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ABSTRACT: This article proposes to analyze the formation and 

“morphogenesis” during desolvation of  drops on MALDI targets and 

target chips using 2D correlation spectral analysis based on the 

two-dimensional Fourier transform and wavelet spectroscopy methods in 

the real and imaginary regions. The results of  the correlation-spectral and 

wavelet analysis are shown in the illustrations in the text of  the article. 
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1. Introduction 

It is well known, that MALDI MS frequently used for analysis of  biological complex mixtures[1–15]. 

The applicability of  Matrix Assisted Laser Desorption/Ionization methods (MALDI) in 

computer-assisted identification of different biochemical constituents on ahcnor chips (also known as 

MALDI target plates, including barcoded machine-readable ones)[16–18] with areas on which the 

corresponding samples for identification are pipetted is a matter of  common knowledge. Pipetting of  the 

sample onto the target plates/anchor chips can be performed manually with a glass or plastic tip (in the 

latter case, the probability of contamination of the sample with organic contaminants is often 

significantly increased) or automatically with special devices[19–29]. Literature on MALDI sampling is 

extremely large[30–49]. 

Ideally, if  the goal is not just detection but specific quantitative or semi-quantitative data collection 

on the content of  target substances in samples, the drops should be similar in volume and 

microrheological properties, which is not always possible with manual dosing on the plate. Identical 

drops are identically desolvated and crystallized however, drops applied at intervals in time, at any time 

after their pipetting (see Figure 1) have different optical and recrystallometric, desolvated and 

microrheological characteristics. From the standpoint of  statistical data analysis and metrology, this can 

result in heteroscedasticity in the sample statistics associated with the difference in the size of  drops and 

the completeness of  filling the wells on the plate (MALDI target plates/anchor chips) after manual 

dosing. This problem is particularly evident when the types of  wells geometries differ. In essence, the 

products of  analyte dehydration/crystallization, both colloidal and macromolecular (e.g., polypeptide) 

in nature, from the standpoint of nonlinear physics, are self-organization products[50–61] that are formed in 
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the presence of  the corresponding energy conditions/gradients, including laser-induced desolvated 

(dehydrated) self-organization. Therefore, the form of  such self-organizing structures strongly depends 

on the medium conditions and the experimental protocol. 

For both colloidal and supramolecular structures, the statements about the dependence of  the 

structure on the preparation conditions are true. The transition from manual dosing to automatic pipettes 

for applying “spots” (also known as MALDI spotter), although it leads to the improvement of  the 

reproducibility of  dosing and uniformity of  the plate in volume filling, does not lead to the elimination of  

the physical causes of desolvated heterogeneity. Therefore, when measuring native samples by direct 

mass spectrometry uniformity of  spots is often neglected and the performance of  a specific quantitative 

analysis is not considered, with the only purpose to identify the presence of  a particular 

compound/chemical agent in the analyzed sample, or chemical identification of  an unidentified sample, 

collected directly in the natural conditions, according to its MALDI mass spectra without an extremely 

complicated sample preparation, associated with chemical separation of  the biological sample into 

elementary identifiable molecular components (lipids, proteins, etc.). 

 
Figure 1. Stages of  the liquid droplet desolvation and pattern formation in the self-organization on MALDI. 

2. Methods 

For a serial comparative analysis of  stain dehydration patterns on MALDI chips, it was proposed to 

use the Fourier transform of  stain images. At the same time, with the help of  a neural network, each 

chemism of spots could be associated with a certain complex of descriptors of  chemical and physical 

genesis. As a tool for express Fourier spectral analytics, the QAVIS software package was used, which 

generated IFCs and ISCs (Integral Frequency Characteristics and Integral Spatial Characteristics) based 

on the two-dimensional Fourier transform of the image of a spot, a drop on a chip. This complex was 

developed at the POI FEB RAS by the group of  Fishchenko and Goncharova[62–65]. It is based on the 

FFTW library and was previously used for various tasks[66–72]. 

This technique of  comparative Fourier measurements was named correlation-spectral analysis by 

the authors of the software package themselves. 
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Wavelet analysis was performed using the QAVIS program in real and imaginary coordinates. 

3. Results 

The results of  the correlation-spectral Fourier analysis of various forms of desolvation in drops are 

shown in Figures 2–4. The results of  wavelet correlation-spectral analysis of different forms of 

desolvation in drops (with separate analysis in three image fragments—on three scan strips of  a photo of 

a drop) are shown in Figures 5–7. It can be seen that both the Fourier method and the wavelet method 

can distinguish between different forms of  desolvation and shaping/crystallization/reaction-diffusion 

mophogenesis during the transition to the solid phase. This is characteristic, since when pipetting onto 

MALDI substrates, one can observe heteroscedasticity of  samples of  morphometric characteristics of  

droplets and patterns of  their dehydration or desolvation (see Figure 8). 

 
Figure 2. Comparative 2D FFT correlation-spectral analysis of  droplets; example of  image processing from the old presentation 

in Moscow State University. 
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Figure 3. Comparative 2D FFT correlation-spectral analysis of  droplets; example of  image processing from the old presentation 

in Moscow State University. 

 
Figure 4. Comparative 2D FFT correlation-spectral analysis of  droplets; example of  image processing from the old presentation 

in Moscow State University. 
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Figure 5. Comparative wavelet correlation-spectral analysis of  droplet images; example of  image processing from the old 

presentation in Moscow State University. 

 
Figure 6. Comparative wavelet correlation-spectral analysis of  droplet (Ibid.). 
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Figure 7. Comparative wavelet correlation-spectral analysis of droplet; example of image processing from the old presentation in 
Moscow State University. 

 
Figure 8. Comparative 2D FFT correlation-spectral analysis of  droplets; example of  image processing from the old presentation 

in Moscow State University. 

4. Conclusion 

So, as a result of testing the methods of Fourier analysis and wavelet analysis of cracking of drops 

during drying or laser drying on MALDI chips, it was shown that such methods give very well 

distinguishable pictures of qualitative differences between drops. This allows us to speak about the 

applicability of this method as a method of qualimetry in analytical chemistry and thesiography of 

biological fluids with MALDI analysis. 
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