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Abstract: We analytically (based on cumulative quantum mechanics (CQM) and the method 

of generalized mathematical transfer (MGMT)) study quantum nanometer cumulative-

dissipative structures (CDS) and the forces arising in them, focusing nanostructures into 

regular, fractalized systems—cumulative dissipative standing hydrogen-like excitons 

(hydrogen-like atoms, molecules, lines, surfaces) and flickering crystals discovered by the 

author. The CQM turned out to be useful in describing “mysterious” CDS with sizes of 10−15–

1026 m. In CDS, cumulation and dissipation of masses, energies, momenta and fields occur 

simultaneously (or with a certain delay) and in accordance with fairly general laws (the virial 

theorem works). Using the CQM and MGMT, in this paper we describe cumulative and 

dissipative phenomena in diamonds doped with boron (atoms from group Ⅲ of the periodic 

table). Problems in crystals with chemical doping with foreign atoms (with their introduction 

into the crystal lattice) were solved. We: (1) discovered the Vysikaylo’s standing excitons 

formed on inhomogeneities of the permittivity −ε(r) in diamond in the nanoregion of a foreign 

atom; (2) for the first time we solved the problem of measuring the ε(r) profiles in 

inhomogeneous nanoscale structures using Raman spectra (RS) (with an accuracy of up to 

99.9% of ε(r) and a step of up to 0.3 nm depending on the distance from the impurity atom 

(boron)); (3) based on our theory of the Vysikaylo’s standing excitons, we prove the 

observation in the experiments described in the literature of degeneracy of the electron spectra 

in standing excitons with respect to the principal quantum number n and n-1/2. Comparing the 

theory and experimental observations of RS in diamonds doped with boron, we solve 

(formulated by us earlier) the problem between the de Broglie hypothesis and the classical new 

quantum mechanics of Dirac (which limits the ψ-functions-prohibits symmetric de Broglie 

half-waves in spherically and cylindrically symmetric quantum hollow resonators) in favor of 

the de Broglie hypothesis. Based on the works of Vanier and Mott, we have refined the 

definition of the permittivity of nanocrystals as a coefficient in electric potentials (U(r) → 

ε(r)U(r)), rather than electric fields (D(r) = ε(r)E(r)). We have constructed the most complete 

theory of chemical doping of crystals (using the example of crystals of group IV elements with 

atoms of groups Ⅲ and V from the periodic table. For the first time, the question of quantum 

cleaning of crystals or cumulation of dopant atoms to each other has been raised. 

Keywords: physical and chemical doping of nanostructured materials; Vysikaylo’s 

cumulative-dissipative structures; cumulative quantum mechanics; cumulation of de Broglie 

waves; unlimited cumulation of de Broglie wave ψn-1/2-functions; chemical doping; spherically 

and cylindrically symmetric quantum hollow resonators; exciton 

1. Introduction 

General knowledge obtained in solving some problems can and should be used 

in describing seemingly completely different phenomena described by partially 
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modified mathematical models. Much in common (analogous), discovered in some 

areas of science, can and should be discovered, studied and applied in other sciences. 

We generalize mathematical analogs for describing phenomena in femto-, nano-, 

meso- and macro-worlds and the concept of “dark spaces” and points of cumulation 

(L1) of energy-mass-momentum flows between Coulomb attractors of any scale. In 

this paper, we reveal the essential role of these areas and cumulation points in the 

transfer of energy-mass-momentum flows in flickering crystals from nanometer 

attractors. Cumulation (self-focusing) of charged particles in inhomogeneous media 

with electric fields is a universal property of CDS. To describe such phenomena in 

crystals doped with foreign atoms, we modify the CDS model for hollow quantum 

polarizing resonators. It is based on CQM. Cumulation (self-focusing) of charged 

particles in inhomogeneous media with electric fields is a universal property of a 

number of CDS with typical dimensions from 10−15 to 1026 m [1–5]. The Vysikaylo’s 

CDS include neutral and charged structures such as neutrons, atomic nuclei, atoms, 

molecules, lightning, tornadoes, stars, galaxies, intergalactic lightning, states, ethnic 

groups, living organisms, etc. The analogy of processes in CDS allows us to apply the 

method of generalized mathematical transfer (MGMT) of the most complete 

mathematical models to describe similar phenomena from well-studied areas of 

science in less thoroughly studied areas of natural sciences. When transferring 

mathematical models in this way, we must take into account the specifics of the 

phenomena being described. The use of nanosystems in the transformation of atomic 

energy and electromagnetic radiation into other types of energy is very promising. 

In this paper we use the method of general mathematical transfer (MGMT) to 

describe the phenomena of cumulation and dissipation of electromagnetic radiation in 

the region of a foreign atom chemically doping diamond crystals. This method consists 

of transferring mathematical models and their solutions from well-studied areas of 

natural sciences to less well-studied areas of natural sciences. 

1.1. Definition of cumulation 

The most intelligible definition of cumulation is given in the preface by 

Zeldovich [6]: “Cumulation is the concentration of force, energy or another physical 

quantity in a small volume.” We will rely on this definition in the future, implying that 

we are talking about the cumulation of a certain parameter (dynamic or static order). 

When using this definition, it should be understood that during the cumulation of one 

parameter, “dissipation” (scattering, decrease, etc.) of another parameter can be 

observed. Thus, when a shock wave expands into the atmosphere, its speed increases 

due to a decrease in the density of the atmosphere with height, while the energy density 

decreases. In this case, we can talk about the cumulation of speed in the wavefront, 

but there is no need to talk about the cumulation of energy. The main results of the 

study of the phenomenon of unlimited cumulation are presented in Zababakhin’s study 

[6] in the form of separate problems. 

The difference between Vysikaylo’s CDS and dissipative structures 

(Kolmogorov-Turing-Prigogine and their followers—DS) is the consideration of 

convective processes of focusing (cumulation) of energy-mass-pulse flows (EMPF) to 

points, lines or surfaces of cumulation [1−5]. The difference between CDS discovered 
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by Vysikaylo [1] and the DS (in particular, from Busselator) is that in CDS there is a 

generation of new degrees of freedom (NDF: rotation, pulsations, violation of 

electroneutrality, generation of electric and magnetic fields, etc.) on account of a 

cumulation of convective flows. Vysikaylo’s CDS have a number of common 

properties that differ from the properties of DS. We will focus on a number of common 

properties of positively charged (+) CDS (cathode spots, atomic nuclei, stars, galaxies, 

etc.). 

1.2. Method of generalized mathematical transfer 

The analogy of a number of processes in the CDS allows us to apply the method 

of generalized mathematical transfer (MGMT) of the most complete mathematical 

models and their solutions to describe similar phenomena from well-studied areas of 

science in less thoroughly studied areas of natural science. When transferring 

mathematical models in this way, we must take into account the specifics of the 

phenomena being described. MGMT has long been used and is still used to accelerate 

the development of philosophy and natural sciences in various areas of natural science. 

This method was used by: 

1) Newton. He studied and generalized the description of gravitational forces on 

Earth and in space. On 29 March 1696, Isaac Newton was appointed Warden (and 

from 1699, Director) of the London Mint. In this position, he saved England from 

chaos due to the debasement of money by counterfeiters; 

2) Louis de Broglie described quantum phenomena using his hypothesis. He put 

forward the hypothesis: “Particles behave like waves” and received the Nobel 

Prize for developing this idea. He introduced the concept of de Broglie wave for 

particles; 

3) Einstein to describe the photoelectric effect. He applied the opposite idea: 

“Electromagnetic waves behave like particles” and received the Nobel Prize for 

explaining the photoelectric effect; 

4) Niels Bohr. He successfully applied the planetary model of Copernicus and his 

followers to describe electric potentials and electron orbits to explain the spectra 

of the hydrogen atom. In 1922, Niels Bohr was awarded the Nobel Prize “for his 

services to the study of the structure of atoms and the radiation emitted by them”; 

5) Schrödinger with Dirac. They created a new quantum (wave) theory that takes 

into account the wave statistical properties of an electron in a hydrogen atom and 

its wave passage through two slits. As a result, in 1933, Schrödinger and Dirac 

received the Nobel Prize “for the discovery of new productive forms of atomic 

theory” (and thus for the transfer of Bohr’s theory to the status of a 

pseudoscientific theory); 

6) Vysikaylo to the discovery and description [1–5] of: 

a) Shock waves of an electric field and plasma nozzles (analogs of Laval 

nozzles) in a plasma with current (1985–2024). For this, he constructed the 

most complete theory of perturbations in a plasma with current and thus 

obtained a modified Navier-Stokes equation, which made it possible to 

analytically and numerically describe all the phenomena observed (in the 

experiments organized by him) in an inhomogeneous plasma with current; 
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b) 5 points of cumulation and libration for electrons in a system of two rotating 

positively charged Coulomb attractors (two atoms in a molecule). Here he 

took into account the generality of the laws of cumulation ~1/r in 

gravitational and Coulomb potentials. He related the number of electron 

cumulation points in a molecule with the valence of atoms; 

c) Points, lines and surfaces (charged strata—running and standing shock 

waves of the electric field) of libration and cumulation for free electrons 

between positively charged structures of plasma with current. He proved 

that Coulomb (electric) potentials in 4D space-time function similarly to 

gravitational potentials; 

d) Endoelectrons in fullerenes and, accordingly, all spectra of negatively 

charged fullerenes. He proved (based on a number of experiments [2]) the 

formation of symmetric de Broglie waves of electrons in hollow fullerenes 

and the corresponding degeneration of spectra in hollow fullerenes with 

respect to the principal quantum number n and n−1/2. Such similar cos-

waves are formed (when drops fall into cylindrical glasses with liquid, when 

studying sonoluminescence phenomena, etc.) in ordinary hydrodynamics in 

hollow spherically and cylindrically symmetric resonators. 

e) Standing Vysikaylo’s excitons formed in the area of chemical doping of 

diamonds with boron atoms. Here he modified the Wannier-Mott model 

(with a uniform value of the permittivity ε = const throughout the crystal) 

into a model that takes into account the polarization of crystals (ε = ε(r)) 

when a foreign atom is introduced into their crystal lattice. And thus he 

proposed a new method for determining the profile of the relative 

permittivity ε(r) from the distance to the center of a standing exciton using 

Raman spectra [5]; 

f) The mechanism of Coulomb fractalization of meteoroids and small asteroids 

by a plasma tail behind them. This mechanism was developed on the basis 

of a modification of the Vysikaylo’s model of lightning impulse propagation 

observed in experiments by Shenland in 1934–1938. Shenland 

experimentally proved, using a Boyce chamber, that electrons, cumulating 

in lightning, run away from it forward (in the form of runaway electron jets) 

with an energy of up to 5 MeV, etc. 

The MGMT goes back to the idea of Eratosthenes, which he applied (19 June 240 

BC) when calculating the length of the Earth’s meridian (geometric structures are 

similar, various theorems can be applied to them, etc.). The method, founded by 

Eratosthenes, has long been successfully used on Earth and helps in the discovery and 

quantitative description of “mysterious” phenomena, including CDS. 

Here we used this general method (MGMT) to expand (transfer) the 

achievements of the Vysikaylo’s cumulative quantum mechanics [2,5] (obtained by 

analytically describing the phenomena of cumulation of de Broglie waves of electrons 

in hollow quantum resonators, using the example of hollow fullerenes—C60,70), to 

describe the Vysikaylo’s standing hydrogen-like excitons discovered in diamonds 

(crystal groups 4 of the periodic table) during their chemical alloying with foreign 

atoms with a valence other than carbon (atoms from the 3rd and 5th groups of elements 

of the periodic table). 
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In physics, there are two ways of alloying materials: 1) physical alloying with 

atomic or molecular structures having a high affinity for free electrons [2]; 2) chemical 

alloying, in which a foreign atom is embedded (with the replacement of the support 

lattice atom) into the crystal lattice of the support crystal [5]. 

1.3. Classification of excitons 

The concept of an exciton is close to the concept of a solitary wave, soliton or 

CDS. When electromagnetic energy (waves) accumulates (absorbs and localizes) in a 

crystal, electrons and holes (positive ions) are formed in space. At any distance, they 

experience Coulomb interaction, which is weakened by the polarization of the medium 

localized within the characteristic size of the exciton (the distance between the electron 

and the ion). The interaction leads to the fact that electrons and holes should be 

considered in 3D space as a bound electron-hole pair—an exciton. In this case, an 

exciton is a quasiparticle (a quantum pulsar in which an electron pulsates in the region 

of a positively charged hole in accordance with its total energy), arising during 

globally currentless excitations in semiconductors. Coulomb potentials act as lenses, 

focusing electrons that have received additional energy. By focusing electrons that 

have received energy from electromagnetic waves, these potentials thereby cumulate 

(localize) the energy of these electromagnetic waves in an exciton. The cumulation of 

electromagnetic waves by excitons leads to an increase in the total energy of an 

electron in an exciton, a decrease in its kinetic energy in the potential well, and a 

corresponding increase in the radius of its pulsation in the hole region. And, 

conversely, the release of electron energy in an exciton (in the form of electromagnetic 

waves) leads to a decrease in the effective radius of electron pulsation in an exciton 

and a corresponding increase in its kinetic energy. This is the general scheme of 

pulsation of a quantum Coulomb pulsar and the formation of electron levels of 

excitons [5]. This general scheme requires a certain amount of detail in the case of 

excitons in crystals doped with foreign atoms. 

Depending on the nature of the bond, two types of excitons localized in potential 

wells are noted [7,8] (Figure 1). The first type is small-radius excitons (Frenkel’s 

excitons) associated with a specific atom; their sizes do not exceed the interatomic 

distance in the crystal [7,8]. Frenkel’s excitons can move along the supporting crystal 

(if they were formed on the basis of one of the atoms of the crystal lattice) or be 

localized if the energy spectra of the excited atoms do not coincide with the energy 

spectra of the surrounding atoms [5]. The second type is free hydrogen-like spherically 

symmetric excitons of large Wannier-Mott radius (WM excitons), the characteristic 

sizes of which reach 20 nm (tens and hundreds of interatomic distances). This type of 

exciton is formed from atoms or molecules of a homogeneous reference crystal (with 

constant values of relative permittivity −ε(R) = соnst) and therefore they can move 

freely along the crystal. 

We will dwell on the discovery and description of the third new type of standing 

(localized) excitons of large size and the formation of large-radius molecules, lines, 

surfaces and flickering crystals (superlattices) from them. These Vysikaylo’s standing 

excitons (hydrogen-like, molecular-like, linear-, surface- and crystal-like structures 

from excitons) are formed by chemical doping of crystal lattices with impurity atoms 
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with a valence different from the valence of the atoms of the reference crystal. We 

prove that chemical doping leads to local changes in the relative permittivity in 

crystals. Let us consider the scheme of chemical doping. 

 

Figure 1. The de Broglie-Bohr-Schrodinger problem for hydrogen-like 

nanostructures. 

The scheme of a stable (closed) quantum dot with an infinite potential Coulomb 

barrier surrounding it for particles with total energy less than zero is shown in Figure 

1. To describe the energy spectrum of a quantum dot, a model of a hydrogen-like atom 

with an “orbit radius” is used rn and rn−1/2 are the characteristic radii of a quantum 

resonator with a Coulomb potential for quantum particles with a principal quantum 

number n and energies En (with asymmetric ψn) and En−1/2 (with symmetric ψn−1/2), 

respectively. ΔEn−1/2,n is the Vysikaylo’s energy splitting of the higher levels with the 

main quantum number n [2]. 

1.4. Details schemes of Vysikaylo’s excitons and chemical doping of 

support crystals with acceptor impurities 

Acceptor doping is the process of introducing an impurity into a material that 

locally lowers the Fermi level. This is achieved by doping the reference crystal with 

atoms of lower valence. Since the valence of the doping atom is lower, one of the 

valence electrons in the doped crystal is unpaired and, receiving additional energy, 

forms an exciton in the region of the doping atom. We will consider in detail the 

scheme of doping diamond (elements of group Ⅳ of the periodic table) with boron 

atoms (elements of group Ⅲ). 

Figure 2 shows the general scheme of chemical doping of diamond with an 

acceptor impurity—a boron atom. Figure 2a shows a flat 2D scheme of an 

unperturbed diamond crystal. In diamond, each carbon atom forms four paired strong 

sp3 bonds. The distance between the centers of carbon atoms in diamond is 0.154 nm. 

In this case, the value of the relative permittivity of a homogeneous diamond is ε = 

5.7. 

When diamond is doped with a boron atom (its valence is 3), one electron of 

carbon (its valence is 4) in the region of the boron atom turns out to be unpaired and, 

receiving energy, can form a Vysikaylo’s standing exciton in this region [5]. Figure 
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2b shows a rough 2D diagram of diamond doping with a boron atom. As shown by 

numerical calculations performed using the DFT method (first-principles studies) [9], 

the distance between the boron and carbon atoms is significantly greater than the 

distance between the carbon atoms in pure diamond and reaches a value of −0.159 nm. 

This phenomenon was not taken into account in the classical works of the Collins 

group [10] and their followers, who were engaged in the alloying of diamonds. If this 

is so, then doping with a boron atom leads to a perturbation of the diamond crystal 

lattice in the region of the foreign atom (the boron atom pushes the carbon atoms apart) 

and thus leads to a significant local increase in the relative permittivity −ε and, 

consequently, leads to a change in the entire spectrum of the free WM exciton, making 

such an exciton a Vysikaylo’s standing exciton [5]. A fast (relative to the velocity of 

electron movement in an exciton) movement of a hole (in the region of the doping 

atom) forms an exciton with a positive ion smeared in time and a hollow center 

(Figure 2c). Here we observe an analogy with the polarization capture of a free 

electron into a fullerene cavity [4,11]. Therefore (according to MGMT), we will 

transfer the technique of analytical calculations of the eigenenergy spectra in hollow 

spherically symmetric quantum resonators to the calculations of the energy spectra of 

Vysikaylo’s standing excitons in boron-doped diamonds [5]. According to 

experimental and analytical studies of the resonant capture of electrons into hollow 

fullerene molecules, cos-wave spectra (with symmetric ψ–functions) appear in the 

eigenenergy spectrum of quantum resonators, i.e., spectra with half-integer principal 

quantum numbers n-1/2. This quantum degeneracy in the principal quantum number 

was discovered by the author on the basis of cumulative quantum mechanics and 

experimental data [2,5]. 

 

Figure 2. Geometric 2D scheme of formation of a quantum dot (socialization of an 

electron by the volume of a nanocrystal): (a) ideal crystal lattice of an element from 

group IV of the periodic table of D.I. Mendeleyev; (b) geometric 2D scheme of 

modification of an ideal crystal lattice by introducing a boron atom into the crystal 

lattice (triangle). The impurity atom replaces the atom in the original (ideal) crystal 

lattice. e is the electron shared by the volume of the quantum dot. + is a hole moving 

around the boron atom at a speed corresponding to the kinetic energy of the valence 

electrons of carbon atoms (the positive ion moves quickly). The gray square is the node 

of the ideal lattice to which the shared electron cumulates; (c) a spherically symmetric 

quantum dot in diamond with a boron atom replacing a carbon atom: 1—an internal 

cavity in the region of a node of an ideal crystal lattice, caused by pressing a boron atom 

to only three carbon atoms; 2—a sphere of motion of a positively charged hollow hole 

with a radius of d ≈ 1.59 Å; 3—a boundary within which an electron is localized in a 

stable spherically symmetric quantum dot—a standing Vysikaylo’s exciton (or color 

center) with a radius of an. 
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1.5. On the identification of the electronic spectra of Vysikaylo’s excitons 

observed in experiments 

The author suggests that a number of long-observed Raman spectra in boron-

doped diamonds belong to the electron spectra of Vysikaylo’s standing excitons [5]. 

However, for a number of reasons, these spectra have not yet been properly identified 

due to the lack of understanding of the basics of cumulative quantum mechanics 

(CQM) among experimenters [2]. When comparing with experimental observations of 

the energy spectra of Vysikaylo’s standing excitons, we will mainly focus on the 

spectra established in the works of Collins and his co-authors. These spectra are 

recognized as reliable by most researchers of boron-doped diamonds. Collins in 1994 

claimed that there are no adequate theoretical descriptions of any of the processes 

observed in the experiments: temperature dependences of scattering mechanisms, the 

contribution of the split-off valence band, and the population of excited states in the 

conductivity of doped diamond crystals [10]. In this case, for both polycrystalline and 

single-crystal homoepitaxial CVD diamond, measurements of electrical properties can 

be completely nullified due to the presence of a surface layer of non-diamond carbon. 

The task of describing all possible emission and resonant absorption spectra in doped 

diamonds is a rather complex and ambiguous task. We will apply MGMT to describe 

the electron spectra of Vysikaylo’s hydrogen-like standing excitons [5]. This will 

prove that the description of Vysikaylo’s standing hydrogen-like exciton atoms and 

molecules (using MGMT) can be carried out similarly to the description of the spectra 

of hydrogen atoms and molecules. 

Before we proceed to the description of the electron spectra of Vysikaylo’s 

standing hollow excitons (Figure 2c), we will briefly dwell on the achievements of 

cumulative quantum mechanics, based on the analytical [5] and experimental [11–13] 

study of the polarization resonance capture of free electrons into the internal cavity of 

various types of fullerenes (C60,70). This will give us grounds to take into account a 

number of additional spectra involving the principal quantum numbers n-1/2. Thus, 

we will apply the basics of Vysikaylo’s CQM in our study and interpretation of Raman 

spectra in diamonds doped with boron. 

2. Achievements of the Vysikaylo’s cumulative quantum mechanics 

Along with the discovery of new materials, new technologies are being developed 

and attempts are being made to create mathematical models capable of describing 

phenomena in hollow quantum resonators—quantum dots, lines, and other 

cumulative-dissipative three-dimensional structures of nanometer dimensions. Such 

goals can be achieved by testing and modernizing the foundations of Dirac’s new 

quantum wave mechanics (NQWM) and supplementing it with the foundations of 

Vysikaylo’s cumulative quantum mechanics (CQM), which describes real cumulative 

and dissipative phenomena in nanometer structures within the framework of de 

Broglie’s quantum mechanics [5]. This modification of the NQWM, confirmed by 

experiments in the nano-world in theoretical and experimental [2], studies of the 

polarization capture of electrons into the internal cavity of fullerenes, turns out to be 

very useful in describing the “mysterious” cumulative-dissipative phenomena in 
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structures with sizes from 10−15 to 1026 m [1–5]. The results of our study and the 

experiments available [2], can be formulated as follows: 

1) It is necessary to limit everywhere only the probability (or the probability 

density W(r) dr = χ2⎹ψ⎸2dr taking into account the geometric coefficient –χ2 = 2kπkrk, 

here k = 1 for cylindrical symmetry of a hollow resonator, k = 2 for spherical symmetry 

and χ2 = 1 for plane symmetry) of finding a particle in the volume of a resonator with 

different types of symmetry, and not the ψ-function, as Dirac [14] and his followers 

[15,16] do. They limit the ψ-function everywhere. We limit everywhere only the 

probability density of finding a particle—𝑊(𝑟)  =  𝑥2 ⎹𝜓⎸2; 

2) Modification of the Dirac’s requirement and taking into account the geometric 

coefficient −χ, normalizing the ψn−1/2-functions (ψn−1/2~cos(kr)/r in spherical and 

ψn−1/2~cos(kr)/r1/2 cylindrical hollow resonators) transforms the forbidden eigen-

energy spectra with energy En−1/2 with unlimited cumulation to the centers of hollow 

resonators (with ψn-1/2-functions) into allowed ones. In this case, all spectra previously 

allowed only for resonators with planar symmetry [17] become allowed for spherically 

and cylindrically symmetric hollow quantum resonators, such as:  

En−1/2 = Encos = ± (ħ2/2m)π2(n−½)±2/(R + rind)
2, n = 1, 2, 3, … и 

En−1/2 ⇆ Ei; En−1/2 ⇆ Ei−1/2 
(1) 

here “–” is for quantum wells, and “+” is for quantum resonators surrounded by 

potential barriers (polarization traps, etc.) [5], R is the characteristic size of the 

resonator, rind is the polarization length by which the resonator size increases, m is the 

classical electron mass; 

3) The eigen-energy spectra (1) for hollow quantum resonators with spherical and 

cylindrical symmetries will be called the Vysikaylo’s energy spectra, and the 

degeneracy of the electron spectra with respect to the principal quantum number n and 

n-1/2 will be called the Vysikaylo degeneracy. These spectra, obtained analytically in 

Vysikaylo’s study [2], were in excellent agreement with the experimentally measured 

eigenenergy spectra of fullerenes C60 and C70 during the study of resonant captures of 

electrons by these molecules into their internal cavity [11–13]. Thus, negatively 

charged endo-ions ek@Сn with endo-electrons inside them are formed on the basis of 

hollow fullerenes – Cn. Here k = 1, …, 6 is the number of captured electrons, n is the 

number of carbon atoms in the fullerene [2]; 

4) The complete eigen energy spectra (taking into account the Vysikaylo’s 

spectra) of hollow quantum resonators do not depend on the symmetry of the quantum 

resonator [2]; 

5) Our analysis of the experimentally obtained resonance spectra of electron 

capture (with resonance energy) by fullerenes [11–13] and comparison with our 

analytical calculations of these spectra within the framework of CQM [2] allows us to 

assert that the ψ-function of a particle appears only when boundary conditions are 

specified for the Schrödinger equation. This means that the particle always remains a 

particle with its mass, charge and other parameters, and the wave properties of the 

particle correspond to its statistical behavior in a quantum resonator and are 

determined by the boundary conditions, i.e. external factors. 
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Thus, in the case of experiments with “passing electrons through two slits” the 

interference pattern appears only as a statistical result. The representation of a free 

particle as a moving plane de Broglie wave is incorrect! The particle itself does not 

transform into a shell, a plane wave, etc. Statistically, the particle behaves like a wave 

in a certain resonator, and this behavior creates the effect of its transformation into a 

wave or shell. When the characteristic dimensions of quantum resonators change, the 

ψ-function of a quantum particle trapped in the resonator can be changed, for example, 

when an electron collapses into a proton in an atomic nucleus, etc. In this case, 

according to the virial theorem proved by Fock for quantum phenomena [18], half of 

the potential energy goes to increasing the internal energy of the proton turning into a 

neutron, and the other half goes to emitting a neutrino with an energy of about 0.85 

MeV [5]. In this regard, the phenomena described within the framework of wave 

cumulative quantum mechanics have analogues in ordinary hydrodynamics [2,5]. 

In general, the cumulation and dissipation of energy, mass and momentum in 

CDS may not necessarily occur simultaneously. Thus, in an atom, the absorption of 

resonant electromagnetic energy and its subsequent re-emission usually occur with a 

certain time delay. However, the emission of an electromagnetic wave by an atom and 

the transition of an electron from an upper energy level to a lower energy level, 

according to the virial theorem, occur simultaneously [18]. Similarly, when an atom 

absorbs electromagnetic energy, the transition of an electron to a higher energy level 

also occurs simultaneously with the absorption of energy. Here, the processes of 

cumulation (focusing) and dissipation (increase in the characteristic dimensions of the 

structure) are co-organized. Here, the processes of cumulation (focusing) and 

dissipation (increase in the characteristic dimensions of the structure) are co-

organized. 

3. Basic provisions for the description of Vysikaylo’s standing 

excitons 

In our papers we consistently solve the problems arising (as we believe, in 

describing the eigen-energy spectra of quantum nano-resonators of various natures) 

between the de Broglie hypothesis and the classical Dirac’s NQWM, which 

everywhere limits the values of ψ-functions. As we have proved (in our analysis of the 

available experimental and our theoretical studies [2]), it is a mistake to limit ψ-

functions everywhere without taking into account the normalizing geometric 

coefficients χ2. In Vysikaylo’s study [2], it is shown how these problems and 

paradoxes (discrepancies between experimental observations and incomplete theories) 

caused by phenomena arising from the violation of electrical neutrality (in particular, 

polarization) in nanostructured composite materials are solved using CQM and taking 

into account the regularization of unbounded ψn−½-functions by the normalizing 

geometric coefficient –χ2, which takes into account the symmetry of the quantum 

resonator [2]. The use of CQM made it possible to discover about 35 quantum-

dimensional effects and describe a number of previously “mysterious” phenomena [2]. 

The discovery of the Vysikaylo’s degeneracy by the main quantum number n and 

n-1/2 in hollow quantum resonators significantly changes the parameters of quantum 

stars (white dwarfs, neutron stars and black holes) [1]. 
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In this paper, we will consider similar problems in describing nanostructures that 

arise during chemical doping of crystals of group IV of the periodic table. We will do 

this using the example of studying nanostructures—Vysikaylo’s standing excitons: 

large hydrogen-like atoms, hydrogen-like molecules, lines, surfaces and flickering 

crystals of Vysikaylo’s standing excitons in inhomogeneous diamond doped with 

boron. For this purpose, we will modify the Wannier-Mott’s theory, constructed by 

them for homogeneous crystals, to describe standing excitons in inhomogeneous 

crystals [5]. 

3.1. Large running (free) Wannier-Mott’s excitons 

Wannier-Mott excitons [7,8,19,20] exist in semiconductors due to the high 

permittivity of the latter. High permittivity –ε > 5 leads to weakening of electrostatic 

attraction between the electron and positively charged hole, which leads to a large 

radius of the exciton (a large hydrogen-like atom). The characteristic dimensions of 

Wannier-Mott’s excitons increase by ε times, and the energy spectra decrease by ε2 

times in relation to the parameters of the hydrogen atom: 

En = −(mr e
4/(8εkε0 h)2)/n2 (2) 

where mr is the reduced mass of the system (electron and hole) in a cubic crystal; εk is 

the constant permittivity of the crystal under consideration; n is the principal quantum 

number of the exciton. Here Wannier and Mott applied and detailed the method of 

Eratosthenes (MGMT) for predicting and describing large-radius excitons using a 

quantum model for the hydrogen atom. 

The hydrogen-like electron spectrum of Wannier-Mott excitons was first 

observed in the absorption spectrum of Cu2O in 1952 by Gross and Karyev and 

independently by Hayasi and Katsuki, but the excitonic interpretation was absent in 

the work of the Japanese authors. In all these studies, the permittivity was considered 

constant ε = const. Since such large-radius excitons are formed by the ionization of 

atoms or molecules of the supporting crystal, such excitons move freely along this 

crystal and are running (free) Wannier-Mott’s excitons. 

3.2. Determination of relative permittivity for nanostructures 

In 1937–1939, Wannier and Mott [19,20] proposed a model in which they 

predicted and described hydrogen-like structures of free excitons of large radius (up 

to 20 nm) in homogeneous crystals. For this, in the Bohr model of the hydrogen atom, 

they took into account the relative permittivity (2) – ε (Figure 3). In the case of the 

Wannier-Mott (WM) model, the relative permittivity ε(r) = εk = const for a pure crystal 

was considered constant throughout the crystal [7,8]. Under these assumptions, 

Wannier and Mott [7,8,19,20] were the first to show that the hydrogen atom model, 

taking into account the relative dielectric polarization, which weakens the Coulomb 

potential by a factor of εk = const > 1, can be successfully applied to describe free 

hydrogen-like excitons of large radius in homogeneous dielectric crystals [7,8]. 

Our modification of the Vanier-Mott’s model 

A number of researchers mistakenly associate the definition of the relative 

permittivity εk with the wavelengths of electromagnetic radiation. They forget that 
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electromagnetic waves accumulate on electrons and thus increase the size (when they 

are absorbed by electrons) or decrease (when they are emitted by electrons) of the 

region of electron pulsation near the hole. (Within the framework of the old Bohr 

theory, the radius of the electron orbit in the exciton changes). The wavelength of 

electromagnetic radiation changes from zero to infinity. Therefore, already within the 

framework of the Wannier-Mott’s model, the relative permittivity should be associated 

with the nanostructure corresponding to the characteristic orbit of the electron, and not 

with the wavelength of electromagnetic radiation. In the case of inhomogeneous 

crystals, such an understanding of the relative permittivity allows us to propose a 

method for determining the relative permittivity for nanosized structures [5]. 

In physics, there are two definitions of the relative permittivity –ε: through the 

weakening coefficient of the electric field strength –E (D = εE), with all the 

assumptions [21], and through the weakening of the Coulomb potential –φ(r) → φ(r)/ε 

[21]. Such a definition for local potentials φ(r) allows us to introduce a local concept 

for the relative permittivity in nanocrystals ε(r) and φ(r) → φ(r)/ε(r) [5]. These two 

different definitions coincide only in the case of a constant value of ε(r), i.e., in the 

case of a spatially homogeneous dielectric with ε = const throughout the volume of the 

crystal. In the case of doping a crystal with a foreign atom, the crystal, as we have 

seen, becomes inhomogeneous in the doping region, and its relative permittivity can 

locally change significantly (Figure 2b). This can significantly change the resonance 

electron spectrum of Wannier-Mott’s excitons in a crystal doped with a foreign atom 

[5]. Therefore, to solve problems in the nanoworld, where the Schrödinger equation 

includes the Coulomb potential profile, we will use the definition of relative 

permittivity as a coefficient weakening the Coulomb potential of a charge in a crystal 

at a distance r from this charge by ε(r) times [5]. This definition allowed us to apply 

the Wannier-Mott’s model modified by me to explain the Raman spectra obtained in 

a number of works [22–28], and to calculate the local values of ε(rn), where rn is the 

radius of the Bohr orbit of the hydrogen-like standing Vysikaylo’s exciton, with the 

principal quantum number n, and to obtain the profile of ε(rn) at n = 1, 2, 3, … in the 

region of the doped atom [5]. In large-radius excitons, as well as in the hydrogen atom 

or the Frenkel’s exciton, the processes of absorption of electromagnetic waves are 

possible—their cumulation into an atom or exciton, as well as the processes of their 

generation—the dissipation of excitation energy into the surrounding space. 

Therefore, such structures can be classified as CDS [1–5]. When studying the flows 

of dissipation from such spherically symmetric quantum structures, according to the 

principles of quantum (wave) mechanics, it is possible to construct an internal discrete 

quantum structure of the CDS and its modification, both during energy cumulation 

and during its dissipation (in particular, during the emission of electromagnetic waves) 

(Figure 3). In this case, as noted, we will take into account the weakening of the 

Coulomb potential in the dielectric using the spherically symmetric coefficient ε(r). 

According to Landau and Lifshits [21] and the principle of superposition of Coulomb 

potentials, this coefficient is determined by internal charges and their location in a 

sphere of radius r, and not by parts of the crystal external to this sphere (Figure 3). 

Here we prove the absence of the manifestation of Mach’s principle for the properties 

of standing Vysikaylo’s excitons (on the influence of all atoms surrounding the exciton 

on its properties). 
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Figure 3. Scheme of the transition of an electron from an energy level with potential 

energy φ(r2) to a level with φ(r1) with the emission of an electromagnetic wave 

(EMW) carrying, according to the law of conservation of energy, information about 

the internal structure of the doped dielectric through ε(r1) and ε(r2). 

Already in the Wannier-Mott model, the potential energy is weakened by the 

value of the relative permittivity –εk. This method requires a more precise definition 

of what the relative permittivity is for hydrogen-like nanometer structures and whether 

it is possible to take into account the inhomogeneity of doped crystals and thus modify 

the Wannier-Mott model by replacing εk = const over the entire crystal with ε(r), which 

depends only on the internal part of the crystal, located in the Vysikaylo’s standing 

exciton. This is very important for studying the propagation and localization of large-

radius excitons in inhomogeneous crystals. 

So naturally for nanostructures—excitons, problems arose (similar to problems 

in atomic physics): 1) the cumulation of the energy of electromagnetic waves (the 

wavelengths of which can vary from thousands of nm to 100 nm) into the excitation 

energy—an exciton (the size of which can be less than 1 angstrom for Frenkel’s 

excitons and about 20 nm for large Wannier-Mott’s excitons), 2) localization and self-

focusing of excitons and 3) the transformation of their energy, the transfer and 

accumulation of this energy in the battery, etc. 

Within the framework of the new quantum theory, to describe hydrogen-like 

excitons of large radius, with a charge Z, the solution of the Schrödinger equation with 

a Coulomb potential weakened by εk times is used [7] (2). In Equation (2) in the 

Wannier-Mott’s model, there is a discrepancy between the local value of the potential 

U(r) and the excessive requirement of constancy of the relative permittivity –ε(r) = εk 

= const throughout the crystal with any dimensions. This question was first posed in 

Vysikaylo’s works [5]. 

Such a rough accounting of polarization in crystals (accounting for the relative 

permittivity in the Wannier-Mott’s model) led to a corresponding decrease in all 

proper energy spectra of the hydrogen atom En by εk
2 times [7] and a corresponding 

increase in the characteristic sizes of hydrogen-like structures – rn by εk times in 

relation to the sizes of the hydrogen atom. In this case, the sizes of excited excitons, 

as in the hydrogen atom, increase with the growth of the principal quantum number—

proportionally to n2 [8]: 
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rn = εkn
2a0 (3) 

So, the question, “Is it possible to take into account the local heterogeneity of the 

relative permittivity or the weakening of the Coulomb potential by ε(r) times, at least 

in spherically symmetric problems, and thus determine this coefficient in experiments 

at the nanometer level?” is posed in Vysikaylo’s study [5]. There, this problem is 

solved on the basis of the principle of superposition of electric fields, according to 

which the weakening of the Coulomb potential by ε(r) times is caused not by the entire 

crystal but only by the polarization of charges inside a sphere of radius r (Figure 3).  

In Vysikaylo’s study [5], according to Equations (2) and (3) and the law of 

conservation of energy, transitions between the intrinsic energy electron levels En and 

Em, accompanied by electron spectra of the EMW – hνn,m for Vysikaylo’s standing 

hydrogen-like excitons of large radius are written in the following general form 

(Figure 3): 

hνn,m = En,m = En − Em = Un(r) − Um(r) = −Ze2/(ε(rn)ε0rn) + Ze2/(ε(rm)ε0rm) (4) 

According to Equation (4), within the framework of the Bohr model of the 

hydrogen atom, for hydrogen-like excitons, it is possible, by their electron spectra, to 

determine the local heterogeneity of crystals in the region of spherically symmetric 

perturbations [5]. 

The coincidence of the results of the old Bohr and new quantum theories in 

determining the eigenenergies of a quantum system—the hydrogen atom—lies in 

Bohr’s successful choice of the condition for quantizing the angular momentum of an 

electron on an allowed circular orbit – mvnrn = nћ or the product of the orbit length 

and the particle momentum –2πmvnrn = λnpn = nh. Here h = 2πћ is Planck’s constant. 

It should be noted that the first radius of the Bohr orbit in the semiclassical Bohr theory 

of the hydrogen atom coincides with the value of the radius r1 = Λ/α, at which the 

probability of finding an electron (22πr
2 |ψ|2) reaches its maximum value. Here Λ is the 

Compton wavelength of the electron, α is the fine structure constant. A similar 

coincidence is observed for all subsequent radii rn corresponding to the principal 

quantum number n greater than 1. Only this coincidence provides a certain basis for 

retaining the term Bohr radius in the new quantum theory. In this case, within the 

framework of the new quantum theory for hydrogen-like structures in any media, the 

Bohr radius of the orbit [5]: 

rn = a0ε(r)n2 (5) 

Here a0 is the first-level brow radius, ε(r) is the local spherically symmetric 

attenuation coefficient of the Coulomb potential or the local spherically symmetric 

relative permittivity of the medium (a small part of the crystal) in which a hydrogen-

like structure with characteristic dimensions determined by Equation (5) is formed. 

For vacuum ε(r) = const = 1, i.e., the limiting transition from excitons in 

inhomogeneous crystals to a hydrogen atom in vacuum within the framework of this 

model, which generalizes the description of hydrogen-like structures in 

inhomogeneous crystals, occurs without significant problems. 

If the relative permittivity of the crystal (or the local attenuation coefficient of the 

Coulomb potential) –ε(r) changes with the distance to the dopant atom introduced into 
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the crystal lattice, then the resonant exchange of electron energies cannot occur. This 

localizes the exciton generated or focused by the Coulomb potential (Figures 2 and 3) 

in the region of the dopant, where ε(r) has different values than in places remote from 

the dopant atom. Thus, in Vysikaylo’s study [5] the possibility of the appearance of 

standing Vysikaylo’s excitons is substantiated.  

Taking into account Vysikaylo’s degeneracy of the principal quantum number in 

hollow quantum resonators determines the possibility of the appearance of symmetric 

de Broglie waves (cos-waves). Moreover, within the framework of Vysikaylo’s 

cumulative quantum mechanics for hollow hydrogen-like structures in any media, the 

Bohr radius of the orbit for such waves [5]: 

rn−1/2 = a0ε(r)(n-½)2 (6) 

4. Ponderomotive forces in inhomogeneous crystals 

In inhomogeneous crystals (with inhomogeneous permittivities) in electric fields, 

ponderomotive electric forces arise—qU(r)ε(r), acting on charged particles due to 

the gradient of the relative permittivity: 

F = q(ε(r)U(r)) = qε(r)U(r) + qU(r)ε(r) 

A detailed analysis of these forces remains to be carried out by us in the future. 

5. Electronic spectra of Vysikaylo’s standing excitons of large 

radius 

Vysikaylo’s large-radius standing excitons arise in the region of introduction of 

a foreign atom (with a valence different from the valence of the atoms of the reference 

crystal) into the crystal lattice of the reference crystal. The electron and the hole are 

localized in the region of the foreign atom [5]. The introduction of a foreign atom 

generally leads to local quantum oscillations, including such a parameter as the 

permittivity −ε(r). This also leads to the energy localization of standing Vysikaylo’s 

excitons in the region of the introduction of a foreign atom into the crystal lattice of 

the reference crystal. Such phenomena occur, for example, during chemical doping of 

diamond (or other crystals from group IV of the periodic table) with boron atoms (or 

other atoms from group III of elements) or nitrogen (or other atoms from group V of 

elements). In this case, as we have shown, the permittivity in boron-doped diamond 

changes locally by up to 7% [5]. 

5.1. Spectra of Wannier-Mott’s excitons in diamond at ε = const 

Under these (ε = 5.7) assumptions, according to the Wannier-Mott theory, when 

introducing a foreign atom into the diamond crystal lattice, then, taking into account 

the (cos-waves) of the Vysikaylo’s spectra Equation (1), we have the following 

spectrum for free (running) excitons of large Wannier-Mott’s radius with constant 

permittivity (WM spectrum): 

En−1/2 = −(1.674(1-½); 0.186(2-½); 0.067(3-½); 0.034(4-½); 0.021(5-½);   
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0.014(6-½); 0.01(7-1/2); …) [eV] 

En = −(0.4185 (1); 0.104 (2); 0.0465 (3); 0.026 (4); 0.0167 (5); 0.0116 (6); 

0.00854 (7); 0.0065 (8); 0.0052 (9) …) [eV] 

(7

) 

In our calculations we used the following values for the hydrogen atom: the radius 

of the hydrogen atom is a0 = 0.529 Å; the ionization potential of the hydrogen atom is 

I = 13.598 eV. Possible transitions from (1) (En−1/2 ⇆ Em; En−1/2 ⇆ Em−1/2) are not taken 

into account here. 

5.2. Spectra of Vysikaylo’s excitons in diamond at ε = ε(r) 

The author believes that the complexity of interpreting the absorption and 

emission spectra of Vysikaylo’s large-radius standing excitons in experiments is 

determined to a greater extent by the profiles of the relative permittivity −ε(r) of the 

reference crystal perturbed by the dopant atom (diamond in our case) than by the 

spectra of the dopant atom. For this reason, the most accurate values of the electron 

spectra of Vysikaylo’s large standing excitons can be obtained at cryogenic 

temperatures of crystals, when the temperature and concentration effects are small, 

and the probe radiation is strictly collimated, including in energy [5]. Such 

experiments were carried out, for example, in Denisov et al.’s research [27]; see Table 

1. Unfortunately, Denisov et al. [27] present the electron spectrum of Vysikaylo’s 

excitons with energies in the range from 2 to 43 meV. The most informative for the 

next proof of the validity of Vysikaylo’s cumulative quantum mechanics are the 

electron spectra of Vysikaylo’s standing excitons in the energy range from 400 to 50 

meV; see Table 1.  

Table 1. The dependence of the relative permittivity ε on r ε(r) and the characteristic radii rn of a hydrogen-like hollow 

quantum dot in boron-doped diamond (electron spectra of Vysikaylo’s standing excitons) were calculated in accordance 

with Vysikaylo’s theory. 

№ n 
E, meV 

WM theory  

E, meV 

experiment 

ε, relat. units 

Vysikaylo’s theory 

rn, Angstrom  

Vysikaylo’s theory 

1  1 − 1/2 −1674 ?  0.8 

2  1 −418.5 
−369 [24,25] 
Lyman-Vysikaylo’s series 

6.07 3.2 

3  2−1/2 −186 
−161 ÷ −165 [22,23,26] 
Vysikaylo’s series 

6.14 ÷ 6.05 7.15 

4    −140 ÷ −142 [26]   

5  2 104.6 ~ −92.54? 6.06 12.82 

6    −85 ÷ −89 [26]   

7  3 − 1/2 −67 ~ −60.47? 6.0 19.84 

8  3 −46.5 
−42, 9 [27] 
Pashen-Vysikaylo’s series 

5.93 28.25 

9    −37.2 [27]   

10    −35.08 [27]   

11  4 − 1/2 −34.1 
−30.99 [27] 

Vysikaylo’s series 
5.98 38.77 
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Table 1. (Continued). 

№ n 
E, meV 

WM theory  

E, meV 

experiment 

ε, relat. units 

Vysikaylo’s theory 

rn, Angstrom  

Vysikaylo’s theory 

12    −28.02 [27]   

13  4 −26.15 
−25.54 [27] 
Brackett-Vysikaylo’s series 

5.77 48.81 

14    −22.56 [27]   

15  5 − 1/2 −20.67 - 5.92 63.42 

16    −17.36 [27]   

17  5 −16.74 −15.13 [27] 6.0 79.29 

18  6 − 1/2 −13.83 −13.51 [27] 5.77 92.3 

19  6 −11.62 −11.41 [27] 5.75 109.57 

20  7 − 1/2 −9.9 −9.3 [27] 5.88 131.48 

21  7 −8.54 −7.93 [27] 5.92 153.3 

22  8 − 1/2 −7.44 -  174.67 

23  8 −6.54 -  195.0 

24  9 − 1/2 −5.79 −5.58 [27] 5.8 222.0 

25  10 −4.18 −3.97 [27] 5.85 309.6 

26  11 −3.46    

27  12 −2.9    

28  13 −2.48    

29  14 −2.135    

30  15 − 1/2 −1.99 −1.98 [27] 5.71 635. 

31  15 −1.86    

32  
5 − 1/2, 
Z=2 

−41.3 −37.0 [28] 6.0 32.2 

33  5, Z=2 −33.48 −28.02 [27] 6.2 41.2 

34  
6 − 1/2, 
Z=2 

−27.67  5.66 45.33 

35  6, Z=2 −23.25 −22.56 [27] 5.78 55.1 

Note: The dependence of the relative permittivity ε on r ε(r) was calculated according to Vysikaylo’s 

theory (in a standing ε(r) wave). The own electron energy levels are En−1/2 = −13.56 ((n-½)ε(r))−2 eV, En 

= −13.56 (nε(r))−2 eV, and the characteristic radii rn-1/2 = = a0ε(r)(n-½2)2 of a hydrogen-like hollow 

quantum dot in diamond doped with boron (electron spectra of Vysikaylo’s standing excitons). 

The spectra of Vysikaylo’s standing excitons observed in experiments in 

diamonds doped with boron [10, 22–28], were identified by us as follows: 

En−1/2 = ?(1-½); −(0,160 ÷ 0,165) (2-½); ?(3-½); 0,03099(4-½); 0,01351(6-½); 

0,0097(7-½);…) [eV]; 

En = −(0,369(1); ?(2); 0,0429 (3); 0,02554 (4); 0,01513(5); 0,01139(6); 

0,00836(7); …) [eV] 

(8) 

Previously, it was believed that an impurity atom perturbs the crystal at the level 

of inter-node dimensions (bound Frenkel’s exciton). Now we see (Figure 2, Table 1) 

that there are standing (bound) excitons of large radius and they are caused by quantum 

(wave profiles ε(r)) effects caused by the introduction of a foreign atom into the crystal 
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lattice of the doped crystal and this occurs in full accordance with the hypothesis of 

Louis de Broglie. Thus, in this work, based on the QCM, a completely new method 

for determining the relative permittivity profiles in nano-sized structures in doped 

crystals by Raman scattering is proposed for the first time (Figure 2b). According to 

the author’s model Equations (1), (5), (6) and (8), based on the QCM, the step in 

determining the ε(r) profile is ε(r) − Δr ≈ 0.529 ε(r) (n-1/4)/Z. Which is more than two 

times smaller than the step that follows from the classical Wannier-Mott model. The 

Z-charge is localized in the nano-structure; n is the principal quantum number of the 

standing exciton of a large radius formed on the ε(r)-structure. 

5.3. Classification of electronic spectra of Vysikaylo’s standing excitons 

of large radius 

The electronic spectra of Vysikaylo’s standing excitons can be similarly divided, 

like the spectra of the hydrogen atom, into the Vysikaylo-Lyman, Vysikaylo-Balmer, 

Vysikaylo-Paschen, Vysikaylo-Brackett lines, etc. (Figure 4). Unlike the Wannier-

Mott’s spectra, the following formulas should be used to calculate the Vysikaylo’s 

spectra, taking into account the changes in the relative permittivity ε(ri) of diamond in 

the regions of the doping atom [4]: 

ν = 1/λ = R(1/(ε(ri)i)
2 − 1/(ε(rm)m)2) (9) 

where R is the Rydberg constant (it is equal to 109,737, 31,568,539 cm−1). 

 
Figure 4. Electron levels during absorption and emission of electromagnetic waves 

by a Vysikaylo’s standing exciton with principal quantum numbers n and n-½. 

The author, on the basis of a number of experiments (in accordance with the 

works of Bohr, Schrödinger, Born, Wannier, Mott, Vysikaylo, and others), proves that 

in addition to electronic spectra with integer principal numbers Equation (5), in a 

number of experiments [22,23,26] a line is clearly observed, caused by an electronic 

level with the principal quantum number i=2-½ [5]. Therefore, to calculate all possible 

spectra of standing Vysikaylo excitons according to (5), it is necessary to take into 

account the Vysikaylo’s degeneracy (in principal quantum numbers), both with integer 
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i and m, and with half-integer principal quantum numbers (i = 1, 2-½, 2, 3-½,..; m = 1, 

2-½, 2, 3-½,..) and all possible spectra between transitions with integer and half-

integer principal quantum numbers (Figure 4). Spectra with half-integer principal 

quantum numbers (cos-waves with symmetric ψ-functions) were first resolved for 

hollow quantum resonators with spherical and cylindrical symmetries within the 

framework of Vysikaylo’s cumulative quantum mechanics [2], and this theory was 

confirmed by numerous experiments with resonant electron capture by fullerenes [11–

13]. 

6. Oscillations of relative permittivity in Vysikaylo’s excitons 

From a comparison of the analytical WM spectra Equation (7) and the identified 

experimental ones Equation (8), it is possible to construct the oscillations of the 

permittivity ε(r) depending on the distance ri = a0ε(ri)i
2 to the center of the Vysikaylo’s 

standing exciton (the dopant atom) (Figure 2). Here i =1/2, 1, 3/2, 2, 5/2, …: 

ε(r) = 6.07(1;3.21Å); 6.14 ÷ 6.05(2-½;7.15Å); 5.93(3;28.25Å); 5.97(4-

½;38.48Å); 5.75(4;48.86Å); 6.0(5;79Å); 5.8(6-½;93Å); 5.75(6;109.5Å); 

5.787(7-½;129.4Å); 5.768(7;149.5Å) 

(10) 

Identification of the electron level spectra of standing (frozen into the crystal) 

hydrogen-like Vysikaylo’s excitons of large radius is a complex arithmetic problem if 

we take into account all possible electron spectra analogous to the spectra of atomic 

hydrogen: Lyman, Balmer, Paschen and clearly observable Vysikaylo’s spectra with 

principal quantum numbers i = n−½ taking into account the oscillations of the relative 

permittivity –εi(ri). The fundamental role in substantiating the basics of the CQM for 

Vysikaylo’s standing excitons is played by the long-observed experimental electron 

levels with principal quantum numbers n = 1; 2−½. These spectra have been observed 

since 1968. Of interest are the spectra obtained by Denisov et al. [27] with low energy 

(significant excitation of standing excitons with large principal quantum numbers due 

to laser excitation). Of particular interest is the search for spectra theoretically 

predicted by us in the region of 0.2–0.06 eV (i = 2, 3−½) and transitions between 

electron levels with i = 1; 1.5; 2; 2.5; 3. 

7. Limits of applicability of the method for determining the 

electronic spectra of Vysikaylo’s excitons 

The radius of a quantum dot (QD), including a Vysikaylo’s standing exciton –an 

(or an−1/2) in a doped crystal depends on the profile of the relative permittivity of the 

crystal –ε(r), which arises when an impurity is introduced into the crystal lattice and 

the value of the principal quantum number n (or n−½) of the excited level of a 

hydrogen-like QD (the total energy of an electron in the QD).  

The condition for the applicability of Equations (5) and (6), according to Landau 

et al. [7], consists of the requirement of “a sufficiently large value of the orbit radius 

of the Wannier-Mott’s exciton” –an~ћ2εn2/me2 >> a0 (Figure 2b). This condition is 

obviously fulfilled for large n, but in crystals with large ε, it can also be fulfilled for 

n~1 [7]. 
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Similarly, we substantiate the condition of applicability Equations (1)–(10) for 

Vysikaylo’s standing excitons of large radius by the requirement: an−1/2 >> a0 (or an  >> 

a0) (Figure 2b) [5]. 

However, in the case of the formation of a standing exciton of large radius, this 

condition is modified to an–1/2 > d or an > d. Here d is the size between the nearest 

atoms in the crystal lattice of the supporting crystal (diamond, silicon, germanium, 

etc.). This condition is associated with the impossibility of forming lower energy 

electron levels in the structure of a standing exciton with profiled ε(r) with 

characteristic sizes an−1/2 < d or an < d (Figure 2c). Inside this region, there is no 

positive charge for the electron (Figure 2b,c), and therefore, a hydrogen-like exciton 

is not formed [5]. 

For diamond, d ≈ 1.54 Å. Therefore, the lower energy state for a standing exciton 

of large radius with ψ1–1/2, with energy E1–1/2 ≈ –1.476 eV and with a1–1/2 ≈ 0.8 Ǻ < d 

=1.54 Ǻ, as a standing exciton of large radius, is not realized in diamond (Table 1). 

For a similar reason, the states of standing excitons of large radius with Z = 2, 3 with 

an−1/2 < 1.54 Å and, accordingly, with an < 1.54 Å are not realized. 

Standing excitons with Z = 2, 3 arise in the region of the dopant atom during the 

ionization of carbon atoms surrounding the boron atom. In this case, positively 

charged holes can intensively move around the boron atom along the nearest carbon 

atoms due to energy resonance. 

8. Calculations of Vysikaylo’s exciton molecules and flickering 

crystals 

By analogy with hydrogen molecules, flickering molecules and crystals from 

large-radius standing excitons can be formed by overlapping their excited electron 

shells. Using the MGMT, it is possible to calculate the concentration of the acceptor-

dopant impurity during the formation of flickering molecules and crystals from 

Vysikaylo’s large-radius standing hydrogen-like excitons. The difference between 

standing exciton molecules and hydrogen molecules is as follows. Since the exciton 

atoms in exciton molecules are strictly fixed in crystals, they have no rotational 

degrees of freedom. Oscillations are possible due to the movement of a hole around 

the doping atom. In this case, the electron spectra of standing exciton molecules are 

significantly richer than those of hydrogen molecules. This is due to the electron 

spectra with half-integer principal quantum numbers (cos-waves with symmetric wave 

ψ–functions). Standing flickering molecules and crystals of standing excitons of large 

radius can be formed by overlapping excited electron shells of two or more nearby 

standing excitons and can be observed at concentrations of dopant (for example, 

boron): 

NB,n = 1/(2an)
3 = 1024/(2·0.529·ε(r)·n2)3 см−3 (11) 

or it is for symmetric states of de Broglie waves of an electron at: 

NB,n–1/2 = 1/(2an–1/2)
3 = 1024/(2·0.529·εn-½ (r)·(n-½)2)3, см−3 (12) 

For diamond doped with boron, the formation of flickering crystals 

(superlattices), according to (11), is observed at n = 5 and concentration of boron 
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doped into the diamond crystal lattice, NB,5 ≈ 2.5 × 1017 cm−3, at n = 4, NB,4 = 9 × 1017 

cm−3, and at n = 1 NB,1 = 4.7 × 1021 cm−3. 

The formation of hydrogen-like molecules with overlapping orbits of excitons 

with different values of the principal numbers n and m-½ is possible. 

The main difference between hydrogen-like exciton molecules and hydrogen 

molecules is the absence of rotational and vibrational degrees of freedom in their 

spectrum (at least they are significantly stabilized in the crystal). This allows one to 

study quantum phenomena without taking into account rotational degrees of freedom 

and is an additional method for verifying the electronic spectra of ordinary hydrogen 

molecules and other hydrogen-like molecules. 

On the basis of MGMT (the method of Wannier and Mott modified by us for the 

description of standing excitons of large radius) and the basis of Raman spectra, it is 

possible to calculate all the electronic spectra of standing flickering molecules with 

excited inside them flickering standing super-atoms (standing excitons of large radius) 

of two types: with symmetric and asymmetric wave ψ-functions. Such synergetic 

multiphase or multiphase solid-state systems (Figure 5), with splitting of levels with 

the principal quantum number n into two sublevels, with flickering (standing exciton) 

subsystems, may prove to be very promising in the utilization of thermal energy into 

electromagnetic energy and in other practical applications. 

 
Figure 5. Vysikaylo’s quantum oscillations ε(r) in acceptor-doped diamond in the 

region of the introduction of a boron atom into the lattice [5]. 

MGMT, used by the author in this work, goes back to the works of Eratosthenes 

(this method was used by Vanier [19], Mott [20], Mandelstam and others). 

Mandelstam said in one of his lectures: “You all know such systems as a pendulum 

and an oscillatory circuit, and you know that from an oscillatory point of view, this is 

the same thing. Now all this is trivial, but the remarkable thing is that it is trivial.” It 

turns out that a pendulum (in a cuckoo clock at a grandmother’s village or a Foucault 

pendulum) and an oscillatory circuit in wireless telephony and combination scattering 

of light (oscillations in atoms) are the same thing (from a mathematical point of view)). 

The phenomenon of oscillation of the relative permittivity is associated with 

oscillations of the electron density in the region of the implantation of a foreign atom. 

In metals with defects, a similar phenomenon is called Friedel’s oscillations. In this 
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case, the electrons screening the impurity charge form a halo around the defect center 

with alternating regions of condensation and rarefaction of their density.  

In a gas discharge, the analog of this phenomenon is pulsating or standing 

striations in space, known to Faraday. 

In the photographs, the running waves become standing (Figure 6). 

 

Figure 6. Waves on water, according to de Broglie’s hypothesis, are similar to ε(r) 

waves in doped diamond in the region of the introduction of a boron atom into the 

lattice (see Table 1 and Figure 5). 

We similarly used the generalization of the solutions of the Poisson equation (first 

obtained by Euler in 1767, verified by Lagrange and Roche in celestial mechanics) to 

describe the interaction of electrons with positively charged Coulomb attractors—

plasmoids or holes in crystals. In plasma, studies of such phenomena have already 

begun [5]. These Euler solutions, describing the role of potential long-range forces or 

their fields in the contraction of gravitating small particles to libration (cumulation) 

points in celestial mechanics, have not yet been used for a similar solution of a number 

of paradoxes in crystals with standing or running excitons. 

The role of analogs in physics lies in prompting and verifying models and their 

solutions. Indeed, the mathematical generality of problems in any long-range potential 

fields (Δφ = ρ) gives grounds to use not only all discoveries in celestial mechanics to 

discover new 3D phenomena, which have not attracted the attention of researchers of 

inhomogeneous plasma (with violation of electroneutrality), but also in many other 

similar phenomena. 

Molecular spectra of standing and running excitons, analogs of hydrogen 

molecules H2 or positive ions H2
+ have not yet been identified and their discovery 

requires experimental studies. However, even now it is possible to note the special role 

in the formation of the properties of flickering crystals from standing excitons of 

nanometer (large) radius of electron cumulation points –L1 and the features of the 

electron flow through these points in flickering crystals. Similarly, on the basis of 

MGMT, one can expect hyper-conductivity effects of flickering systems upon 

excitation of standing excitons of large radius. 
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On the basis of MGMT, it is possible to predict and calculate the forces of 

attraction of dopant atoms to each other in the reference crystal during excitation of 

excitons in it, etc. 

Vysikaylo’s cumulative points L1 are formed between any spatially separated 

attractors with long-range potentials. The presence of cumulation points in the plasma 

leads to the formation of a Faraday dark space between two positively charged 

Coulomb attractors [5]. 

The obtained profiles of relative permittivity pulsations (oscillations ε(r)) 

(Figure 5) allow us to calculate with good accuracy the concentrations of the dopant 

for the formation of large-radius exciton molecules, lines of standing excitons (Figure 

7), and the parameters of flickering 2D surfaces and 3D crystals. 

Solid-state flickering crystals (crystals of standing excitons), described by the 

Vysikaylo’s model [5], contained inside the base crystal, can be very convenient and 

useful in practice and, especially, for scientific research, for example, general 

properties of metallic hydrogen-like crystals, study of the spectra of exciton molecules, 

etc. These molecules of Vysikaylo’s standing excitons do not have rotational and 

vibrational degrees of freedom (they are suppressed by interatomic bonds in the crystal 

lattice of the supporting crystal). This property can be used to verify the electronic 

spectra of hydrogen molecules. 

 

Figure 7. Formation scheme of a flickering crystal from standing excitons of large 

radius at different irradiation doses: a)—doped crystal at a weak energy source; b)—

overlap of electron shells of standing excitons—quantum dots with variable size. (1) 

Channel for electrons (cumulation line) from quantum dots, (2) focusing energy into 

the center of its radiation; (3) formation of Vysikaylo’s cumulation points – L1 (for 

electron flows) between standing excitons of large radius [5]. 

9. Discussion of results 

A number of researchers often believe that the value of the relative permittivity 

of a material is associated only with the wavelength of electromagnetic radiation. This 

is a mistake. According to our model of hydrogen-like standing excitons, the relative 

permittivity is a local main characteristic of a crystal (ε(r) is a coefficient weakening 

the Coulomb potential of an exciton hole in a radially inhomogeneous crystal on a 

sphere of radius r in the doping region) and can change at the level of nanometer sizes, 

thereby showing how many times (ε(r) times) the local Coulomb potential of an 

external charge located at a distance r from the positively charged center of an exciton 

changes. New nanostructured materials with nano-sized crystals with unique 
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properties are currently being developed. Of particular interest among them are 

materials formed from nano-crystallites with significantly different relative 

permittivities. Thus, to increase the efficiency of nanostructured luminophores, 

crystallites with a relative permittivity of ε~1500 are sintered with nano-graphite 

powder or fullerenes of nanometer dimensions. Models with a constant value of 

relative permittivity over the entire meso-structure are, in principle, inapplicable to 

describe excitons in such structures. We propose such a theory for nanostructures with 

large ε. 

We have analyzed, on the basis of MGMT (based on the works of Vanier, Mott, 

de Broglie, Bohr, Schrödinger, Dirac, Vysikaylo, and others), many years of 

experimental observations of Raman spectra (laser radiation Raman scattering spectra) 

of diamonds doped with boron atoms, which began in the last century (before 1968) 

and continue to the present day [29,30]. Before the author’s work, there was no worthy 

model of quantum transitions in such crystals [10]. This was due to the researchers’ 

assumption about the constancy of the permittivity ε in the region of the introduction 

of a foreign atom into the crystal lattice and Dirac’s erroneous prohibition of electron 

spectra with the principal quantum number n-½ (cos-waves). As the author proves on 

the basis of theoretical foundations of quantum mechanics and numerous experimental 

observations, these provisions of Dirac [14] and his followers [15,16] should be 

substantially modified. In this paper, it is proved that the Dirac requirement modified 

by the author and the modified Wannier-Mott-Bohr model [5], taking into account 

oscillations (wave inhomogeneities, Figure 5) of the relative permittivity at the 

nanometer level Equation (9), allow for a satisfactory description of the Raman spectra 

Equation (8) obtained in experiments in the study of diamonds doped with boron (see 

the Table of experimental data in [22–28]). 

Note that in this review we relied on experimental works performed at cryogenic 

temperatures and assumed spherical symmetry of Vysikaylo’s standing excitons. 

Raman spectra of Vysikaylo’s standing excitons can be modulated or accompanied by 

spectra of other structures similar, for example, to structures formed in doped 

hexaferrites with an average characteristic grain size of up to 6 μm and characteristic 

dimensions of the elementary lattice of up to c = 2.3 nm [31]. 

No less interesting experimental and theoretical works on nanoscale structures 

are presented [32–34]. 

10. Conclusions 

The theoretical studies we have conducted have proven that: 

1) We have identified and analytically described (based on Vysikaylo’s 

cumulative quantum mechanics) practically all electron spectra (observed in 

experiments [22–28]) of Vysikaylo’s standing excitons in diamond doped with boron 

atoms; 

2) Our modified Wannier-Mott theory explains all electron spectra observed 

during irradiation of diamonds doped with boron atoms [5]; 

3) Dirac’s requirement on the limitedness of the ψ-functions of de Broglie waves 

in excitons is excessive. It is sufficient to limit the probability of finding a particle in 

the volume of a standing Vysikaylo’s exciton and take into account the normalization 



Nano Carbons 2025, 3(1), 2491.  

25 

geometric coefficient (taking into account the symmetry of the quantum resonator –χ2 

= 2кπrk, k = 2 for spherical symmetry of the quantum resonator; k = 1 for cylindrical 

symmetry and χ2 = 1 for plane symmetry); 

4) The Vysikaylo’s degeneracy of the principal quantum number by n 

(asymmetric sin-waves) and n−1/2 (symmetric cos-waves) is observed in experiments 

not only during the capture of electrons into the internal cavity of fullerenes [2,5,11–

13], but also during the formation of standing Vysikaylo’s excitons [5,22–27]; 

5) The relative permittivity ε(r) changes significantly (up to 7%) in the nano-

region (up to 10 nm, Figure 5) of the doped atom embedded in the crystal lattice of 

the reference crystal (diamond, etc.); 

6) In accordance with the change in the relative permittivity ε(r) in the region of 

the dopant atom (at nanometer distances from it), a corresponding change in the 

Raman spectra (the spectra of combination radiation observed in the experiments 

[22−28]) occurs;  

7) Using Raman spectra [22–27], it is possible to determine the nano-profiles of 

the relative permittivity ε(r) of the reference crystal in the region of the introduction 

of a foreign atom into the crystal lattice (Figure 5) [5]; 

8) Experimental observations of Raman spectra [22–28] of Vysikaylo standing 

excitons prove the basic provisions of Vysikaylo’s cumulative quantum mechanics 

[5]; 

9) The theory we have developed (the modified Wannier-Mott theory) of the 

formation of inhomogeneous permittivities in inhomogeneous crystals can be used for 

description at the level of nanostructures [5]. 

The knowledge we have obtained can be applied to the study of nanocomposite 

materials formed by chemical doping of dielectrics (diamond, silicon, germanium and 

other crystals from the IV group of elements) with foreign atoms from the III and V 

groups of elements of the periodic table. The unique technique we have developed, 

based on the Vanier-Mott’s model modified by the author, allows, based on the 

experimentally established Raman spectra, to calculate the profiles of the relative 

permittivity at the nanometer level (from 0.3 to 20 nm) in chemically doped diamond. 

The results obtained indicate the erroneousness of the theoretical approach used [28], 

which does not take into account the wave (quantum) oscillations (oscillations) of the 

relative permittivity in the region of the doping center. The author believes that there 

is no point in advertising spin-orbital inventions [28]. It is better to modify the models 

of Wannier, Mott, Dirac, relying on the classical works of Euler, Frenkel, de Broglie, 

Bohr, Vysikaylo and others [2,5], verified by comparing experiments with full-fledged 

theories. 

The obvious presence in experiments [11–13] of lines with the principal quantum 

number n-½ (En−1/2) in the resonance capture of free electrons by fullerenes and in the 

Raman spectra of boron-doped diamonds [22–27] once again proves the validity of 

the foundations of Vysikaylo’s cumulative quantum mechanics [2,5] and thus proves 

that Dirac’s requirement that ψ-functions are bounded everywhere is excessive and 

can be replaced by the requirement of the boundedness of the probability of finding a 

particle in a quantum resonator [5]. 

We have proved that quantum mechanics is a completely complete statistical 

theory capable of prediction if we do not attribute wave properties to particles. 
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Particles behave as waves in the statistical approach, but they remain particles if their 

behavior is considered as particles [2,5]. 

According to the Einstein-Podolsky-Rosen work and Gödel’s incompleteness 

theorem, standard quantum mechanics is incomplete. This is true if the particle is 

assigned wave properties. However, if wave properties are assigned to the statistical 

behavior of the particle in the resonator, another point of view is formed, according to 

which quantum mechanics is a complete theory. It is substantiated on the basis of the 

law of conservation of energy and recognition of the probabilistic nature of the 

statistical behavior of the particle in the resonator. 

In our works, we use classical parameters of electrons (mass and charge) and on 

this basis explain a number of previously “mysterious” statistical phenomena, 

including in experiments in chemically doped crystals. Studies of standing molecular 

excitons, flickering lines (nano-lightning), planes (nanostrata) and Vysikaylo’s 

crystals (in chemically doped crystals) are of great scientific and practical interest for 

the further development of quantum mechanics. In such exciton molecules, lines, 

planes and crystals there are no external influences that lead to the excitation of 

vibrational and rotational degrees of freedom (they are significantly weakened in 

crystals by interatomic bonds). 

The results obtained in this work prove the predictive power of Vysikaylo’s 

cumulative quantum mechanics and the method of generalized mathematical transfer 

(MGMT) for studying and describing the structure of cumulative-dissipative systems 

at the nano-world level. 
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