymers possess high electrical 

conductivity, as well as electron affinity and redox activity. Their electrocatalytic 

activity can be even improved by the introduction of metal or metal-oxide 

nanoparticles, CNTs, and graphene. Carbon nanotubes (CNTs) can be used for sensor 

applications. Their superior properties, for instance, high aspect ratio, large surface 

area, as well as remarkable optical and electronic properties, make them promising 

materials for glucose detection. Similarly, graphene has great properties to be used in 

electrochemical sensing applications. Besides, all the mentioned materials, 

molecularly imprinted polymers (MIP) are devised as artificial recognition elements 

that can recognize and bind target molecules specifically. Their functional monomer 

is polymerized within a template which is later removed. Glucose imprinted polymer 

can be utilized for sensor applications [23]. Table 2 presents a comprehensive 

comparison between different materials used in electrochemical glucose sensors.  

Table 2. A comprehensive overview of different sensing materials used in 

electrochemical glucose sensors [24–29]. 

Sensing material Pros Cons 

Enzyme 
Good selectivity 

Good sensitivity 

Limited pH and temperature ranges 
Affected by humidity 

Deactivation by ionic detergents 

Noble and transition 

metals 

High stability 

High electrocatalytic activity 

Poor sensitivity 
Poor selectivity 

High cost 

Metal oxides 
High stability 
Low cost 

Poor conductivity 
Alkaline condition needed 

Conductive polymers 

Facile synthesis 

Low cost 
Adjustable properties 

Challenging confinement on the 

electrode 
Low stability 

Carbon nanotubes 

High electrocatalytic activity 

High surface area 
High stability 

Challenging separation process 
Degradation possibility of nanotubes 

Graphene 
Enhanced electrical conductivity 

Biocompatibility 
Heterogeneity of samples 

MIPs 

Low cost 

Facile synthesis 

Robustness 

Template removal stage 
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3. Noble and transition metals glucose nanobiosensors 

Up to now, metal [13,30–32], metal-alloy [33–35], metal hydrate [36], metal 

sulfide [37,38], metal nitrides [39,40], and metal oxide [41–43] have been broadly 

applied as efficient nanostructures for their glucose oxidation ability in neutral and 

alkaline solutions. Amongst the various metals, Noble (e.g., Au, Pt, Pd) and transition 

metals (e.g., Ni, Cu, Co) are more commonly used for high-per- formance non-

enzymatic glucose monitoring in the last decades. Nanostructured metallic materials 

with their exclusive physical, chemical, optical and electrical properties such as high 

surface-to- volume proportion, huge specific surface area, high electrical conductivity, 

tunable optical property, and high electrocatalytic activity have been widely used in 

the fabrication of glucose biosensors [44–46]. 

These metals can be regarded as good electrocatalysts as a result of their 

capability to be in numerous oxidation states. By absorbing other compounds on their 

surfaces and acting as catalysts with a high number of surface atoms, intermediates 

are formed and the reaction process is facilitated by enhancing mass transport property 

[47]. Since the physicochemical properties of metal nanostructures such as size, shape, 

architecture, and composition can be varied and controlled, they can be regarded as 

appealing choices for electrocatalytic glucose sensing [48].To enhance the 

performance of detection, by investigating mass transport and electron transfer 

kinetics of metals, extensive attention has been paid to studying the electrocatalytic 

properties of metal nanostructures [49,50]. Based on the literature, most metallic 

nanomaterials used for non-enzymatic glucose sensing are noble metals (i.e., Au, Pd, 

and Pt) and their bimetallic nanostructures due to their high catalytic activity  [51]. 

Despite the high sensitivity of noble metals towards glucose detection, surface 

fouling owing to the adsorption of intermediates has remained a challenging issue. 

Similarly, they do not have desired options for practical application due to their high 

costs because of inadequate supply. Considering cost-effectiveness, transition metals 

(such as Ni and Cu) and their bimetallic nano- structures (Cu/Ni) can be considered 

appropriate alternatives for non-enzymatic glucose sensors [40,52]. 

Moreover, the benefit of using transition metals instead of noble metals is the 

ability for oxidizing glucose at a constant potential and therefore simpler operation 

[53]. For the oxidation of glucose, Ni and Cu-based electrodes are com- monly applied 

in the alkaline solution. Actually, by electron transferring between multivalent metal 

redox couples, the oxidation reaction of glucose is catalyzed by the transition metals. 

By immersing these metal electrodes (M) in an alkaline solution, M(OH)2 compounds 

are formed at first, furthermore by the further oxidation reaction, MOOH is formed. 

Consequently, M(OH)2/ MOOH redox couple is the catalytic component in glucose 

detection [47]. Ni and Cu nanostructures have been used widely as glucose sensors in 

recent years. 

As an alternative solution, to develop the catalytic effect of metallic nanoparticles, 

bimetal alloy structures were utilized as electrode constituents. They are a novel class 

of nanomaterials that may have better technological performance compared to 

individual ones. They are synthesized between one element with filled d-orbitals and 

the other metal having empty d-orbitals. Their properties could differ along with the 
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mixing pattern, in particular, their interfaces may play a pivotal role in controlling 

their behaviors [54]. 

Moreover, the applicability of these bimetallic nanostructures not only relies on 

their size and shape but also on the combination of the metals that participated (e.g., 

composition) and their fine structure. For instance, they can be formed by various 

hybrids of metals such as (noble/noble), (noble/transition), or both 

(transition/transition) metals [55,56]. 

Recently, considerable improvement has been reported on the fabrication of 

bimetallic nanostructures as electrochemical non-enzymatic glucose sensors owing to 

the synergistic effect of the two metals which can significantly enhance the 

electrocatalytic glucose oxidation reaction and minimize the interference and 

poisoning effect of the electrode [57]. Table 3 summarized the non-enzymatic Noble 

and transition metals-based biosensors for detecting diabetes. 

Table 3. A summary of the non-enzymatic Noble and transition metals-based biosensors for detecting diabetes. 

Sensing material Linear range Limit of detection References 

Ni/Cu nanocomposites 4 × 10−3–5 mm 0.1 μm [58] 

Nafion/Cu (II) GCE 5 × 10−4–2 mm 0.1 μm [59] 

Pd NPs porous GaN 1 × 10−3–1 mm – [60] 

La-Sr-Co-Ni-O nanofibers 0.1–1 mm 83 μm [61] 

bimetallic Co/Zn MOF 0.01–5 mm 6.5 μm [62] 

CuO/ZnO-DSDSHN 500–100 mm 3.575 × 10−1 μm [63] 

Ni-doped SnO2 5 × 10−3–0.825 mm 0.084 μm [64] 

Cu NPs HNT/PANI 0.01–5 mm 0.27 μm [65] 

NiCo2S4 nanoflakes 0.01–0.25 mm 0.01 μm [66] 

Cu/LAG 0.05–1.5 mm 0.01 μm [67] 

Ni-Cu ANPs/RGO 1 × 10−5–3 × 10−2 μm 0.005 μm [68] 

Bimetallic Co-Zn-MOFs 0.001–0.255 mm, 0.255–2.53 m 4.7 μm [69] 

MoS2-AuPt 0.005–3 mm 33 μm [70] 

Cu-Co-MOFs/Ni foam – 23 μm [70] 

Cu-RGO 0.10–12.5 mm 65 µm [71] 

Ni-Co-S/CN/GCE 0.001–0.330 mm, 0.330–4.53 mm 467 µm [72] 

GCE: glassy carbon electrode, NPs: nanoparticles, MOF: metal-organic frameworks, DSDSHN: dumbbell-shaped double-shelled hollow 
nanoporous, HNT/PANI: halloysite nanotube/polyaniline, LAG: laser-ablated graphene, ANPs/RGO: bimetallic alloy nanoparticles reduced 

graphene oxide, MoS2-AuPt: gold platinum bimetallic nanoparticles modified molybdenum disulfide nanosheet.  

4. Metal oxides 

Metal oxides are crystalline solids that contain a metal cation and an oxide anion. 

These materials show vast varieties of applications as gas sensors, catalysts, solar cells, 

optoelectronic devices, environmental protectors, and biosensors. Metal oxides have 

unique functional properties that essentially stem from their crystal structure, 

composition, indigenous defects, doping, etc. These properties provide them with 

chemical, optical, mechanical, and electrical characteristics [73]. In recent decades, 

different materials based on metal oxides such as metal-doped metal oxides, carbon 

nanotubes nanocomposites of metal oxides, and polymer composites of metal oxides 
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have been explored broadly due to their cost-effectiveness and high sensitivity. These 

nanomaterials also show high selectivity when they are coupled with biorecognition 

molecules in analytical devices [74–77]. 

As mentioned, utilizing transition and noble metals, despite being desirable 

materials, has limitations for sensing glucose, because they are not cost-effective. On 

the other hand, these materials in their oxide form have gained much attention and are 

considered a good alternative due to the ease of access and low cost. Especially, among 

these materials, oxides of metal elements of groups 7 to 12 in the Periodic Table have 

shown excellent performance in non-enzymatic glucose sensing [54]. To enhance the 

electronic conductivity and obtain higher surface area as well as more active sites, 

metal oxides are combined with other materials such as Ni foam, Cu foam, and three-

dimensional Kenaf stem-derived carbon (3D-KSCs) that act as supports while 

possessing conductive properties [23]. 

Concerning the non-enzymatic glucose sensing, in the presence of hydroxide ions, 

different metal oxides can perform effectively at different pH ranges. The surface of 

metal oxides is activated by strong hydroxide ions and this process then results in the 

oxidation of glucose [78–80]. In addition, possessing a wide band gap makes metal 

oxides promising materials for detecting glucose [81]. Metal oxide-based non-

enzymatic biosensors are listed in Table 4. 

Table 4. A summary of the non-enzymatic metal oxides-based biosensors for detecting diabetes.  

Sensing material Linear range Limit of detection References 

Nanoporous CuO/ZnO 0.500–100 mm 358 nm [63] 

ZnO QDs on MWCNTs 10−5–2.5 × 10−3 mm 208 nm [82] 

Laser-induced mesoporous NiO on Ni 0.005–1.1 mm 3.31 μm [83] 

NiO/Cu-TCPP 0.002–0.28 mm 0.95 μm [84] 

Co3O4 functionalized MoS2-CNT < 5.2 mm 0.08 μm [85] 

Ni-Co hydroxide nanosheets 0.002–0.8 mm 3.42 μm [86] 

PPy-CHI-Fe2O3 1–16 mm 234 μm [87] 

NiMnO3 0.00005–1 mm 0.014 μm [86] 

CuO/NiO nanosheets 1.20–2.72 mm 0.0667 μm [88] 

MOF-CoO/CuO nanorod arrays – 11.916 μa μm–1 [89] 

AuNPs-CuO NWs/Cu2O 2.8 × 10−3–2 mm 1.619 μm [90] 

TiO2/Cu2O/CuO CNFs – 0.25 µm [91] 

CuO/NiO films 0.01–20 mm 1.86 μm [92] 

NF: nanofiber, QDs: quantum dots, MWCNTs: multi-walled carbon nanotube, TCPP: tetrakis (4 carboxyphenyl) porphrin, CNT: carbon 

nanotube, NWs: nanowires, CNFs: carbon nanofibers, CHI: chitosan, PPy: polypyrrole. 
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Figure 3. The chemical structures of typical conducting polymers.  

5. Conductive polymers 

By coupling the electronic properties of semiconductors with the properties of 

organic polymers, conducting polymers (CPs) emerged as novel compounds attracting 

great importance nowadays. Since the discovery of CPs in 1977 by Shirakawa et al.  

[93], they have been utilized in rechargeable batteries [94], membrane separation [95], 

electrocatalysis [96], solar cells [97], supper capacitors [98], optoelectronic [55] 

extraction [99] and electrochemical biosensors. In Figure 3, some of the most 

commonly used CPs such as polyaniline (PANI), polypyrrole, and polythiophene have 

been represented [47]. 

These are used extensively due to their characteristics such as being cheap, ease 

of processing, and also facilitating the immobilization procedure [100]. In this type of 

polymer, alternative single and double bonds exist in the polymer chain, forming p-

electron backbones which cause the uncommon properties of CPs. High electrical 

conductivity, mechanical flexibility, surface areas, electron affinity, electrocatalytic 

properties, and chemical stability in aqueous solutions, as well as low energy 

transitions are among the unique properties of these structures [101]. On the other hand, 

the conductivity of the polymer is affected by the length of conjugation, total chain 

length, and charge transfer to adjacent molecules [102]. 

Due to the porous structure of CPs, they are capable of acting as beneficial 

substrates for the immobilization of nanoparticles. By incorporating nanoparticles into 

CPs, the conducting polymer-based nanocomposite materials are formed. Additionally, 

due to the charge transfer which is facilitated between the dispersed nanoparticles, 

considerable enhancement in the conductivity of the hybrid systems is obtained. The 

incorporation of nanoparticles into the CPs causes higher performance for both CP and 

NPs, leading to different physical properties of the hybrid compound compared with 

the polymer and nanoparticle constituents, separately. Table 5 summarized recent 

reports based on the application of conducting polymer-based nanocomposites in non-

enzymatic biosensors. 
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Table 5. A summary of the non-enzymatic conductive polymer-based biosensors for detecting diabetes.  

Sensing material Linear range Limit of detection References 

Cu NPs/Graphene/PANI 0.5–15 mm 0.16 μm [103] 

Au NPs-PANI nanoarrays 1.026 × 10−3–10 mm 3.08 μm [104] 

PPy/Co-decorated/2DMoS2-AuNPs/GCE 10−7‒8 × 10−6 mm 8 × 10−5 μm [105] 

PPy/GQDs@PB 2 × 10−4–5 × 10–2 mm 0.1 μm [106] 

NiO/CuO/PANI 2 × 10−4–2.5 × 10−1 mm 2 μm [107] 

PANI/AuNPs 3 × 10–3–2 × 10−1 mm 0.5 μm [108] 

PEDOT/IL 2 × 10–4–3 × 10−2 mm 0.05 μm [109] 

NiNPs/PEDOT/RGO 10−3–5.1 mm 0.8 μm [110] 

Ag-NPs-decorated PmAPNFs 0.1–8 mm 0.062 µm [111] 

CuO/PEDOT-MoS2 3 × 10−2–1.06 mm 0.046 μm [112] 

PPy@Cu(OH)2NTs 1.78–6.53 mm 0.35 µm [113] 

Ni3S2 NW PEDOT-RGO HFs 1.5 × 10−2–9.105 mm 0.48 μm [114] 

-NC-(CuS/NSC) 160–11.76 mm 2.72 μm [115] 

PAN/PANI/CuO 0.1–8 mm 0.062 µm [111] 

*PANI: polyaniline, PPy: polypyrrole, GQDs: graphene quantum dots, PB: prussian blue, PEDOT: 3,4-ethylenedioxythiophene, PmAPNFs: 
poly (m-aminophenol) nanofibers, NW: nano worm, RGOHFs: reduced graphene oxide hybrid films, NC: nanocomposite, ITO: indium-tin 

oxide, PAN: polyacrylonitrile, CHI: chitosan. 

6. Carbon nanotubes 

A carbon nanotube is an allotrope of carbon that resembles a tube of carbon atoms. 

Carbon nanotubes are extremely robust. Although it is hard to break them, they are 

still light. Large surface area, high aspect ratio, excellent thermal and chemical 

stability, and significant optical and electronic features, caused carbon nanotubes to 

be one of the most investigated materials [116]. 

Graphene is known as a single layer consisting of carbon atoms, forming a closely 

packed hexagonal lattice. Multiwalled carbon nanotubes (MWCNTs) consist of 

several layers of graphene which are concentrated around the smallest nanotube, while 

for the synthesis of single walled carbon nanotubes (SWCNTs) only one layer of 

graphene is needed, which then results in a cylindrical shape with a nanometer-sized 

diameter [117]. 

Carbon nanotubes are found in diverse applications as cost-effective materials. 

They are utilized in energy conversion and storage [118], water filters [119], thin-film 

electronics [120], and coatings [121]. Due to possessing a large surface area, these 

materials have shown great performance in pharmacy and medicine to adsorb or 

conjugate a wide range of medicinal and diagnostic substances [122]. 

Since CNTs have unique optical, electrical, and structural properties, they are 

appealing materials for applications such as drug delivery and biosensing [123]. They 

have efficient capabilities to be used in treating varieties of diseases. These materials 

also exhibit effective performance when they are utilized for monitoring blood levels 

as well as other chemical properties of the human body [124,125]. 

Electronic conductivity and high surface area make CNTs good candidates for 

detecting glucose electrochemically. It is reported that MWCNTs can act as efficient 
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support in the process of glucose detection [126]. Also, nanowires can be imported 

into these materials for amperometric glucose detection [127]. Table 6 shows a 

summary of CNTs applications for non-enzy- matic glucose sensing. 

Table 6. summarized the non-enzymatic CNT-based biosensors for detecting diabetes. 

Sensing material Linear range Limit of detection References 

FTO-CNTs 0.07–0.7 mm 7 × 104 μm [128] 

PdSWCNTs-GCE 0.5–17 mm 200 ± 50 μm [129] 

GCE/CNT/MoS2/Ni-NPs 0.05–0.65 mm 200 μm [130] 

CNT 10−3–50 × 10−3 mm 1.708 × 10−6 μm [131] 

β-CD/SPCE/CNTs 10−6–3 × 10−3 mm 5 × 10−4 μm [132] 

Pd-NPs-GNPs/MWCNTs/GCE 2.5 × 10–2–10 mm, 10–100 mm 83.0 µm [133] 

Ag-NPs-MWCNT 10−6–3.5 × 10−1 mm 3 × 10−4 μm [126] 

Ni(TPA)-MOF 2 × 10–2–4.4 mm 4.6 μm [134] 

Cu-MWCNTs < 7.5 mm 1.0 μm [135] 

CHI-(CuS/NSC) 1.6 × 10−1–11.76 mm 2.72 μm [115] 

Au@Pt-NPs-MWCNTs 5 × 10−5–0.1 mm 4.2 × 10−2 μm [136] 

Ni-Co-NPs-MWCNT – 2.6 × 10–1 μm [137] 

QCM-CNT 0.5–120 mm 150 μm [138] 

CNT: carbon nanotubes, FTO: fluorine-doped tin oxide, SWCNTs: single-walled carbon nanotube, GCE: glassy carbon electrode, β-CD: β-

cyclodextrin, SPCE: screen printed electrodes, MWCNTs: multi-walled carbon nanotube, (Ni (TPA)) nickel(II)-terephthalic acid MOF: metal-

organic framework, QCM: quartz crystal microbalance, CHI: chitosan. 

7. Graphene 

Various nanoscale compounds such as metal nanowires, nanoparticles, carbon 

nanotubes, and graphene have been remarkably used as sensing materials in biosensors. 

Graphene particularly has attracted extensive attention after obtaining its single layer 

by mechanical exfoliation in 2004 [139]. Furthermore, extra information about the 

unexpected properties of graphene was discovered as the Nobel prize in 2010 [140]. 

Graphene is a single atomic layer of carbon atoms with sp 2 hybridization which is 

organized into a closely packed hexagonal lattice. The exclusive properties of 

graphene correspond to the pi orbitals of carbon atoms forming π bonds  [141]. 

Graphene demonstrates special mechanical, electrical, thermal, and optical 

properties. Biocompatibility, high values of thermal conductivity, electron mobility, 

optical transmittance, and mechanical flexibility along with large specific surface area 

enable its application in electrochemical sensors [142]. Owing to the atomic thickness 

of graphene layers, carbon atoms presented in its structure could entirely interact with 

analytes. Graphene can be regarded as an ideal compound in electrode fabrication 

because of its high surface area, wide potential window, great flexibility in addition to 

its robustness, and lower resistance against charge transfer compared to carbon 

nanotube structures [143]. 

Apart from carbon nanotubes, graphene also shows high purity as a result of the 

absence of transition metals like Fe, Ni, etc. [144]. Using graphene in its fabricated or 

functionalized form (graphene incorporated with metal or metal oxide nanoparticles 

or conducting polymer such as chitosan) in the modification of the electrode improves 

the electrochemical performance and detection time of the electrode. The first 



Nano and Medical Materials 2023, 3(1), 32.  

11 

graphene-based glucose biosensor was constructed using graphene coupled with ionic 

liquid functionalized polyethyleneimine-modified electrodes. This biosensor 

displayed a wide linear range, high stability, and good reproducibility  [145]. 

Additionally, as a result of the reduction of graphene oxide, reduced graphene 

oxide (RGO) is formed. Before the reduction step, the surface of graphene oxide is 

fabricated by oxygenated functional groups for instance carboxyl and epoxy groups. 

With the aid of Van der Waals interactions, these functional groups can affect the 

solubility of graphene oxide in solvents. The reaction rates are determined by the 

accessibility of unsaturated bonds presented on the surface of the graphene structure. 

Owing to the elimination of oxygenated functional groups, the surface of RGO have 

no free oxygen molecules, facilitating the participation of the surface in any surface 

activity. RGO can be considered a beneficial choice in electronic components, 

especially catalytic sensors. This is a result of the presence of oxygen-based functional 

groups and structural defects such as carbon vacancies. 

Recently, extensive studies have been conducted to use nanocomposites in the 

fabrication of enzymatic or nonenzymatic electrodes for monitoring glucose. In this 

regard, an effective mixture of graphene with metal oxide nanopowder has been used 

as the substrate for glucose sensors. This is because of the exclusive properties of 

carbon atoms, such as conductivity toward heat, great surface area, biocompatibility, 

high possibility of functionalization, and inertness. Besides, graphene shows high 

mechanical properties in which sheets are considerably stronger than steel with a 

thickness of a million times smaller than human hair. In addition, another key property 

of graphene is its higher electrical conductivity causing a high rate of electron transfer 

and low resistance against charge transfer. Last but not least, herein, the 

incompatibility between graphene and metal oxide is not an issue [142]. 

In the case of metal oxide, excellent selectivity, large surface-to-volume ratio, 

and outstanding catalytic activities are the key advantages for applying them in non-

enzymatic sensors. In this regard, the noble and transition metals and also their alloys 

are used as nanomaterials in combination with graphene. Nevertheless, the key issue 

with applying Nobel gases like platinum, gold, or palladium in sensor fabrication is 

their high prices, so they can be mixed with graphene to improve the efficiency of the 

sensor and decrease the operating costs. Furthermore, surface poisoning and surface 

fouling against chloride ions are two probable problems with noble metals, owing to 

the intermediates absorbed onto the electrode. As a consequence of the negative charge, 

hydrophilicity, and smooth surface of graphene, this downside of noble metals can be 

successfully compensated. Accordingly, hydrophilic and negatively charged 

interference are prevented from the surface of this fabricated sensor.  

In contrast, transition metals are cost-effec- tive and present in different oxidation 

states, the latter means that with the aid of their unpaired d-electrons, they can form 

more than one ion (for example Fe2+ and Fe3+). As a result, improvement of the rate of 

adsorption and desorption of the analyte on the electrode surface, much more current 

responses, and also a smaller amount of interferences (experienced by noble metals) 

are amongst the most remarkable advantages of transition metals [60]. For that reason, 

transition metals can be considered ideal preferences for sensor fabrication. With the 

aid of the high electrical conductivity of graphene in combination with Nano-metal 

oxides, a synergistic effect has been observed, and excellent results for the oxidation 
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of glucose acquired, compared to both of them individually [146,147]. On the other 

hand, it should be emphasized that the values of metal oxide used in the electrode 

fabrication, should be optimized precisely since these metal oxides can cause high 

resistance and inadequate surface-active sites for glucose oxidation. Table 7 

summarized recent reports on the application of graphene and also its various 

modification in non-enzymatic biosensors. 

Table 7. A summary of the non-enzymatic graphene-based biosensors for detecting diabetes. 

Sensing material Linear range Limit of detection References 

RGO-Au-CuO-NPs 10−3–12 mm 0.01 μm [148] 

Nafion/Cu-NWs-MOFs-GO 2 × 10−2–26.6 mm 7 μm [149] 

N-doped graphene 1.3 × 10−5–14 mm 14.52 μm [150] 

Pt-NPs-MnO2-RGO 2 × 10−3–133 mm 1 μm [151] 

N-RGO-Mn3O4-NPs 10−3–3.295 × 10−1 mm 0.5 μm [152] 

RGO-Pt-NiO 0.008–14.5 mm 2.67 μm [153] 

Ag-Pt-RGO 0.003–7.72 mm 1.8 μm [154] 

GO-MIP 10−7–10−6 mm 10–3 μm [155] 

CuO nanoflakes/RGO 10−3–2 mm 0.19 μm [156] 

Co/graphene/IL/SPCE 0.01–13 mm 0.67 μm [157] 

Co/Fe/N-doped graphene 0–32.5 mm 37.7 μm [158] 

PAN-RGO 7.5 × 10−1–12 mm 600 μm [159] 

NiPcNRs-N-doped RGO – 1.34 μm [160] 

RGO: reduced graphene oxide, NPs: nanoparticles, NWs: nanowires, MOF: metal-organic framework, GO: graphene oxide, MIP: molecularly 

imprinted polymers, IL: ionic liquid, SPCE: screen printed electrodes, PAN: polyacrylonitrile, NiPcNRs: nickel phthalocyanine nanorods. 

8. MIPs 

Molecularly imprinted polymers (MIPs) are a class of polymer materials that are 

produced by the polymerization of functional monomers and cross-linker molecules. 

Functional monomers are molecules possessing reactive groups in their structure. 

They are utilized for synthesizing macromonomers or improving the functionality and 

performance of polymer chains. These molecules are the major participants in the 

process of preparing MIPs, due to forming complexes with templates which results in 

the production of recognition sites in polymers. Cross-linkers are molecules having 

two or more reactive sites. These reactive sites can be functional groups like primary 

amines, sulfhydryls, etc. Cross-linkers are involved in a chemical reaction to link the 

polymer chains. 

In the process of producing MIPs, a template which can be an atom or ion, a 

molecule, a complex, or a macromolecular assembly including micro-organisms, is 

present as a pure stereochemical compound. By removing the template, cavities are 

formed in the polymer matrix correlatively to the parent template molecules. MIPs are 

used as recognition elements to design sensor devices [161,162]. These low-cost 

materials possess unique properties. They have predictable structures and can 

specifically recognize the target. Plus, high physical stability, robustness, and ease of 

preparation are their significant features. Thereby, MIPs have been utilized in diverse 

applications such as chemical separation [163], selective extraction [164], molecular 
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sensing [165], drug delivery [166], and catalysis [167]. Compared to other biological 

receptors, they are more stable at high thermal conditions, and also have other superior 

properties such as reusability and selectivity. 

There are two main methods for the production of MIPs; covalent and non-

covalent imprinting. In the covalent imprinting approach, more amounts of cross-

linkers are needed to produce an insoluble network with good rigidity. This approach 

reduces the probable interactions which are not desirable because it results in the 

production of polymers whose bonding groups are exactly located in the imprinted 

cavities. MIPs produced by this approach possess higher selectivity than the MIPs 

prepared by the non-covalent method. Also, it is reported that the distribution of their 

bonding sites is more homogeneous. Covalent imprinting suits the polymer for acting 

as a catalyst [168]. The disadvantages of covalent imprinting are the limitation in 

choosing a functional monomer and template, the need for synthesizing the template 

monomer before polymerization, and lower efficiency in recognizing target molecules 

[169]. 

In non-covalent imprinting, there is a non- covalent bond between the polymer 

network and the template, so the whole synthetic procedure is demonstrated to be 

easier. Simple extraction processes used in this approach to remove the template from 

the polymer network are another advantage of this method. The major disadvantage 

of non-covalent imprinting is the excess need for functional monomers which are 

necessary for binding with template molecules. As a result, lots of binding sites are 

formed while many of them are not needed [170]. MIPs can be utilized for sensor 

applications including non- enzymatic glucose sensing. In Table 8, some examples of 

MIP-based sensors for detecting glucose are listed. 

Table 8. A summary of the non-enzymatic molecularly imprinted polymers-based biosensors for detecting diabetes. 

Sensing material Linear range Limit of detection References 

EMMIPs 10–8–10−6 mm 3 × 10−6 μm [171] 

MI-QCM 1.38 × 10–9–1.72 × 10–6 mm 2.7 × 10–7 μm [85] 

Nano-MIP/SPPE 5 × 10–8–2 × 10–6 mm 8.1 × 10–8 μm [172] 

MIP-cryogel/MWCNTs/Au 5 × 10–11–1.40 × 10–9 mm 3.3 × 10−8 μm [173] 

MIP/nCD 5 × 10–6–4 × 10–5, 5 × 10–5–6 × 10–4 mm 0.09 μm [174] 

GO-MIP 10–5–6 × 10–3 mm 0.02 μm [175] 

MIP-coated microwave 8.32 × 10–11 mm 2.7 × 103–2.22 × 10−4 μm [176] 

MIP-Au-SPE 3.32 × 10–6 mm 24.15–2415 μm [177] 

MIP 19.4 × 10–6 mm 19.4–330 μm [178] 

MIP-PANI 1.0048 × 10–3 mm 2.2 × 103–1.11 × 104 μm [179] 

PPy-MIP 1.25 × 10–8 mm 10–5–103 μm [180] 

MIP-CS/Co3O4 4.01 × 10–6 mm 12.17–2.3 × 103 μm [181] 

EMMIPs: electromagnetic molecularly imprinted polymers, QCM: quartz crystal microbalance, NanoMIP: molecularly imprinted polymer 
nanoparticles, SPPE: screen printed platinum electrode, nCD: nano-carbon-dots, GO-MIP: graphene oxide, olecular imprinted polymer, SPE: 

screen printed electrode, PANI: polyaniline, PPy: poly-pyrrole, CHI: chitosan. 
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9. Conclusions 

In this paper, the recent trends in enzymatic and non-enzymatic glucose sensor 

applications have been thoroughly reviewed and discussed. Among the different types 

of glucose sensors, enzymatic sensors have pH, temperature, and humidity limitations, 

however, they possess high sensitivity and specificity. So, non-enzymatic glucose 

sensors have been developed to cover their weaknesses. They function as the electrode 

material on which the glucose is oxidized. Recent efforts have been focused on 

exploiting different materials and fabrication processes for these electrodes, such as 

metal-based nanostructures, metal oxides, conductive polymers, carbon nano- tubes, 

graphene derivatives, and molecularly imprinted polymers. 

Unique nanostructures and approaches have been created to modernize glucose 

sensors as a result of the recent rise in nanotechnology research. Metals or metal oxides 

with nanostructures provide a higher surface area for the oxidation of glucose. The 

utilization of carbon nanotubes and graphene has also attracted a lot of interest because 

the high conductivity of these materials boosts the electron transfer rate and hence 

enhances their sensitivity. The majority of nanotechnology research has been 

concentrated on the creation and integration of nanomaterials to enhance the 

performance of electrochemical glucose sensors. Before these approaches may be 

commercialized, there are still several obstacles to overcome with regard to their 

application to the human body. Due to their poor biocompatibility, high cost, and 

labor-intensive preparation procedures, the majority of glucose sensors based on novel 

materials have been restricted. Thus, the challenge of developing materials with high 

selectivity, low detection limit, a wide detection range, and quick response time still 

exists when attempting to prepare these sensors for continuous glucose measurement. 

Future research is expected to continue toward detecting infinitesimally small 

concentrations of glucose in forming sensors that are capable of being incorporated 

into small portable devices. 
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