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ABSTRACT: This review addresses the problem of reaction-diffusion 

effects and spatiotemporal oscillations in fiber-like and wire-like systems 

under the electron beam in SEM and in the presence of  electric field in 

some special AFM techniques, such as current sensing atomic force 

microscopy (CS-AFM)/conductive atomic force microscopy (C-AFM), 

electrostatic force microscopy (EFM) and Kelvin probe force microscopy 

(KPFM) also known as surface potential microscopy. Some similar 

reaction-diffusion effects also can be observed in scanning capacitance 

microscopy (SCM), scanning gate microscopy (SGM), scanning voltage 

microscopy (SVM) and piezoresponse force microscopy (PFM). At the 

end of this paper the authors provide analysis of  their own results and 

approaches. In particular, the possibility of achieving the ion transfer 

controlled growth of cells along the ion concentration gradients in 

reaction-diffusion fibers and actuators is indicated. This fundamental idea 

is discussed within the framework of  the implantable fiber “bioiontronics” 

and “neuroiontronics” controlled by acoustic and electrical signals that 

regulate the reaction-diffusion or chemical oscillation activity of such 

fiber structures as reaction-diffusion actuators and sensors. The literature 

review includes more than 130 references. 
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nanofibers and microfibers 

1. Introduction 

Effects of incremental charging of  molecules and supramolecular structures under the tip of  the 

scanning tunnelling microscope are well known since 1990s[1]. Such effects (taking into account Coulomb 

interaction of electrons) are the basis of the theory of  quantum wire states[2]. Sablikov et al.[3], write that, 

“The chemical potential difference that exists between a decoupled, isolated quantum wire and the 

reservoirs gives rise to charge transfer in the coupled system… the quantum wire can be charged 

positively or negatively or remain neutral as a whole, depending on such factors as the wire radius and the 

background charge density in the wire. The magnitude of the charge and its sign are to a large extent 

determined by the exchange interaction of  the electrons in the wire… The period of  the oscillations 

depends on the charge acquired by the wire and the exchange energy[3].” Consequently, the effect of  

incremental charging of the quantum wires in various conditions can be interpreted as the 
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reaction-diffusion process with many possible oscillation regimes. Despite the fact that, “The linear 

conductance is… a function of  the chemical potential”, the authors write, “The nonadiabatic transition 

from the reservoirs to the wire leads to conductance oscillations caused by multiple scattering of  electron 

waves… and the exchange interaction strongly enhances the Friedel oscillations near the contacts.”[3] The 

charging effect can be visualized not only at the repolarizable/resonant quantum wires with bistability[4] 

(when “the system becomes unstable with respect to fluctuations of the electric potential and the electron 

density”[3] and instabilities are the result of  multistable electron states), but also in semiconductor 

quantum dot and wire arrays[5,6]. Only the background of  the surface physics for low-dimensional 

systems (for example—1D metallic segments at the quantum wire[7] or 0D quantum dots) can be used for 

the description of  charging and transport in the quantum or molecular wire systems, including very 

complex multiterminal and fractal-like branched ones[8]. Models of  such phenomena must be 

multiphysical[9,10], because they must consider all types of  interactions (including non-covalent ones) and 

forces at the surfaces of  quantum or molecular wires, which must be spatially colocalized with 

conduction maps[11]. In the ideal case of  a time-resolved (4D) approach in the analysis of  charging of  1D 

systems the charge pattern must be colocalized with nanomechanics and mobility/motility of  the 

“wires” at the time-resolved (“time-lapse”) multilayer map for different forces and levels of 

energy/charging[12,13]. 

A crucial problem of  the wire theory application in the past twenty years is its focusing only on the 

nanoscale phenomena and misuse of  the terms “nano-” or “nanowire” in some situations, which blurs 

the meaning of  the terms when they are inapplicable or beyond the technical level of the experiment. 

This terminological confusion blurs the distinctions between the real nanoscale wires, where quantum 

effects are observed, and microscale wires, where they can be neglected/ignored. However, from the 

precision Si nanosensors[14] and single electron charging nanowire quantum dots[15] to macroscopic 

lithium-ion batteries or supercapacitors[16–22] “charging nanowires” are widely used as a term. At the same 

time, it is quite obvious that “charging nanowires” in the case of  supercapacitors and lithium-ion 

batteries can be replaced by “microwires” without changing the term meaning and physical sense of  the 

effects observed[23,24]. As it is known, the influence of  quantum effects and the importance of 

“quantization” increases inversely with the nanowire diameter for a given material. When comparing 

different materials, the significance of quantization depends on their electronic properties, in particular 

on the effective mass of  electrons. This means that the significance will depend on “how the conduction 

electrons interact with the atoms within the analyzed material”. In practice, semiconductors start to 

exhibit a clear effect of conductance quantization at sufficiently large transverse wire dimensions (100 

nm), since their electronic levels already increase at such parameters due to the spatial restrictions. As a 

result, the Fermi wavelength of  the electrons increases and splitting of  the energy levels with sufficiently 

low energies occurs. This means that they can only occur at cryogenic (several K) temperatures, when the 

thermal excitation energy is lower than the energy of transitions between states. А quantum wire is just a 

conductive wire in which quantum effects influence the transport phenomena. Due to quantum 

restrictions on the conduction electrons in the transverse direction of  wires, their transverse energy is 

quantized into a number of discrete values. In other cases, nanowires as well as supramolecular or 

molecular wires may not be considered as the quantum wires. 

We proceed from the fact that it is difficult to work with single quantum wires and nanowires due to 

both physical and technical limitations. Therefore, we firstly do not consider oscillations and 

reaction-diffusion processes for nanowires, and secondly, we carry out modeling using rechargeable and 

repolarizable microwire-like polymer ferroelectrics. For the above reasons, we move from the methods of 
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tunneling microscopy to the SEM (scanning electron microscopy) methods in different specific operation 

modes, including YMD. 

The local dielectric charging induced by the line scanning during SEM observation is a well known 

phenomenon, which can be simulated using simple mathematical/statistical physical approaches[25,26] 

(including those approved by the standards of NIST (National Institute of  Standards and Technology[27])). 

The electric charging of  electron microscopic specimens has been actively studied from 1960s or 

1970s[28,29]. Initially, this effect was perceived only as an obstacle to obtaining high quality SEM images. 

“The elimination of charging artifacts in the scanning electron microscope” was the main aim of  

SEM-assisted sample charging investigations at the earliest years of  SEM development[30,31]. Such 

artifacts can be detected not only by the SEM image drift/defocusing induced by charging during 

observation[32], but also by the signals of  X-ray analysis[33], particularly in ESEM and variable pressure 

scanning electron microscopes[34]. According to Miller[33], “The effects of  charging of  uncoated, highly 

resistive samples of  energy-dispersive X-ray spectra are examined. It is observed that as sample charging 

increases, the continuum background and characteristic peaks at higher X-ray energies diminish. 

Modelling of  the continuum background has allowed this effect to be related to the development of a 

surface potential on the sample.” And, “This potential reduces the effective accelerating voltage of  the 

electrons and results in a decreased overvoltage necessary for excitation of  higher-energy X-rays. This 

artifact may lead to erroneous results in compositional analysis based on such charging-affected spectra.” 

There are many methods for suppressing and elimination of  the charging artifacts, such as random 

or pseudo-random scanning[35], vector scanning[36] and Rayleigh contrast stretching method[37]. There are 

also many approaches that uniquely identify and compensate the charging signal[38]. However, such 

methods for identifying the charging signal without its suppression and compensation also have 

significant methodical value, since they allow to study only the sample charging signals without taking 

into account another basic components of the microscopic image signals. For correct interpretation of  

the identified microsample charging signal it is necessary to consider its physical mechanism rather than 

formally filtered, eliminated (by identification and subsequent matched filtering of  the signal) 

images/signal features spaces. 

It is well known that after the first observations of the surface charging using scanning electron 

microscopes[39] (which can be interpreted as the starting point for the development of  the stroboscopic 

electron microscopy at MSU by G. V. Spivak and the prerequisites for the EBIC/EMF technique 

development) the surface charging of different chemical compounds was proposed as a characterization 

method of  their surfaces (since 1970s till now, from inorganic to polymeric samples[40–43]). Therefore, for 

spatiotemporal charging analysis not only inorganic, but also polymeric samples can be investigated. 

Since they are dielectrics, insulators in a primitive representation, elements of  physics of  the charging 

dielectrics under the electron beam are applicable to them in a certain approximation[44,45]. 

Instead of  analyzing the quantized charging of  the quantum wires/nanowires, we will consider the 

analysis of  charging of  fibrous polymeric ferroelectric or piezoelectric composites. They clearly 

demonstrate the effects of  the charge wandering, polarization/repolarization, as well as 

electromechanical dynamics under the electron beam. Many effects characteristic for the 

conductor-insulator composites, semiconducting and percolating samples can be observed on the 

developed surface of  polymeric ferroelectrics and composites based on organic ferroelectric materials 

(compare with the study of  Campbell et al.[46] and Barkay et al.[47]). Note that charging of  ferroelectrics 

and piezoelectrics in SEMs (for example, TGS) has been studied since 1988[48] and (corresponding to 

their generation modes) a metastable surface-acoustic wave contrast observed in a scanning electron 
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microscope has been also described in 1988[49]. Accordingly, using the analysis of  histograms (and 

possibly their central moments) from the SEM charging images[50], one can perform mapping of  the 

ferroelectric or piezoelectric properties of  such complex polymeric samples. It can be implemented not 

only in the case of  the negative charging, but also in the case of a positive charge[51,52], which can be 

colocalized not only with the electron concentrations but also with the proton concentration in polymeric 

ferroelectrics (such as proton conductivity of  PVDF[53–62]). Of  particular interest is the case of  charging 

under the electron beam, taking into account the plasma emerging under the action of  the electron 

beam[63]. Note that the effects observed in this case are multiphysical and are not reducible to the simpler 

machinery of  the nanowire charging in collisionless plasma[64]. 

As for the study of polymer ferroelectrics for space applications[65–76], it should be noted that the 

processes similar to those during the polymer irradiation under an electron beam in a vacuum SEM 

chamber can also be observed in real outer space conditions when spacecrafts are bombarded with the 

particles (electrons, ions) of  galactic and solar origin[77,78]. Even more interesting phenomena requiring 

surface charge compensation (including electromechanical ones) occur when observing dielectric 

samples in ESEM[79,80] and CryoEM (in particular, hydrocolloids or biological samples[81]). The 

mechanisms underlying such phenomena of  the sample surface charging can lead to the shift in the 

accuracy of  X-ray spectral analysis and chemical element map quality deviation in variable pressure 

scanning electron microscopy[82,83]. None of  the methods of  local (“topical”) controlling over the surface 

charging by other chemical agents or labels can be used in the case of position sensitive chemical 

mapping (since it can be the source of metrological artifacts itself)[84]. Consequently, the charging effect 

metrology in SEM can be based not only on the physical signal changes[85], but also on the qualimetry of 

the shift of calibration curves or chemical distribution curves and spectra. A situation can often arise 

when hardware suppression of the parasitic charging signals does not lead to the improvement in 

chemical metrology, since there is no improvement in charging at the level of  the samples and detectors 

that record its signals in the X-ray spectral range[86]. 

Both nanotechnologists and users of  nanotechnology-related equipment have a question: Why SEM 

is the best tool to study the charging of  fibers, wires, linear structures in comparison with tunneling 

microscopy and AFM? Indeed, some AFM methods have been used to analyze the local (“topical”) 

charging of  nanostructured samples since the 1990s, despite the fact that most of  such results are 

classified as artifacts[87]. However, the geometric requirements for the linearity or planarity of  the sample 

in this case are extremely important/obligate. The possibility of  the single particle (or nanocrystal) 

studying or single molecule measurements is the “reverse side of  the coin” for the impossibility of 

analyzing three-dimensional geometrically complex samples with a mesoscopically developed surface. It 

is possible to study/measure the charging of single semiconductor nanocrystals[88,89], inorganic 2D 

layers[90,91], self-assembled monolayers[92,93] and nanolithography-level 2D polymeric surfaces[94] (using 

special amplitude modulated techniques). It is possible to measure not only contact charging of  bulk or 

2D planar layer insulator surfaces[95], but also single particle electrostatic charging[96], single molecule 

charging by atomic force microscopes[97,98], including regular, periodic charging of individual molecules 

coupled to the motions of an atomic force microscopy tips[99]. But it is impossible to measure dynamic 

electromechanical coupling in 3D oscillating and strictionable piezoelectric polymer microwire systems 

in 3D space by AFM. In AFM one can measure only single electron charging effects for 

nanosystems[100–103], but can not measure synchronous cooperative electron transfer or transport of  the 

charge gradients along the complex fiber. This is also true for quantum wires, because the simplest 

quantum wires can be made from metallic carbon nanotubes, which can be investigated by AFMs. It is 
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well known that it is possible to create macroscopic quantum wires based on carbon nanotubes, since in 

complex carbon nanotube filaments there is no need for each individual fiber to pass along the entire 

length of  the wire due to the quantum tunneling of  electrons, which creates tunnel transition from strand 

to strand. At the same time, it is obvious that AFMs cannot be used for the synchronous analysis of 

charging or charge transfer in such complex structures, while electron microscopy methods can be used 

for these purposes (since 1950s when specimen charging for latex particles was registered by TEM 

electron microscopes[104]). SEM techniques can be used for the analysis of charging of macroscopic 

complex and cooperative fibers up to the micron- and decamicron-scale radius fibers (e.g., hair[105–107]) 

(while AFMs can analyze the hair charging only at nanoscales, and not in a complex and mutual 

dependence of  the charging of  different hair fibers on each other[108,109]). Consequently, SEM technique is 

more optimal for the analysis of  cooperatively driven ferroelectric fibers then AFM. It is quite obvious 

that oscillations observed in such systems are oscillations in distributed systems, and the corresponding 

models of  the dynamics of  reaction-diffusion processes in such systems should be interpreted as the 

models of  3D (4D) processes in distributed systems with spatiotemporal reactions under the electron 

beam, which is a control agent for the wave or pulse propagation with different charges and polarities (as 

Turing activators and inhibitors in the classical approaches[110–121]). 

Further presentation of  the experimental data obtained on bioferroelectric PHB fibers will be based 

on the approaches and assumptions described above. 

2. Results and prospects 

Figures 1 and 2 show dielectric charging of  ferroelectric polymer fibers taking into account the 

action of the electric double layer[122,123]. The discrete and pulsating kinetics of the charge wandering 

along the fiber is observed, which corresponds to the reaction-diffusion model with the wandering waves. 

In the case of  ionic or proton conductivity, rather than the conventional charge wandering, this system 

can be considered as a quasi-chemical ion-exchange system[124]. The effects of  ionic conduction can be of 

great importance for biomedical iontronics and the creation of  active implants, which can be stimulated 

and perform ion exchange with the environment during conduction of  biological autowaves and 

chemical oscillations (for example, in cardiomyocytes and neuronal fibers)[125–128]. Moreover, despite the 

apparent homogeneity of the fibers, in fact they can be microheterogeneous, which corresponds to a 

different surface distribution of the charge/electric double layer. As a result, the charge wave propagation 

will be inhomogeneous even over the single fiber surface. Examples of this phenomenon from our 

work[129] are shown in Figures 3–5. 

Many of these waves are associated with acoustic and mechanical vibrations of  the fibers induced 

by the electron beam. Therefore, it is possible to develop the principles of  design of the reaction-diffusion 

and autowave fiber systems. In such systems (potential scaffolds taking into account their biophysical 

biocompatibility) it is possible to achieve the ion transfer and controlled growth of cells along the ion 

concentration gradients during ion transfer and ion exchange (ion conductivity, including proton 

conductivity). In other words, not only implantable acoustofluidics based on such filamentous 

microfluidic structures can be implemented in the future, but also implantable “bioiontronics” and 

“neuroiontronics” controlled by the acoustic and electrical signals that regulate the reaction-diffusion or 

chemical oscillation activity of  such fiber structures as reaction-diffusion actuators and sensors[130–133]. 
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Figure 1. Dynamic images of the electric double layer charge propagation under electron beam at 500x magnification. 

It can be seen that the charge isoline positions change in time and the charge propagation occurs 

cyclically, but not periodically, and the charge often accumulates on the heterogeneities of the fiber 

structure which prevent its further propagation[122]. 
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Figure 2. Dynamic images of the electric double layer charge distribution and propagation under the electron beam at 1000x 

magnification. 

Perturbation of  the double layer charge often influences the local fiber micromorphology[122]. 
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Figure 3. Singular branched fiber with traveling charge waves on the surface (YMD micrographs after Sobel-Feldman operator 

visualizing isopotential lines of  the electron beam induced emission)[129]. 
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Figure 4. Charging isolines (isopotential lines obtained by Sobel filter) colocalized with SEM maps [129]. 
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Figure 5. Oscilloscopic sectioning visualization of the surface charge propagation process performed in YMD-compatible 

registration mode (Y-modulation and raster carrier wave). 

It is the point effect on the acute angle (or “arris”) of the fiber sample[129]. 
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