Analysing entropy generation of MHD (50:50) slip flow over an inclined needle

Selvaraj Priya¹, Gundada Raju Rajamani¹, Bhose Ganga², Abdul Kaffoor Abdul Hakeem¹*, Pachiyappan Ragupathi¹,

¹ Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, India
² Department of Mathematics, Providence College for Women, Coonoor 643104, India
* Corresponding author: Abdul Kaffoor Abdul Hakeem, drabdulmaths@gmail.com; Pachiyappa Ragupathi, ragupathiprs@gmail.com

ABSTRACT: The primary objective of this study is to quantify the rate of entropy generation within the Magnetohydrodynamic (MHD) slip flow system over the inclined needle. Entropy generation is a measure of the irreversibility and inefficiency in the flow process. The slip flow condition at the fluid interface can significantly impact the flow characteristics and heat transfer rates. In the hybrid nanofluid flow, which consists of non-magnetic and magnetic (Al₂O₃ and Fe₃O₄) are nanoparticles, H₂O + C₂H₆O₂ (50:50) are considered as the base fluid. Furthermore, the effects of inclined magnetic fields are taken into interpretation. The PDE’s governing equations are converted into ODE’s using similarity transformations and solved by a numerical technique based on BVP4C. The results illustrate that crucial parameter such as the magnetic parameter, mixed convection parameter, nanoparticles of solid volume fractions, and Prandtl numbers are pointedly impacted by momentum and thermal profiles. The entropy and Bejan number also consider being various relationship combined parameters. These analyses protest that raising the magnetic parameter estates an increase in the hybrid nanofluid thermal profile under slip circumstances. Examined magnetic field impact on flow and entropy generation in MHD flows, revealing significant changes in entropy generation due to interaction between magnetic field and nanoparticles. This analysis understands the impact of MHD and slip effects on entropy generation, particularly in the context of the newly emerging 50:50 fluid mixture. Hybrid nanofluids have been shown to have improved thermal conductivity compared to traditional fluids, which can enhance the cooling or heating capabilities of the inclined needle.

KEYWORDS: inclined needle; heat transfer; hybrid nanofluid; entropy generation; Bejan number

1. Introduction

Hybrid nanofluids can significantly enhance heat transfer properties compared to traditional heat transfer fluids. The combination of nanoparticles with distinct thermal conductivities can lead to improved cooling efficiency in various systems, such as heat exchangers, electronic devices, and power plants. This research analysis an inclined surface, the gravitational force acts as an additional driving force in the flow direction, which introduces a slip velocity at the fluid interface. This slip effect modifies the flow dynamics and heat transfer mechanisms.

ARTICLE INFO
Received: 3 July 2023
Accepted: 16 August 2023
Available online: 19 September 2023
doi: 10.59400/mea.v1i1.106
Copyright © 2023 Author(s).
force, influencing the flow behavior. If the gravitational force component parallel to the inclined surface exceeds the yield stress of the material, the material will start to flow downhill.[1] This research analyzes the understanding of these dynamics is crucial for various engineering and environmental applications and requires careful consideration of factors such as viscosity, particle characteristics, and channel inclination[2]. Vertical thin needle in porous medium offers mathematical framework for analyzing heat and mass transfer rates, enabling researchers and engineers to optimize designs and make informed decisions[3]. Nanofluids are colloidal suspensions with nanoparticles dispersed in base fluids like water, oil, or ethylene glycol. These unique properties significantly improve thermal conductivity of the base fluid. Enhancing the thermal conductivity of fluids using nanoparticles is a process known as nanofluid technology. This research improved thermal properties make them promising candidates for enhancing heat transfer efficiency and improving the overall performance of thermal systems[4]. This research analysis identifies the most influential parameters and their impact on the system’s behavior. This can help optimize the system design or suggest areas for further research[5,6]. This review analyzes numerical simulations on lid-driven cavity flow with nanofluids, providing valuable insights for researchers and engineers seeking to understand the complexities and potential applications of nanofluid flows in lid-driven cavities[7]. The study examines magnetic separation and filtration processes in industries like wastewater treatment and mining, utilizing nanoparticle magnetization for efficient fluid flow manipulation and control[8]. This study explores magnetic field-electrically conductive fluid interactions, affecting heat and mass transfer in magnetic drug targeting and hyperthermia cancer treatment applications[9]. This study examines non-Fourier heat flux, ferromagnetic properties, and autocatalytic chemical reactions for understanding thermal and dynamical behavior in complex systems, including magnetic fluids[10]. This research analyzes bioconvection, the collective movement of living microorganisms in fluids, particularly nanofluids. Bioconvection can enhance heat transfer and improve the thermal performance of nanofluids, such as bacteria and algae[11]. Investigated in this study nanoparticle materials like metal oxides, carbon-based materials, and ferromagnetic nanoparticles for optimizing viscous dissipation in cooling systems and microfluidic devices[12]. Recent research in the field of hybrid nanofluids is ongoing, and new applications continue to emerge as scientists explore their unique properties and potential in various fields. This research analyzes Lorentz force and viscous dissipation to predict propylene glycol-water mixture behavior, optimizing system design, controlling fluid flow, and enhancing heat transfer and transport efficiency[13]. This study investigates the effects of natural convection, micropolar hybrid nanofluid, needle orientation, and boundary heating conditions on heat transfer, fluid flow patterns, and temperature distribution in a thin needle[14]. This research investigated stratification in nanoliquids, examining the impact on fluid dynamics and microorganism behavior, potentially affecting bioconvection patterns and gyrotactic microorganism behavior[15,16]. The research examined stretching parameters’ impact on fluid flow and heat transfer characteristics, focusing on non-linear profiles in parabolic shapes for realistic scenarios and practical applications[17]. MHD refers to the study of the behavior of electrically conducting fluids in the presence of magnetic fields. The utilization of hybrid nanofluids in MHD systems aims to improve their performance, efficiency, and control. Some of the recent research in this area has focused on investigating the effects of different factors, such as nanoparticle concentration, fluid flow rate, and geometrical shapes, on the overall performance of MHD systems. In recent years, researchers have been investigating the application of hybrid nanofluids in MHD systems with different geometrical shapes. Some of the research areas are following, wedges[18], curve[19], vertical plate[20], sphere[21], flexible walls[22], sinusoidal walls[23]. This research investigates slip effects refer to the motion of the fluid near the surface, where the fluid molecules slip along the solid boundary instead of adhering to it. The findings of such studies can
provide valuable insights into the design and optimization of various engineering systems and processes involving heat and mass transfer[24]. Investigated the behavior of nanoparticles in the nanofluid near the wavy cylinder and understanding their potential aggregation or settling tendencies due to the presence of the magnetic field[25]. This study investigates the exact and specific results that would depend on the assumptions, boundary conditions, and modeling approaches used in the study. Therefore, the findings may vary across different research works and experimental setups[26]. Researchers have investigated this study is the use of reversible chemical reactions to store and release heat, which is crucial for renewable energy integration and grid stabilization[27]. Investigated this analysis how the combination of thermal radiation and shear-thinning behavior impacts the overall heat transfer rate in the system[28]. This study examines activation energy, a crucial parameter in nanofluids, which influences chemical reactions and thermal behavior, focusing on energy barriers and their impact on chemical reactions[29]. Studies have investigated the dynamics of the melting front in nanofluids, analyzing how nanoparticles affect the solid-liquid interface and the overall melting process[30]. Recent research may have focused on investigating the impact of different types of nanoparticles, their concentrations, and fluid compositions on entropy generation. Studies may have explored the behavior of hybrid nanofluids in specific applications, such as heat exchangers, refrigeration systems, or power generation. Some studies have shown that the use of hybrid nanofluids can lead to reduced entropy generation compared to traditional fluids. The enhanced thermal conductivity of nanofluids allows for improved heat transmission, reducing the temperature gradients and associated entropy generation. Some of the following recent researches are based on entropy generation[31–37].

The main aim of this paper, using slip flow conditions at the inclined needle and the impact of the inclined magnetic field needs to be considered. To calculate analytical results can be used scattering shooting techniques and obtain solutions for velocity, temperature, and other relevant variables. In MHD slip flow, the slip boundary conditions are applied at the fluid interface, for the presence of nanoparticles need to considered. These models may include the Brownian motion and Thermophoresis effects on nanoparticles. Thermal convection refers to the process of heat transmission in fluids due to the combined effect of buoyancy and fluid motion. The application of a Lorentz force can influence fluid stream and heat transmission processes through Magnetohydrodynamics (MHD). The outcomes of this research can provide insights into the thermodynamic efficiency of the system, the impression of slip flow and nanofluid on entropy creation, and the influence of the magnetic field. This information can be useful for optimizing the design and operation of MHD systems utilizing hybrid nanofluids in slip flow conditions with horizontal needle geometries. Entropy generation and the Bejan number are essential concepts in thermodynamics and fluid mechanics. Hybrid nanofluids can potentially progress the performance and efficiency of the needle. Another potential application is in enhancing the heat transmission properties of the needle.

2. Mathematical formulation

- For the research, stable, an incompressible 2D axisymmetric dissipative hybrid fluid flow was applied to a moving object with an inclined magnetic field.
- The fluid was composed of $H_2O + C_2H_6O_2(50 − 50) + Al_2O_3 + Fe_3O_4$.
- The magnetic field intensity applied normally towards the needle is decided by $B = B(x) = \frac{B_0}{\sqrt{x^2}}$. T_∞ and T_w were chosen to represent ambient, surface temperatures.
- The needle passages in the similar or conflicting way as the constant velocity U_w normal with free continual velocity U_∞ and the flow pattern is shown in Figure 1. Table 1 determines the status of
magnetic and nonmagnetic nanoparticle thermophysical properties, as well as hybrid nanofluid thermal properties.

These conventions allow for the specification of flow controlling equations as\(^{13}\)

Continuity equation:

\[r(u)_x + r(v)_r = 0 \] (1)

Momentum equation:

\[uu_x + vu_r = \frac{\mu_{hmf}}{\rho_{hmf}} \left(\frac{1}{r} \right) (ru_r)_r - u \frac{\sigma B^2}{\rho_{hmf}} \sin^2 \alpha + \frac{g(\rho \beta)_{hmf}(T - T_\infty)}{\rho_{hmf}} \sin \Omega \] (2)

Energy equation:

\[(\rho C_p)_{hmf} (uT_x + vT_r) = k_{hmf} \left(\frac{1}{r} \right) (rT_r)_r \] (3)

With the boundary conditions\(^{6}\),

\[
\begin{align*}
 u &= U_w + \Gamma_1 \left(\frac{\mu_{hmf}}{\rho_{hmf}} \right) \frac{\partial u}{\partial r}, \\
 v &= \Gamma_2 \frac{\partial T}{\partial r} \\
 u &\rightarrow u_\infty, T &\rightarrow T_\infty \text{ as } r &\rightarrow \infty
\end{align*}
\] (4)

Table 1. Thermophysical characteristics attributes of solid volume fractions of nanoparticles and base fluid\(^{5,6}\).

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Al\textsubscript{2}O\textsubscript{3}</th>
<th>Fe\textsubscript{3}O\textsubscript{4}</th>
<th>H\textsubscript{2}O + C\textsubscript{2}H\textsubscript{6}O\textsubscript{2} (50:50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg/m3)</td>
<td>3970</td>
<td>5180</td>
<td>1067.5</td>
</tr>
<tr>
<td>Specific heat (J/kg/k)</td>
<td>765</td>
<td>670</td>
<td>3300</td>
</tr>
<tr>
<td>Thermal conductivity (W m-1k-1)</td>
<td>9.7</td>
<td>40</td>
<td>0.3799</td>
</tr>
<tr>
<td>Dynamic viscosity (kg/ms)</td>
<td>-</td>
<td>-</td>
<td>0.00339</td>
</tr>
<tr>
<td>Thermal expansion (\beta)/10-5(1/k)</td>
<td>0.85</td>
<td>1.3</td>
<td>58</td>
</tr>
</tbody>
</table>

The hybrid nanofluid is strategized different volumetric solid fractions \((\phi_1, \phi_2)\) such as Al\textsubscript{2}O\textsubscript{3} – (0.5\%) and Fe\textsubscript{3}O\textsubscript{4} – (1.5\%).

The hybrid nanofluid properties are considered by Sajja et al.\(^{13}\).

\[\rho_{hmf} = \left\{ (1 - \phi_2)[(1 - \phi_1)\rho_f + \phi_1\rho_s] \right\} + \phi_2\rho_s \] (5)
\[
\mu_{hnf} = \frac{\mu_f}{(1 - \phi_1)^{2.5}(1 - \phi_2)^{2.5}} \\
k_{hnf} = \frac{k_{s2} + 2k_{nf} - 2\phi_2(k_{nf} - k_{s2})}{k_{s2} + 2k_{nf} + \phi_2(k_{nf} - k_{s2})} \times k_{nf} \\
k_{nf} = \frac{k_{s1} + 2k_f - 2\phi_1(k_f - k_{s1})}{k_{s1} + 2k_f + \phi_1(k_f - k_{s1})} \times k_f \\
(\rho C_p)_{hnf} = \{(1 - \phi_2)[(1 - \phi_1)(\rho C_p)_f + \phi_1(\rho C_p)_{s1}]} + \phi_2(\rho C_p)_{s2} \\
(\rho \beta)_{hnf} = \{(1 - \phi_2)[(1 - \phi_1)(\rho \beta)_f + \phi_1(\rho \beta)_{s1}]} + \phi_2(\rho \beta)_{s2} \\
\]

Along with variables such as \([13]\),
\[
\begin{align*}
\varepsilon &= \frac{u r^2}{v x}, \psi = vxf(\varepsilon), u = \frac{1}{r} \left(\frac{\partial \psi}{\partial r}\right) \\
v &= -\frac{1}{r} \left(\frac{\partial \psi}{\partial x}\right), T = T_\infty + (T_w - T_\infty)\theta(d)
\end{align*}
\]

we can get \(R(x) = \left(\frac{v dx}{r}\right)^2 \) where \(U = U_w + U_\infty \neq 0 \) is the governing equations is satisfied by reinforced acceleration. and transforms (Equations (2) and (3)) as:
\[
\frac{2}{E_1 E_2} (\varepsilon F''' + F'') - \frac{1}{2E_2} MF'sin^2\alpha + \lambda E_3 (sin\Omega)\theta = 0
\]
\[
\frac{2E_3 E_{s1}}{E_4} \frac{1}{Pr} (\varepsilon \theta''' + \theta') + F\theta' = 0
\]

and changes the circumstances in Equation (4) as,
\[
F'(d) = \frac{\delta}{2} + \frac{2\gamma \sqrt{\Delta}}{E_1 E_2}, F(d) = d \left(\frac{\delta}{2} + \frac{2\gamma \sqrt{\Delta}}{E_1 E_2}\right), \theta(d) = 1 + \gamma_2 \theta'(\varepsilon)
\]
\[
F'(\infty) \rightarrow \frac{1^-}{2}, \theta(\infty) \rightarrow 0
\]

The hybrid nanofluid properties are considered by Sajja et al.\([13]\).
\[
E_1 = (1 - \phi_1)^{2.5}(1 - \phi_2)^{2.5} \\
E_2 = \{(1 - \phi_2)[(1 - \phi_1) + \phi_1 \frac{\rho_{s1}}{\rho_f}]} + \phi_2 \frac{\rho_{s2}}{\rho_f} \\
E_{s1} = \frac{k_{s1} + 2k_f - 2\phi_1(k_f - k_{s1})}{k_{s1} + 2k_f + \phi_1(k_f - k_{s1})} \\
E_3 = \frac{k_{s2} + 2E_{s1} k_f - 2\phi_2(E_{s1} k_f - k_{s2})}{k_{s2} + 2E_{s1} k_f + \phi_2(E_{s1} k_f - k_{s2})} \\
E_4 = (1 - \phi_2)[(1 - \phi_1) + \phi_1 \frac{(\rho C_p)_{s1}}{(\rho C_p)_f}]} + \phi_2 \frac{(\rho C_p)_{s1}}{(\rho C_p)_f} \\
E_5 = (1 - \phi_2)[(1 - \phi_1) + \phi_1 \frac{(\rho \beta)_{s1}}{(\rho \beta)_f}]} + \phi_2 \frac{(\rho \beta)_{s2}}{(\rho \beta)_f} \\
Gr_x = \frac{g \beta_f (T_w - T_\infty)L^3}{v^2}, Re_x = \frac{UL}{v}, M = \frac{\alpha B_0^2}{\rho U}, \delta = \frac{U_w}{U} = \text{constant velocity}
\]

\[\nu^3, \text{composite velocity}\]
\[
\lambda = \frac{Gr_x}{Re_x^2} = \frac{g\beta_f(T_w - T_\infty)L^3}{U^2}, \quad Pr = \frac{\mu c_p}{k}
\]

Nusselt number and skin friction

Another important external of the contemporary examination is the Nusselt number, Skin friction which is prearranged by,

\[
N_{ux} = \frac{x q_w}{k_f((T_w - T_\infty))}
\]

\[
C_{fx} = \left. \frac{\tau_w}{\frac{\mu}{2} \rho U^2} \right|_{r=R(x)}
\]

where \(q_w = -k_{hnf} \frac{\partial T}{\partial r} \) (wall heat flux), \(\tau_w = \mu_{hnf} \frac{\partial u}{\partial r} \) (wall shear stress).

The following terms from Equations (19) and (20) are described in non-dimensional form

\[
(Re_x)^{-\frac{1}{2}} N_{ux} = -E_3 E_{11} 2\sqrt{\bar{d}}(d)
\]

\[
(Re_x)^{-\frac{1}{2}} C_{fx} = \frac{8\alpha'(e)\sqrt{\bar{d}}}{E_1}
\]

where \(Re_x = \frac{U L}{v} \) (Reynolds number).

3. Entropy analysis

The countenance for the entropy analysis is specified below\[^{35}\]

\[
S_{gen}^{'''} = \frac{k}{T_\infty^2} ((T_r)^2) + \frac{\mu}{T_\infty} ((u_r)^2) + \frac{\sigma B_0^2}{T_\infty} u^2
\]

where the primary term displays the entropy analysis proportion due to heat transmission \(S_{h}^{'''}\), the next term confirmations the entropy analysis proportion due to fluid resistance \(S_{f}^{'''}\), the third tenure illustrations the entropy analysis proportion owing to the magnetic field \(S_{m}^{'''}\).

\[
S_{gen}^{'''} = S_{h}^{'''} + S_{f}^{'''} + S_{m}^{'''}
\]

The proportion of total entropy analysis that can remain engraved in a dimensionless process is

\[
N_S = \frac{S_{gen}^{'''}}{(\frac{k}{x^2}) \Omega_T} = \varepsilon Re_x \Omega_T \theta' r^2 + 4\varepsilon Re_x Br F_n r^2 + M Re_x Br F_n^r r^2
\]

where \(Br = \frac{\mu u^2}{k_f(T_w - T_\infty)}\) represents the Brinkman number.

Bejan analysis

Regarding the entropy analysis examination of convective heat transmission issues, Bejan stated the irreversibility distribution proportion as follows:

\[
\Phi = \frac{S_{prod.frc}^{'''}}{S_{prod.\Delta\theta}}
\]

It is imperative to note that the fluid resistance \(N_{sf}\) irreversibility plays a major role when \(\Phi > 1\). Therefore, the heat transmission irreversibility \(N_{sh}\) is fundamental. When \(\Phi = 1\), the perfections related to heat transference \(N_{sh}\) and fluid resistance \(N_{sf}\) are the equivalent.
Equation Φ could very well establish.

$$
\Phi = \frac{4BrFr''^2 + \frac{Br}{\alpha T_0} MF'}{\theta^2}
$$

(31)

The impermissibility ratio, or Bejan multitude, is

$$
Be = \frac{S''_{prod} \Delta T}{S_{prod}} = \frac{k}{T_\infty} \left((T_r)^2\right)
$$

(32)

As a direct consequence of the method developed, it begins to develop in and out of

$$
Be = \frac{\theta^2}{\theta^2 + 4BrFr''^2 + \frac{Br}{\alpha T_0} MF'}
$$

(33)

$Be = 1$ symbolizes the boundary at which irreversibility is entirely owed to heat transmission, $Be = 0$ is the boundary at which the irreversibility is due to fluid resistance only. $Be \gg 1/2$ when irreversibility outstanding to heat transmission takes antecedence. $Be \ll 1/2$ demonstrates that irreversibility due to fluid resistance is foremost.

4. Physical explanation

Analyzing this research needs to resolve the governing equivalences for mass, velocity, and thermal conservation. These equations are typically solved using numerical techniques such as BVP4C. The governing equations for this problem can be expressed in non-dimensional form using suitable dimensionless variables such as Reynolds variable, Prandtl quantity, inclined magnetic. Figures 2–16 depict the appearances and structures of various pertinent variables appearing in the problematic on the profiles of hybrid nanofluid momentum, thermal, entropy and Bejan profile. Table 1 demonstrates the importance of magnetic and nonmagnetic nanoparticle thermophysical properties, as well as hybrid nanofluid thermal properties. Table 2 displays heat transfer rate and surface drag force values. Table 3 and Figures 17 and 18 are compares our results to available outcomes in order to validate our problem with other research and discover its remarkable similarity. The transmuted nonlinear differential Equations (1)–(3), moreover the boundary restriction (Equations (13) and (14)), are numerically resolved using the BVP4C solver. The values that appear in the problem through computation are fixed as $\phi_1 = 0.005, \phi_2 = 0.015, d = 0.5, Pr = 29.45, M = 3, \delta = 1, v_1 = t_1 = 1.5$. The detailed numerical solution is below,

$$
y_1 = f and y_4 = \theta
$$

$$
y_1 = y_2
$$

$$
y_2 = y_3
$$

$$
y_3 = -\frac{1}{\varepsilon} \left[y_3 + \frac{E_1 E_2}{2} \left(y_1 y_3 - \frac{1}{2 E_2^2} y_2^2 + X + \lambda E_5 (\sin \Omega) y_4\right)\right]
$$

$$
y_4 = y_5
$$

$$
y_5 = \frac{1}{\varepsilon} \left[y_5 - \frac{E_4}{2 E_3 E_3^1} \times Pr \times y_1 y_5\right]
$$

$$
y_2(a) = \frac{\delta}{2} + \frac{v_1 \sqrt{a}}{2} \times \frac{1}{E_1 E_2}
$$
\[y_1(a) = d \left[\frac{\delta}{2} + \frac{\nu_1 \sqrt{d}}{2} \frac{1}{E_1E_2} \right] \]
\[y_4(a) = 1 + t_1 \cdot y_5 \]
\[y_2(b) = \frac{1 - \delta}{2} \]
\[y_4(b) = 0 \]

5. Review and discussion of the results

Figure 1 depicts the items are placed of the conundrum. In regard to physical behaviour and attitude are explanations in the figures. Figures 2–16 have been drawn for EG-Water (50:50) + Al₂O₃ + Fe₃O₄, to demonstrate the impression of numerous parameters on acceleration, entropy generation, and Bejan number.

5.1. Velocity and thermal profile

Figure 2 explains, the increase in the magnetic parameter \((M = 1, 2, 3)\) strengthens the opposing magnetic force, while the increase in the inclination angle \((\Omega = 0^\circ, 45^\circ, 90^\circ)\) magnifies the gravitational force component acting parallel to the surface. Both of these factors contribute to a decline in the velocity profile of the inclined needle.

Velocity profile:

![Figure 2](image-url)

When both the needle size \((d = 0.5, 1, 1.5)\) and angle \((\Omega = 0^\circ, 45^\circ, 90^\circ)\) increase simultaneously, their combined effect enhances the fluid flow even more. The larger needle diameter allows for a greater fluid volume, while the steeper angle generates a higher pressure drop. This combination results in a more pronounced upsurge in the velocity profile as explained in Figure 3.

Velocity profile:

![Figure 3](image-url)
Figure 4 explains, when the velocity, temperature slip parameter \((v_1 = t_1 = 1.5, 2.5, 3.5) \), and angle \((\Omega = 0^\circ, 45^\circ, 90^\circ) \) of an inclined needle are increased, the velocity profile tends to become more uniform and less parabolic. The increased velocity promotes turbulence, the higher temperature slip parameter introduces thermal effects, and the steeper angle amplifies the influence of gravity. These factors combine to produce a higher velocity profile along the surface of the needle.

Velocity profile:

![Figure 4](image)

Figure 4. The impacts of \(v_1 = t_1 = 1.5, 2.5, 3.5 \) on \(F'(\epsilon) \).

Figure 5 as shown, when both the velocity ratio parameter \((\delta = 1, 2, 3) \) and the angle \((\Omega = 0^\circ, 45^\circ, 90^\circ) \) increase, the fluid experiences an increased velocity due to a combination of factors. The higher velocity ratio parameter indicates a faster flow rate, while the increased angle leads to a more pronounced directional component of the fluid velocity. As a result, the overall momentum profile of the fluid in the inclined needle increases.

Velocity profile:

![Figure 5](image)

Figure 5. The impacts of \(\delta = 1, 2, 3 \) on \(F'(\epsilon) \).

A mixed convection parameter is a dimensionless number that characterizes a system’s relative importance of forced and natural convection. When both the mixed convection parameter \((\lambda = 0.5, 1.5, 2.5) \) and the angle of inclination \((\Omega = 0^\circ, 45^\circ, 90^\circ) \) increase simultaneously, the mutual consequence of enhanced forced convection and increased natural convection results in an even greater velocity profile in the inclined needle. The fluid is influenced by both the external source (forced convection) and the buoyancy forces (natural convection), leading to an intensified flow pattern with higher velocities, as appeared in Figure 6.

Velocity profile:
Figure 6. The impacts of $\alpha = 0^\circ, 45^\circ, 90^\circ$ on $F'(\varepsilon)$.

Figure 7 explains, when both the magnetic parameter ($M = 1, 2, 3$) and the inclination angle ($\Omega = 0^\circ, 45^\circ, 90^\circ$) increase simultaneously, their combined effects result in a more pronounced enhancement of heat transfer. The stronger magnetic field induces more vigorous fluid motion, while the larger inclination angle modifies the buoyancy-driven flow patterns. These changes collectively lead to increased heat transfer from the needle, resulting in an increase in the temperature profile.

Thermal profile:

Figure 7. The impact of $M = 1, 2, 3$ on $\theta'(\varepsilon)$.

When both the needle size ($d = 0.5, 1, 1.5$) and angle ($\Omega = 0^\circ, 45^\circ, 90^\circ$) increase, the combined effect of increased surface area (due to larger needle size) and enhanced convection (due to higher needle angle) can outweigh the reduction in the surface area caused by the inclination. This results in an overall intensification in the temperature profile of the inclined needle as exposed in Figure 8.

Thermal profile:

Figure 8. The impact of $d = 0.5, 1, 1.5$ on $\theta'(\varepsilon)$.
Figure 9 explains, when the velocity, temperature slip parameter \((v_1 = t_1 = 1.5, 2.5, 3.5) \), and angle \((\Omega = 0^o, 45^0, 90^0) \) increase in an inclined needle, the temperature profile tends to decrease. This is primarily due to enhanced convective heat transfer resulting from higher fluid velocity, larger temperature difference at the interface (temperature slip parameter), and increased fluid turbulence caused by the inclination angle.

Thermal profile:

![Figure 9. The impact of \(v_1 = t_1 = 1.5, 2.5, 3.5 \) on \(\theta'(e) \).](image)

When both the velocity ratio \((\delta = 1, 2, 3) \) parameter and the angle \((\Omega = 0^0, 45^0, 90^0) \) of inclination increase, the combined effect is a significant enhancement in fluid mixing and heat transfer. The increased velocity ratio increases turbulence and shear stresses, promoting better mixing. The increased angle of inclination strengthens the gravity-driven flow, further enhancing the mixing. The enhanced mixing and heat transfer result in a more efficient transmission of thermal energy from the fluid to the needle walls. Consequently, the temperature profile of the fluid decreases explained in Figure 10.

Thermal profile:

![Figure 10. The impacts of \(\delta = 1, 2, 3 \) on \(\theta'(e) \).](image)

5.2. Entropy and Bejan profile

The relationship between aluminium oxide and magnetic parameters would largely depend on the introduction of magnetic impurities or the formation of composite materials. If aluminium oxide is doped with magnetic elements or combined with magnetic materials, then its magnetic properties can be influenced in an inclined needle. As the magnetic parameter (field strength or magnetic moment) increases, the alignment of the needle with the field may become more pronounced. This alignment can affect the entropy distribution along the needle, as shown in Figure 11.
Entropy and Bejan profile:

![Figure 11](image1.png)

Figure 11. Relationship between M and ϕ_1 on entropy profile.

The relationship between the (Br) and (Re) determines the behavior of the fluid flow. As the Brinkman number increases, the flow becomes more influenced by viscous forces, leading to an increase in the entropy profile. This is because higher viscous forces result in more energy dissipation and heat generation within the flow. Consequently, entropy which is a measure of the disorder or randomness of a system tends to increase as shown in **Figure 12**.

Entropy and Bejan profile:

![Figure 12](image2.png)

Figure 12. Relationship between Br and Re_e on entropy profile.

Figure 13 explained, the relationship between the (Br) and (M) determines the behavior of the fluid flow. The Brinkman number represents the proportion of viscous forces to inertial forces. This implies that the fluid flow is more influenced by the viscosity of the fluid. When the magnetic parameter increases, it signifies a stronger influence of the magnetic field on the fluid flow. In the presence of a magnetic field, the fluid may experience additional forces and interactions, such as magnetic induction and Lorentz forces. These forces can alter the flow behaviour and have an impact on the entropy profile.

Entropy and Bejan profile:

![Figure 13](image3.png)

Figure 13. Relationship between Br and M on entropy profile.
The relationship between a magnetic field and a nanoparticle of Al₂O₃, specifically in the context of a horizontal needle, as the magnetic field \(M = (1, 2, 3) \), increases, the Bejan number decreases in the case of a horizontal needle with a nanoparticle of Al₂O₃. Since the Bejan number is inversely proportional to the convective heat transfer, an intensification in convective heat transfer caused by the altered flow pattern will result in a decrease in the Bejan number, as shown in Figure 14.

Entropy and Bejan profile:

![Figure 14. Relationship between \(M \) and \(\phi_1 \) on bejan profile.](image)

Figure 14 explained, the relationship between the Brinkman number and the Reynolds number in the context of flow around a horizontal needle, as the Brinkman number \((Br = 0.1, 0.2, 0.3)\) increases, the viscous dissipation becomes more significant, leading to a decrease in convective heat transfer and a decrease in the Bejan number.

Entropy and Bejan profile:

![Figure 15. Relationship between \(Br \) and \(Re_x \) on bejan profile.](image)

The relationship between the Brinkman number and the magnetic field, when the magnetic field \(M = (1, 2, 3) \), increases, the convective heat transfer tends to decrease, while the conductive heat transfer may remain relatively unchanged. Consequently, the ratio of heat conduction to convective heat transfer, represented by the Bejan number decreases as explained in Figure 16.

Entropy and Bejan profile:
Table 2 examined the heat transfer rate and surface drag force for various parameters. The values that appear in the problem through computation are fixed as $\phi_1 = 0.005$, $\phi_2 = 0.015$, $d = 1$, $Pr = 29.45$, $M = 3$, $\delta = 1$, $v_1 = t_1 = 1.5$, $\alpha = 45^\circ$, $\lambda = 0.5$, $\Omega = 45^\circ$. Assessment of $f^\prime(\varepsilon)$ and $-\theta^\prime(\varepsilon)$ with the study of Sajja et al.\cite{13} when $\phi_1 = \phi_2 = \delta = 0$ are revealed in Table 3, and also it’s explained in graphically Figures 17 and 18.

<table>
<thead>
<tr>
<th>d</th>
<th>M</th>
<th>ϕ_1</th>
<th>ϕ_2</th>
<th>Pr</th>
<th>α</th>
<th>λ</th>
<th>Nu_x</th>
<th>Cf_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0.005</td>
<td>0.015</td>
<td>29.45</td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.3892</td>
<td>-92.2282</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3717</td>
<td>-51.7194</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3551</td>
<td>-38.5092</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.005</td>
<td>0.015</td>
<td>29.45</td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.3892</td>
<td>-89.5042</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3892</td>
<td>-90.8821</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3892</td>
<td>-92.2282</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.005</td>
<td>0.015</td>
<td>29.45</td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.3892</td>
<td>-92.2282</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.010</td>
<td></td>
<td>29.45</td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.4091</td>
<td>-93.3588</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.015</td>
<td></td>
<td>29.45</td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.4292</td>
<td>-94.5255</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.005</td>
<td>0.015</td>
<td>29.45</td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.3892</td>
<td>-92.2282</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.020</td>
<td></td>
<td>29.45</td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.4073</td>
<td>-92.9950</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.025</td>
<td></td>
<td>29.45</td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.4255</td>
<td>-93.8023</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.005</td>
<td>0.015</td>
<td>29.45</td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.3892</td>
<td>-92.2282</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>29.45</td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.3892</td>
<td>-92.2282</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>29.45</td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.3892</td>
<td>-92.2282</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>29.45</td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.3892</td>
<td>-92.2282</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.005</td>
<td>0.015</td>
<td>29.45</td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.3892</td>
<td>-92.2282</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.45</td>
<td>0$^\circ$</td>
<td>0.5</td>
<td>1.3892</td>
<td>-88.0924</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.3892</td>
<td>-92.2282</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90$^\circ$</td>
<td>0.5</td>
<td>1.3892</td>
<td>-92.6414</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.005</td>
<td>0.015</td>
<td>29.45</td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.3892</td>
<td>-92.2282</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.3892</td>
<td>-92.2273</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td>45$^\circ$</td>
<td>0.5</td>
<td>1.3892</td>
<td>-92.2264</td>
</tr>
</tbody>
</table>
Table 3. Assertion of present rankings when volumetric solid fractions (ϕ_1, ϕ_2) and the velocity ratio parameter δ are zero.

<table>
<thead>
<tr>
<th>Reference 13 (Sajja)</th>
<th>Present outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>$F''(\varepsilon)$</td>
</tr>
<tr>
<td>0.1</td>
<td>1.289074</td>
</tr>
<tr>
<td>0.01</td>
<td>8.492173</td>
</tr>
<tr>
<td>0.001</td>
<td>62.161171</td>
</tr>
</tbody>
</table>

Figure 17. Comparison of $F''(\varepsilon)$[13].

Figure 18. Comparison of $-\theta'(\varepsilon)$[13].

6. Conclusion

Analyzed to this paper, the main things entropy generation in a Magnetohydrodynamic (MHD) slip flow with a hybrid nanofluid over an inclined needle involves investigating the effects of fluid flow, magnetic field, and nanoparticle additives on the thermodynamic performance of the system. This analysis can provide valuable insights into the efficiency and energy losses in the flow, and it is essential for optimizing the design and operation of such systems. The effects of an inclined Lorentz force and entropy generation on the flow of ferrous and aluminium oxide nanoparticles in a hybrid nano liquid with water and ethylene glycol (50:50) as base fluids have been analysed numerically.

- The presence of nanoparticles in the base fluid can significantly enhance heat transfer characteristics, leading to improved thermal performance compared to conventional fluids. The heat transfer rate can be influenced by various factors such as nanoparticle volume fraction, size, shape, and type.
- Effects of magnetic field: the presence of a magnetic field can alter the flow and heat transfer behavior in MHD slip flow. Magnetic fields can induce fluid motion, alter nanoparticle distribution, and affect the heat transfer rate.
• The angle of inclination can influence the flow pattern, boundary layer formation, and consequently, the overall heat transfer and entropy generation.
• The entropy generation rate is given by the product of the local irreversibility and the volume element. The irreversibility term can be calculated based on the flow variables and their gradients.
• The velocity ratio has a higher bearing the thermal profile has been decreased.
• Entropy generation analysis helps quantify the irreversibilities within the system. It provides insights into the energy losses and efficiency of the process.
• The entropy rate increases with increasing the values of Brinkman, Reynolds, and magnetic field criteria.

Understanding MHD and slip flow phenomena is crucial for engineering applications like aerospace, energy, and biomedical fields. Entropy generation analysis optimizes systems for efficiency, reduced energy losses, and cost savings, while energy-related research contributes to sustainable practices and reduced environmental impact. Researchers can optimize MHD systems by considering practical constraints like material properties, manufacturing limitations, and cost, leading to viable engineering solutions. This approach could be applied in nanofluids, advanced materials, and biomedical devices.

Author contributions

Conceptualization, AKAH and SP; methodology, AKAH; software, BG; validation, AKAH, BG and PR; formal analysis, AKAH; investigation, AKAH; resources, GRR; data curation, GRR; writing—original draft preparation, SP; writing—review and editing, SP; visualization, BG; supervision, AKAH; project administration, AKAH; funding acquisition, BG. All authors have read and agreed to the published version of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Nomenclature

- **B** Magnetic field intensity, kgs⁻²a⁻¹
- **Cₚ** Skin friction coefficient
- **Cp** Specific heat, jkg⁻¹k⁻¹
- **K** Thermal conductivity, wm⁻¹k⁻¹
- **M** Magnetic parameter
- **Nuₓ** Local Nusselt number
- **Pr** Prandtl number
- **qₜ** Surface heat flux, wm⁻²
- **Re** Local reynolds number
- **Grₓ** Grashof number
- **R(x)** Equivalence of the surface of a thin needle
- **F** Dimensionless fluid velocity
- **T** Temperature of fluid
- **Tₑ** Ambient thermal
- **Tₛ** Surface thermal
U Reference velocity, ms$^{-1}$

U_w Constant velocity

U_∞ Free stream momentum

u Momentum factor in the x way

x, r Cylindrical directs

Greek letters

α Angle

β Thermal expansion coefficient

ϵ The magnitude of the needle ($\epsilon = d$)

ϕ_1, ϕ_2 Nanoparticles of volume fraction

μ Dynamic viscosity, kgm$^{-1}$s$^{-1}$

ν Kinematic viscosity, m2s$^{-1}$

σ Electrical conductivity, sm$^{-1}$

ρ Density, kgm$^{-3}$

θ Dimensionless fluid temperature

λ Mixed convection parameter

δ Velocity ratio parameter

ψ Dimensionless stream function

τ_w Wall shear stress, nm$^{-2}$

Γ_1 Velocity slip factor

Γ_2 Thermal slip factor

γ_1 Velocity slip coefficient

γ_2 Thermal slip coefficient

Subscripts

Hnf Hybrid nanofluid

Nf Nanofluid

F Fluid

S Solid

References

