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ABSTRACT: Carbon-based nanomaterials have emerged as promising 

candidates for a wide range of biomedical applications due to their unique 

physicochemical properties and biocompatibility. This comprehensive 

review aims to provide an overview of the recent advancements and 

potential applications of carbon-based nanomaterials in the field of 

biomedicine. The review begins by discussing the different types of 

carbon-based nanomaterials, including carbon nanotubes, graphene, and 

fullerenes, highlighting their distinct structures and properties. It then 

explores the synthesis and functionalization strategies employed to tailor 

their physicochemical properties, facilitating their integration into various 

biomedical platforms. Furthermore, the review delves into the 

applications of carbon-based nanomaterials in biomedicine, focusing on 

three major areas: diagnostics, therapeutics, and tissue engineering. In 

diagnostics, carbon-based nanomaterials have demonstrated their utility 

as biosensors, imaging agents, and platforms for disease detection and 

monitoring. In therapeutics, they have been utilized for drug delivery, 

gene therapy, and photothermal therapy, among others. Additionally, 

carbon-based nanomaterials have shown great potential in tissue 

engineering, where they have been employed as scaffolds, biosensors, and 

substrates for cell growth and differentiation. The review also highlights 

the challenges and considerations associated with the use of carbon-based 

nanomaterials in biomedical applications, including toxicity concerns, 

biocompatibility, and regulatory considerations. Moreover, it discusses 

the current trends and future prospects in this rapidly evolving field, such 

as the development of multifunctional nanomaterials, combination 

therapies, and personalized medicine. 
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1. Introduction 
Carbon-based nanomaterials have gained considerable attention in the field of biomedicine due to 

their remarkable physicochemical properties and high biocompatibility. These nanomaterials, primarily 
derived from carbon allotropes such as carbon nanotubes, graphene, and fullerenes, exhibit unique 
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structural and functional characteristics that make them appealing for various biomedical applications[1–4]. A 
variety of carbon-based nanomaterial forms are shown in Figure 1. Carbon-based nanomaterials possess 
a large surface area-to-volume ratio, enabling high loading capacities for therapeutic agents, imaging 
probes, and biomolecules. This property is particularly advantageous for drug delivery systems, where 
the nanomaterials can efficiently encapsulate and transport therapeutic compounds to target sites, 
improving drug efficacy and minimizing side effects[5–9]. 

 
Figure 1. Various forms of carbon-based nanomaterials. 

Carbon-based nanomaterials exhibit excellent mechanical strength and stability, allowing them to 
withstand physiological conditions and retain their structural integrity. This robustness is essential for 
their applications as scaffolds in tissue engineering, where they provide support for cell growth, 
proliferation, and tissue regeneration[10–13].  

Moreover, carbon-based nanomaterials possess unique electrical and optical properties. For instance, 
graphene exhibits exceptional electrical conductivity, making it suitable for biosensing platforms and 
electrical stimulation of cells. Carbon nanotubes, on the other hand, display excellent optical properties, 
enabling their utilization as imaging agents for various imaging modalities, including fluorescence 
imaging, magnetic resonance imaging (MRI), and photoacoustic imaging[14–17]. Biocompatibility is 
another crucial attribute of carbon-based nanomaterials. They have been extensively investigated for their 
interactions with biological systems, and studies have shown minimal cytotoxicity and immunogenicity 
when appropriately functionalized and used at appropriate concentrations. This biocompatibility is vital 
for their safe integration into biological systems and their potential use in clinical applications[18–20]. 
Furthermore, carbon-based nanomaterials offer versatility in terms of their surface functionalization and 
modification. By introducing various functional groups, biomolecules, or targeting ligands onto their 
surface, their properties can be tailored to achieve specific functionalities, such as targeted drug delivery, 
cellular imaging, or selective interactions with biomolecules[21–24]. 

Overall, the unique physicochemical properties and biocompatibility of carbon-based nanomaterials 
make them highly promising candidates for a wide range of biomedical applications. Their potential 
applications span areas such as drug delivery, biosensing, tissue engineering, imaging, and regenerative 
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medicine. However, further research is still needed to address challenges related to their large-scale 
synthesis, long-term biocompatibility evaluation, and regulatory considerations to ensure their safe and 
effective translation into clinical practice. 

2. Carbon-based nanomaterials 
There are various types of carbon-based nanomaterials, each with its own unique physicochemical 

properties. Carbon Nano-tubes (CNTs) are cylindrical structures composed of rolled-up graphene sheets. 
They can be single-walled (SWCNTs) or multi-walled (MWCNTs), with different layers of graphene 
concentrically arranged[25–27] Several types of carbon-based nanomaterials are depicted in Figure 2. CNTs 
possess exceptional mechanical strength, high electrical conductivity, and high thermal stability. They 
exhibit unique one-dimensional electronic properties, depending on their structure (metallic or 
semiconducting)[28–30]. Graphene is another carbon-based material, and it has a single layer of carbon 
atoms arranged in a hexagonal lattice[31–33]. It exhibits remarkable properties such as high electrical 
conductivity, excellent thermal conductivity, and exceptional mechanical strength. It is also nearly 
transparent, flexible, and has a large surface area[34,35]. Fullerenes are hollow carbon molecules with cage-
like structures. The most well-known fullerene is Buckminsterfullerene (C60), which has a spherical shape 
composed of 60 carbon atoms arranged in a soccer ball-like structure[36,37]. It possesses unique electronic 
properties and high stability. It can act as electron acceptors and exhibit photophysical properties, making 
them useful in various applications, such as organic solar cells and biomedical research. 

Nowadays, Carbon Dots (CQDs) are an exceptional research nanomaterial, and they contain small 
carbon nanoparticles with sizes typically less than 10 nanometers[38,39]. Carbon dots exhibit excellent 
photoluminescence, making them useful for applications in bioimaging, optoelectronics, and sensing. 
Their properties can be tuned by controlling their size, surface functionalization, and composition[40,41]. 

 
Figure 2. Types of carbon nanotubes. 
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Carbon Nanofibers (CNFs) are fibers made of carbon with diameters in the nanometer range. CNFs 
possess high mechanical strength, high electrical conductivity, and excellent thermal stability. It evolves 
into platforms for artificial intelligence that can be utilized for a variety of purposes, including biomedical 
applications. In addition, the exceedingly large surface areas of CNFs enable them to be customized and 
functionalized as needed[42]. They have a high aspect ratio and can be used as reinforcements in composite 
materials[43,44]. Besides this, carbon nanohorns are horn-shaped nanostructures composed of graphene 
sheets. Single-walled carbon nanohorns (SWNHs) are conical carbon nanostructures constructed from 
an sp2 carbon sheet of about 2–5 nm in diameter and 30 to 50 nm long (see Figure 3). It has a unique 
spiky morphology, a high surface area, and excellent adsorption properties. SWCNHs have been shown 
to be efficient carriers for cisplatin, dexamethasone, prednisolone, and other anti-cancer and anti-
inflammatory drugs. They are also used in energy storage, catalysis, drug delivery, and biosensing[45–47]. 

 
Figure 3. The structure of carbon nanohorn[47]. 

3. Carbon-based nanomaterials for clinical diagnostic applications 
Carbon-based nanomaterials have shown great promise in diagnostic applications due to their 

unique properties, including high surface area, excellent biocompatibility, and versatile surface chemistry.  

Figure 4 illustrates the many applications of carbon-based nanomaterials in several biomedical fields. 
Here are some specific ways carbon-based nanomaterials are utilized in diagnostics. 

 
Figure 4. Biomedical applications of carbon-based nanomaterials. 
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3.1. Contrast agents in clinical imaging 

3.1.1. Carbon nanotubes (CNTs) 

CNTs have been explored as contrast agents for various imaging techniques, including magnetic 
resonance imaging (MRI) and computed tomography (CT). They possess high magnetism and strong X-
ray attenuation, enabling enhanced imaging resolution and sensitivity[48,49]. 

3.1.2. Graphene-based materials 

Graphene and graphene oxide (GO) have excellent optical properties, making them suitable for 
fluorescence imaging. They can be functionalized with targeting ligands and fluorescent dyes to 
specifically label and visualize targeted cells or tissues[50,51]. 

3.2. Biosensors 

3.2.1. Field-effect transistors (FETs) 

Carbon nanotubes and graphene can be integrated into FET-based biosensors. When biomolecules, 
such as proteins or DNA, bind to the nanomaterial surface, it induces changes in the electrical properties 
of the FET, enabling highly sensitive and label-free detection of biomarkers[52–54]. Table 1 presents specific 
biomedical uses of several carbon-based nanomaterials. 

Table 1. Several specific biomedical applications of different carbon-based nanomaterials. 

Nanomaterials Biomedical Applications References 

Carbon nanofiber Cancer therapy, Biosensor, Neurotransmitter detection, Food preservatives 
detection. 

[55] 

Graphene Gene delivery, Bio-FET, Fluorescence biosensor, Neural, cardiac and bone tissue 
engineering, Fluorescence imaging, Photoacoustic imaging, Photothermal and 
photodynamic therapy. 

[56] 

Carbon nanotubes Transistor, Electrochemical sensor, Filtration membrane, Optical biosensor, 
Electrochemical actuator, Photo luminescence. Vaccine delivery, Regenerative 
medicine, Bone, muscle and neural regeneration, Biomolecular detection. 

[57] 

Carbon quantum dots Multicolor photoluminescence, In vitro and in vivo imaging, Photoacoustic 
imaging, Drug delivery, Crossing blood-brain barrier. 

[58] 

Carbon nanohorn Methane storage, Catalyst support, Fuel cells, Supercapacitors, Electrochemical 
detection, Gas sensor, Drug carriers, Biomedicine. 

[59] 

3.2.2. Electrochemical biosensors 

Carbon-based nanomaterials, such as graphene and carbon nanofibers, can be used to design 
electrochemical biosensors. These nanomaterials provide a large surface area for immobilizing 
biomolecules, facilitating efficient electron transfer, and enabling the detection of target analytes through 
electrochemical signals[60–62]. 

3.3. Targeted drug delivery 

Functionalized carbon nanotubes 

Carbon nanotubes can be functionalized with targeting ligands, such as antibodies or peptides, to 
specifically deliver therapeutic agents to diseased cells or tissues. The large surface area of carbon 
nanotubes allows for high drug loading capacity, and their ability to penetrate cell membranes facilitates 
intracellular drug delivery[63–66]. 

Graphene-based Nanocarriers: Graphene and graphene oxide can be utilized as carriers for targeted 
drug delivery. By functionalizing their surfaces with specific targeting moieties, they can selectively bind 
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to target cells or tissues, improving drug delivery efficiency and reducing off-target effects. 

3.4. Point-of-care diagnostics 

Paper-based biosensors 

Carbon nanomaterials, such as graphene or carbon nanotubes, can be incorporated into paper-based 
biosensors for rapid and low-cost diagnostics. These biosensors can detect various analytes, including 
pathogens, biomarkers, or toxins, through colorimetric or electrochemical signals, enabling point-of-care 
testing in resource-limited settings[67–69]. 

3.5. Carbon based nanomaterials for tissue engineering application 

Carbon-based nanomaterials have shown great potential for tissue engineering applications in 
humans. Their unique properties, including high surface area, electrical conductivity, mechanical 
strength, optical properties, and biocompatibility, make them attractive for designing scaffolds and 
promoting tissue regeneration. Graphene, a single layer of carbon atoms arranged in a hexagonal lattice, 
has garnered significant interest in tissue engineering. Nanomaterials from the graphene family, such as 
graphene, graphene oxide, or reduced graphene oxide, support the adhesion and proliferation of 
mammalian cells, including human mesenchymal stem cells (hMSCs), human osteoblasts, fibroblasts, 
and adenocarcinoma cells[70]. Graphene-based scaffolds can provide structural support for cell growth 
and facilitate electrical signaling in engineered tissues. They can be functionalized with bioactive 
molecules to promote cell attachment, proliferation, and differentiation[71–73]. Besides this, CNTs, 
cylindrical structures made of rolled-up graphene sheets, have been explored for tissue engineering 
applications. They possess high mechanical strength, excellent electrical conductivity, and a large surface 
area. CNTs can be incorporated into scaffolds to improve their mechanical properties and electrical 
conductivity, which can be beneficial for tissues such as nerves, muscles, and cardiac tissues. CNTs can 
also serve as nanocarriers for controlled drug delivery to support tissue regeneration[74–76]. 

CNFs are fibrous structures composed of carbon atoms. They have a high aspect ratio, resembling 
the structure of natural extracellular matrix (ECM). The extracellular matrix (ECM) is the noncellular 
substance found in all tissues and organs. It serves as both a physical support structure for cells and a 
source of important chemical and mechanical signals needed for tissue development, specialization, and 
maintenance[77]. CNFs can provide physical cues and a favorable microenvironment for cell adhesion, 
proliferation, and differentiation. They can be fabricated into three-dimensional scaffolds that mimic the 
native tissue architecture, promoting tissue regeneration[78,79]. Moreover, CQDs are small carbon 
nanoparticles with unique optical properties. They have been investigated for tissue engineering and 
regenerative medicine applications, particularly in bioimaging and cell tracking. CQDs can be used as 
fluorescent markers to label and track cells in tissue engineering constructs, enabling real-time monitoring 
of cell behavior and tissue growth[80,81]. 

Thus, these carbon-based nanomaterials can be incorporated into scaffolds or used as surface 
coatings to enhance the properties of the biomaterials used in tissue engineering. They can promote cell 
adhesion, proliferation, and differentiation and provide a conductive and supportive environment for 
tissue regeneration. Moreover, their biocompatibility and tunable properties make them versatile tools 
for tailoring scaffold characteristics to match specific tissue engineering requirements. However, it’s 
important to note that the translation of carbon-based nanomaterials into clinical tissue engineering 
applications requires extensive research and validation to ensure their safety, long-term biocompatibility, 
and efficacy in human systems. Regulatory approval and thorough testing are necessary before their 
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widespread use in tissue engineering. 

4. The challenges associated with the use of carbon-based nanomaterials 
in biomedical sector 

The use of carbon-based nanomaterials in biomedical applications holds great promise for various 
fields, including drug delivery, tissue engineering, biosensing, and medical imaging. However, there are 
several challenges and considerations that need to be addressed to ensure their safe and effective use. 
Some of these challenges include toxicity concerns, biocompatibility, regulatory considerations, and 
long-term effects. 

4.1. Toxicity concerns 

Carbon-based nanomaterials, such as carbon nanotubes (CNTs) and graphene, possess unique 
physical and chemical properties that make them attractive for biomedical applications. However, their 
potential toxicity becomes a substantial issue when not employed under ideal conditions. The small size 
and high surface area of these nanomaterials can lead to unintended interactions with biological systems. 
It is crucial to understand their potential adverse effects on cells, tissues, and organs. Studies have shown 
that certain carbon nanomaterials can induce oxidative stress, inflammation, and different types of 
cytotoxicity such as DNA damage, lysosomal damage, mitochondrial dysfunction, and cell death. In 
addition to cytotoxicity, immunological effects such as pulmonary macrophage activation are also 
induced by carbon nanomaterials. Assessing and mitigating the toxicity of carbon-based nanomaterials 
is essential for their safe use in biomedical applications[82–84]. 

4.2. Biocompatibility 

Biocompatibility refers to the ability of a material to perform its desired function without causing 
any adverse reactions in living organisms. Carbon-based nanomaterials need to be biocompatible to 
ensure their successful integration into biological systems. Factors such as surface chemistry, purity, size, 
shape, and functionalization of these nanomaterials can influence their biocompatibility. Surface 
modifications or coatings can be applied to enhance biocompatibility and reduce potential toxicity. 
Thorough testing and evaluation of carbon-based nanomaterials in relevant biological models are 
necessary to assess their biocompatibility before their application in clinical settings[85,86]. 

4.3. Regulatory considerations 

The use of carbon-based nanomaterials in biomedical applications is subject to regulatory oversight 
to ensure patient safety. Regulatory agencies, such as the U.S. Food and Drug Administration (FDA) 
and the European Medicines Agency (EMA), have specific guidelines and requirements for the approval 
and commercialization of nanomaterial-based products. These guidelines address aspects such as 
preclinical testing, toxicity evaluation, manufacturing standards, labeling, and post-market surveillance. 
Compliance with these regulations is crucial to ensure the safe and effective use of carbon-based 
nanomaterials in biomedical applications. 

4.4. Long-term effects 

While carbon-based nanomaterials have shown promise in biomedical applications, the long-term 
effects of their exposure and accumulation in the body are not yet fully understood. It is important to 
conduct comprehensive studies to evaluate the potential risks associated with their long-term use. This 
includes investigating their potential for bioaccumulation, persistence, and chronic toxicity. Long-term 
safety studies are necessary to assess the potential risks and benefits of using carbon-based nanomaterials 
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in biomedical applications. 

To address these challenges and considerations, interdisciplinary collaborations between scientists, 
engineers, clinicians, and regulatory authorities are essential. Robust testing protocols, standardized 
characterization methods, and thorough risk assessments should be employed to ensure the safe and 
effective translation of carbon-based nanomaterials into clinical practice. 

5. Conclusion 
The use of carbon-based nanomaterials in biomedical applications offers tremendous potential for 

advancements in medicine and healthcare. These nanomaterials, such as carbon nanotubes, graphene, 
and fullerenes, possess unique properties that make them attractive for a wide range of applications, 
including drug delivery, tissue engineering, biosensing, and medical imaging. However, the challenges 
and considerations associated with their use cannot be overlooked. Toxicity concerns, biocompatibility, 
regulatory considerations, and long-term effects are critical factors that need to be carefully addressed to 
ensure their safe and effective utilization. 
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