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Abstract: Nanomedicine and nano-delivery systems constitute an emerging and swiftly 

progressing d iscip line, employing nanoscale materials for diagnostic tools and targeted, 

controlled administration of therapeutic agents. Nanotechnology offers substantial 

advantages for treating chronic ailments, facilitating p recise, site-specific delivery of 

therapeutic agents. Recent applications encompass a diverse array of nanomedicine 

implementations, including chemotherapeutic, bio logical, and immunotherapeutic agents, 

for treating diverse medical conditions. Th is comprehensive review provides an updated 

summary of recent strides in  the realm of nanomedicines and nano-based drug delivery 

systems. It critically examines the utilization of nanomaterials to enhance the effectiveness 

of both novel and established drugs (e.g., natural products) and to enable selective disease 

diagnosis through the identification of disease marker molecules. The review also addresses 

the prospects and challenges associated with the transition of nanomedicines from synthetic 

or natural origins to their practical clinical deployment. Furthermore, the document offers 

insights into prevailing trends and future prospects within the domain of nanomedicine.  

Keywords: nanotechnology; nano drug delivery systems (NDDSs); nanomedicines; 

targeting strategy of NDDSs 

1. Introduction 

Nanotechnology is the deliberate engineering and manipulation of particulate 

matter into a physical state that is between 1 nm and 100 nm, which may then be 

reorganized or reassembled into nano-systems with increased function [1]. The 

potential uses of nanoparticles and nanomaterials in medicine are being 

investigated more and more. The field of drug delivery stands out as a highly 

captivating and promising area of application. The nano drug delivery system is 

one such ground-breaking invention that makes use of nanotechnology to boost 

treatment efficacy, decrease adverse effects, and improve drug delivery efficiency 

[2]. 

A drug delivery system (DDS) is defined as “a formulation or a device that 

enables the introduction of a therapeutic substance into the body and improves its 

efficacy and safety by controlling the rate, time, and place of release of drugs in the 

body” [3]. These systems offer enhanced drug bioavailability by improving drug 

solubility and stability, thereby maximizing therapeutic efficacy. Their ability to 

achieve targeted drug delivery to specific tissues, cells, or subcellular compartments 

minimizes off-target effects and reduces systemic toxicity [4]. 

The global market for nano drug delivery is anticipated to reach a remarkable 

$126.8 billion by 2026, growing at a 14.1% compound annual growth rate (CAGR) 

between 2021 and 2026, per Grand View Research [5]. The many benefits that nano 

drug delivery systems provide, such as improved bioavailability, prolonged drug 
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release, targeted administration to particular cells or tissues, and the capacity to 

overcome biological barriers, may be credited for this exponential expansion  [6]. 

Nano drug delivery systems help a lot in sustained and controlled drug release, 

enabling prolonged therapeutic activity, reduced dosing frequency, and improved 

patient compliance. Overcoming biological barriers, such as the blood-brain barrier, 

is another noteworthy advantage, as it allows drugs to reach previously inaccessible 

sites [7]. Additionally, nano drug delivery systems present opportunities for 

combination therapy, where multiple drugs or therapeutic agents can be encapsulated 

within a single nanoparticle, promoting synergistic effects and personalized 

treatment strategies [8]. Overall, the utilization of nano drug delivery systems holds 

great promise in enhancing therapeutic outcomes, mitigating adverse effects, and 

advancing the field of precision medicine [9]. 

Nano drug delivery systems have both organic and inorganic nanocarriers. Solid 

liquid nanoparticles, liposomes, dendrimers, polymeric nanoparticles, polymeric 

micelles, and virus-based nanoparticles are examples of organic nanocarriers. 

Carbon nanotubes and mesoporous silica nanoparticles are examples of inorganic 

nanoparticles. For instance, liposomes, a type of nano drug delivery system, have 

been extensively explored [10]. Doxil, a liposomal formulation of doxorubicin, 

showed improved efficacy and reduced cardiotoxicity compared to the free drug, 

leading to its approval for the treatment of ovarian cancer and AIDS-related Kaposi’s 

sarcoma [11]. 

Despite their potential, nano drug delivery systems face certain challenges that 

need to be addressed for their successful translation into clinical applications [12]. 

The stability and storage of nano drug delivery systems present additional 

challenges. The complex manufacturing and scale-up processes involved in ensuring 

consistent quality, reproducibility, and scalability of nanoparticles pose a significant 

challenge [13]. Establishing standardized guidelines for assessing safety, efficacy, 

and quality is essential for facilitating regulatory approval and market entry. Lastly, 

the high cost associated with nano drug delivery systems limits their widespread 

adoption. Developing cost-effective manufacturing processes and addressing 

economic feasibility are necessary to improve accessibility  [14]. 

2. Types of the NDDSs 

Liposomes, dendrimers, carbon nanomaterials, fullerenes, solid lipid 

nanoparticles (SLNs), nanostructured lipid carriers, nano shells, quantum dots, 

superparamagnetic nanoparticles, and others are examples of the many morphologies 

of nanoparticles [15]. The description, importance, and challenges of these different 

morphologies of nanoparticles as drug delivery systems are given below: 

2.1. Lipsomes 

Liposomes are colloidal particles enclosed by lipid bilayers, formed by self -

assembly of amphiphilic phospholipids. They have sizes ranging from 25 nm to 200 

nm and are often used in drug delivery, particularly targeting cancer cells. 

Liposomes were discovered in 1965 and have been utilized as drug delivery systems 

since 1971 [16]. The hydrophobic effect drives their bilayer structure formation. 
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Liposomes can evade opsonization by the reticuloendothelial system when PEG is 

added to their surface. Doxil, a liposomal medication, was the first FDA-approved 

nanotechnology product for cancer treatment. Liposomes have the advantage of 

delivering both biological macromolecules like DNA and smaller molecules [17]. 

2.1.1. Types of liposomes 

Liposomes are widely used in pharmaceutical and cosmetic industries as 

carriers for drug delivery. They offer advantages such as membrane-like structure, 

drug stability, improved biodistribution, and compatibility with hydrophilic and 

hydrophobic drugs [18]. There are four categories for liposomes: 

1) Traditional liposomes are composed of an aqueous core and a lipid bilayer that 

may contain neutral, cationic, or anionic cholesterol and phospholipids. In this 

case, the lipid bilayer and the aqueous space can be filled with either 

hydrophobic or hydrophilic substances. 

2) PEGylated types: The surface of the liposome is coated with polyethylene 

glycol (PEG) to create steric equilibrium. 

3) Ligand-targeted type: Ligands are connected to the surface of the liposome or to 

the end of PEG chains that have previously been attached. Ligands include 

peptides, sugars, and antibodies. 

4) The fourth liposome type is known as a theragnostic liposome and incorporates 

the first three liposome types. It frequently contains a nanoparticle as well as a 

therapeutic, imaging, and targeting component [19]. 

The normal production process includes thin layer hydration, mechanical 

agitation, solvent evaporation, solvent injection, and surfactant solubilization  [20]. 

2.1.2. Liposome as drug delivery systems 

Due to their exceptional qualities, liposomes have been widely researched for 

their use in medicine delivery to malignant and tumor tissues using two main 

methods: passive targeting and active targeting as shown in Figure 1 [21]. 

 

Figure 1. Passive targeting and active targeting. 
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Liposomes can be surface functionalized to dedicate stealth through PEGylation 

and to meliorate receptor mediated endocytosis by utilizing targeting ligands such as 

antibodies, peptides, proteins, carbohydrates, Aptamer, and various other small 

molecules. PEGylation prolongs liposomal circulation half-life in vivo. Types of 

drugs based on whether they are hydrophobic or hydrophilic can be encapsulated 

into the aqueous lumen, incorporated into the lipid bilayer, or conjugated to the 

liposome surface [22]. 

Passive targeting is based on the physical features of the tumor and the 

magnitude of the nanomaterials. Cancer cells overexpress vascular endothelial 

growth factor (VEGF), which causes an excessive amount of angiogenesis. The 

proper size of liposomes may flow in the bloodstream for a longer duration, allowing 

the anti-tumor drug nano system to concentrate on the tumor tissue. Tumor tissue has 

bigger vascular holes than normal ones [23]. 

When a drug delivery system accesses malignant tissue, nanoparticle retention 

durations rise due to anomalies in the lymphatic system, which is not conceivable for 

tiny drug molecule [24]. 

This process involves further coating the nanoparticle with a biocompatible 

PEG polymer, which allows it to escape the reticuloendothelial (RES) system as well 

as prolongs the duration blood circulates in the circulatory system; PEG has this 

effect by shielding lipsomes from opsonization [25]. 

In photodynamic treatment (PDT), light is used to activate photosensitizing 

drugs, producing reactive oxygen species (ROS) or singlet oxygen which destroy 

tumors. PDT was first employed for bladder cancer and has since been researched 

for usage in other cancers [26]. By encapsulating photosensitizers, nanocarriers can 

increase PDT by increasing the bioavailability and stability of the photosensitizers. 

However, due to the limited light penetration, PDT is only effective on surface 

tumors. Limitations such as low bioavailability, hydrophobic adverse effects, high 

dosage requirements, and self-aggregation in aqueous media are addressed by 

nanocarriers. They show promise for raising PDT effectiveness [27]. 

Liposomes are versatile carriers for drugs, being able to transport both water 

and lipid-soluble drugs due to their amphiphilic and non-ionic structure [28]. 

Researchers can manipulate their permeability, stiffness, size, and surface 

functionalization to create sustained and targeted drug delivery systems [29]. 

Liposomal delivery addresses the need for biodegradable drug delivery and prevents 

drug oxidation [30].  

Despite their benefits, liposome-based structures have drawbacks that prevent 

widespread clinical application. Their physical and chemical stability, low solubility 

in aqueous solutions, short half -life in the body, high production costs, and allergic 

reactions to specific liposomal chemicals are the key challenges [31]. 

2.2. Carbon nanomaterials 

DNA’s basic building block, carbon, is responsible for the creation of all life on 

earth. Due to its unique electron configuration (1s2, 2s2, 2p), it can be found in a 

variety of forms [32]. Due to its capacity to bind itself and practically all elements, it 
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has a wide range of technical uses, including the transport of pharmaceuticals and 

synthetic materials [33]. 

CBNs are divided into carbon nanotubes, graphene, mesoporous carbon, 

nanodiamonds, and fullerenes based on their structural differences. These materials 

have enhanced drug-loading capacity, biocompatibility, and immunogenicity [34]. It 

has been possible to create biocompatible scaffolds and nanomedicines using 

functionalized CBNs. Due to their superior supramolecular stacking, high adsorption 

capacity, and photothermal conversion capacity, they have been investigated for 

cancer therapy [35]. Therapy can be improved by combining chemical 

functionalization with adaptive characteristics. 

2.3. Carbon nanotubes 

Carbon nanotubes (CNTs) are tubes or cylinders with a special blend of 

stiffness, elasticity, and strength. Single-walled nanotubes (SWCNTs) are elongated 

enfolded graphene sheets that were created through sp 2 hybridization and have one-

dimensional hollow and cylindrical forms. These CNTs have a diameter of roughly 1 

nm and can grow to hundreds of times their original length [36]. 

Multi-walled carbon nanotubes (MWCNTs) are composed of many graphene 

sheet layers and have more complicated electrical properties. Sizes of this type of 

nanotubes range from 5 nm to 50 nm [37]. 

Functionalized CNTs (f-CNTs) have improved solubility, biocompatibility, and 

reduced toxicity when tagged with functional groups or therapeutic molecules [38]. 

Covalent and non-covalent modifications are used to alter CNT surfaces, but they 

may affect mechanical strength [39]. 

The potential benefits of SWCNTs in metal nanoparticles, such as bulk 

medication loading, structural adaptability, inherent stability, enhanced circulation 

time, and bioavailability, have drawn attention among the many types of carbon 

nanotubes [40]. Higher drug loading is possible thanks to the ability of 

functionalized SWCNTs to entrap low molecular weight substances and antibodies. 

This also enables the conjugation of biological molecules without inducing an 

immunological response. 

Doxorubicin (DOX) is commonly used in chemotherapy, but it has limitations, 

including side effects, low barrier crossing ability, and irreversible toxicity. Carbon 

nanotubes (CNTs) can effectively transport DOX, reducing side effects due to their 

high surface area, stability, and cell membrane penetration. In breast cancer 

treatment, amino-functionalized single-walled CNTs (NH2-SWCNTs) combined 

with hyaluronic acid (HA) showed faster DOX release in the tumor cell 

environment. SWCNTs-DOX-HA reduced tumor cell growth and induced apoptosis 

more effectively than SWCNTs-DOX alone, enhancing breast cancer treatment and 

the structure of doxorubicin (DOX) is shown in Figure 2 [41]. 
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Figure 2. Structure of doxorubicin (DOX). 

pH-responsive SWCNT-folic acid (FA) conjugates demonstrated higher drug 

loading and anti-tumor effects, reducing DOX side effects. FA-EDA-MWCNTs-

DOX showed pH-dependent release and cytotoxicity against breast cancer cells [42]. 

2.4. Graphene 

Graphene, a single layer of carbon with partially filled sp2-orbits, possesses 

large surface area, superior thermal conductivity, optical clarity, and strong 

mechanical strength. It acts as a semiconductor, forming new quasi-particles upon 

interaction with electrons. Quantum dots and graphene nanoribbons enable ballistic 

transport without scattering [43]. 

Graphene exhibits good electrical conductivity and reduced solubility. Sol-gel 

chemistry allows for alterations like graphene oxide and layered graphene-oxide. 

Graphene and its derivatives have diverse applications in medicine and drug 

delivery, with polymer surface modification enhancing biocompatibility [44]. 

Graphene nanomaterials respond to stimuli, regulating drug release based on internal 

and environmental inputs, improving absorption, overcoming barriers, and 

minimizing side effects [45]. 

Because of the functional groups that are present on the side walls, GOs have 

attracted a lot of attention among graphene nanomaterials. DOX and camptothecin 

were captured by graphene through hydrophobic interaction and π-π stacking. The 

presence of hydroxyl and carboxyl groups on the surface of GOs makes it easier for 

them to attach to the hydroxyl and amino groups of DOX [46]. 

A study using the 4T1 cancer cell lines showed that the electrochemical method 

successfully exhibited carrier capacity and cellular capacity. Based on pH-stimuli 

drug delivery, 5-fluorouracil loaded GO was created and the structure of 5-

fluorouracil is shown in Figure 3 [47]. 

 

Figure 3. Chemical structure of 5-fluorouracil. 
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This formulation controlled the release of the anticancer agent in the tumors 

environment’s acidic pH of 5.8, however the release was dramatically reduced in the 

physiological pH of 7.4. 

3. Multifunctional nanoparticles as NDDSs 

As a result of their direct targeting of the damaged organs, metal nanoparticles 

allow drug delivery systems to minimize adverse effects.  

3.1. Silver nanoparticles 

The manufacture of NPs and nanoparticles uses silver, which is the precious 

metal with the highest profit-orientedness because of its antiviral, antifungal, and 

antioxidant properties. These are well-known due to their unusually improved 

physicochemical properties relative to the bulk material, such as optical, thermal, 

electrical, and catalytic capabilities, as well as their anti-bacterial, anti-viral, anti-

fungal, and antioxidant activities [48]. A variety of different cell types have been 

shown to be susceptible to cytotoxicity caused by silver nanoparticles via apoptosis 

and necrosis. Additionally, they show results against side effects of conventional 

therapies such DNA damage, the production of reactive oxygen species (ROS), an 

increase in lactate dehydrogenase (LDH) leakage, and inhibition of stem cell 

differentiation [49].  

3.2. Gold nanoparticles 

AuNPs, also known as gold nanoparticles, are potent radiosensitizers used in 

medical operations such drug administration and cancer treatment [50]. Gold 

nanoparticles, or AuNPs, are potent radiosensitizers utilized in cancer treatment and 

drug administration. Au NPs are able to deliver a variety of pharmaceutical 

compounds, recombinant proteins, vaccines, or nucleotides into their targets thanks 

to their capacity to govern drug release via internal biological triggers or external 

light activation. Given its impressive effectiveness, AuNP-based drug delivery has 

drawn a lot of attention [51].  

4. Targeting strategy of the NDDSs 

There are two mechanisms by which nanocarriers can deliver to target nano-

drugs: active targeting and passive targeting. In active targeting, we focus on specific 

markers found only in sick cells, not healthy ones. For example, we can use 

molecules that interact with the overexpressed folate receptors in sick cells. CA-125 

is an example of a biomarker overexpressed in ovarian cancer that can be actively 

targeted [52]. 

In passive targeting, the size of polymers is important. Larger polymers can 

accumulate more at the site of diseased cells. This happens because the polymers can 

pass through leaky blood vessel junctions and reach the sick area. It’s like taking 

advantage of the openings in the blood vessels to deliver the drugs where they are 

needed [53]. 

In Figure 4, the illustration of passive and active targeting of nanoparticles 

(NPs) for enhancing the therapeutic efficacy of anticancer drugs Figure 4A: passive 
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targeting of NPs taking advantage of the enhanced permeability and retention (EPR) 

effect; Figure 4B: active targeting of NPs attached with ligands to enhance 

accumulation and cellular uptake of NPs via receptor-facilitated endocytosis [54]. 

 

Figure 4. Passive and active targeting of nanoparticles (NPs) as a drug delivery 

system. 

5. Application of NDDSs 

Nano drug delivery systems have various applications in medical field. Some 

are given below: 

5.1. AuNPs in cancer therapy 

For gold nanoparticles to be used as therapeutics, it is essential to comprehend 

how they are biodistributed and accumulate in living systems. This can only be done 

with accurate characterization of the nanomaterials, a reliable animal model, a 

sizeable sample, and strong statistical analyses. AuNPs regulate damage to healthy 

cells and lessen the likelihood of adverse outcomes [55]. AuNPs are a novel 

component in cancer therapy that display aggregation and a size-dependent lethal 

effect on various cancer cells [56,57]. The anti-cancer action of AuNP is complicated 

and poorly understood. The positive charges are on AuNPs, but cancerous and 

healthy cell membranes include molecules that are negatively charged, such as 

lipids, which cause AuNPs to be absorbed and internalized [58]. Another mechanism 

by which AuNPs enter cells is endocytosis, which results in the accumulation of tiny 

AuNPs inside HeLa cells [59]. 

We focused on the development of the following gold nanoparticles-based drug 

delivery systems: AuNPs covered by PEG carrying carboxylic groups, PEG-AuNPs 

linked to DOX, PEG-AuNPs linked to BLM, and, finally PEG-AuNPs linked to both 

DOX and BLM (referred to as S1, S2, S3 and S4, correspondingly) as illustrated in 

Figure 5 [59]. 
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Figure 5. Synthesis of PEG-AuNPs NPs (a) the chemical composition of DOX and 

BLM and the procedures involved in conjugating them to the surface of S1; (b) a 

schematic depicting the production of S2, S3, and S4 NPs.  

5.2. AgNPs as anti-viral agents 

A significant problem for the pharmaceutical, medical, and biotechnological 

industries is the development of resistance by different viral pathogens against anti-

viral drugs [60]. Because of their successful interactions with sulfhydra, amino, 

carboxyl, phosphate, and imidazole groups, AgNPs are well acknowledged to 

suppress viruses. 

Due to their inhibitory efficiency against a variety of viruses, including 

hepatitis, coronavirus, influenza, herpes, recombinant respiratory syncytial virus, and 

human immunodeficiency virus, AgNPs have recently gained popularity as anti-viral 

medicines [61]. AgNPs were employed to create a nanoscale delivery system for the 

antiviral drug zanamivir, and surface-enriching AgNPs with amantadine to prevent 

H1N1 virus resistance as demonstrated in Figure 6 [62]. 

 

Figure 6. The reversal of H1N1 influenza virus-induced apoptosis by silver 

nanoparticles. 
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6. Conclusion and future perspectives 

Incomparable opportunities to develop medical diagnoses and treatments for 

human ailments have been made possible by the development and growth of 

nanotechnology for therapeutic and medical-related purposes over the previous two 

to three decades. As shown by their enhanced solubility of a variety of cargoes, 

disease-fighting capacity, controlled transmission, improved strength, increased 

biodistribution inside the organism, Modula table (adjust to certain proportion) 

means of transport across tissues and cells, and controlled delivery to the target 

location, the nanomaterials exhibit a high degree of control over the desired 

properties. These kinds of methods are available to make detectors and imaging 

components that have improved identification and analysis sensitivity. Before this 

research can offer clinically effective medicines, there are still many challenges to be 

solved. The development and testing of cutting-edge methods for controlling how 

nanoparticles interact with the body is one of the main challenges to turn this 

technology into medicines. It is necessary to find a solution to the problem of 

delivering nanomaterials to specific body regions while preventing entrapment by 

organs like the liver and spleen. By modifying material qualities at the nanoscale, 

there has been enough room to improve and change current technologies. Therefore, 

with enough time and research, the promise of nanotechnology-based drugs may 

become a reality. 

Conflict of interest: The authors declare no conflict of interest. 
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