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Abstract: Penetration depth, defined as the distance from the surface of the base material to 

the deepest point of the molten zone, is a critical factor influencing the strength and mechanical 

properties of welds. This study investigates the effects of process parameters in submerged arc 

welding (SAW) on penetration depth, utilizing a two-hidden-layer artificial neural network 

(ANN) for modeling. The input parameters include arc voltage, welding current, electrode 

stick-out, welding speed, and the thickness of a manganese-enriched nanoparticle layer, with 

penetration depth as the output variable. The results demonstrate that increasing the welding 

current to 700 amps enhances heat transfer to the molten pool, thereby improving base material 

melting and penetration depth. Similarly, raising the arc voltage from 24 to 32 volts results in 

a moderate increase in penetration depth due to higher heat input while maintaining a relatively 

stable electrode melting rate. These findings highlight the potential of optimizing SAW 

parameters to achieve consistent weld quality and desirable mechanical properties. 

Keywords: nanoparticles; penetration depth; weld geometry; submerged arc welding; artificial 

neural networks 

1. Introduction 

Welding is a versatile and essential process in manufacturing, facilitating the 

joining of metallic or non-metallic materials to create cohesive and durable structures. 

As a method that eliminates the need for disassembly, welding provides permanent 

and robust connections, making it indispensable across diverse industries. 

Applications range from infrastructure and construction projects to the automotive, 

aerospace, shipbuilding, and nuclear sectors, where precision and reliability are critical 

[1–4]. The importance of welding lies not only in its ability to create strong bonds but 

also in its adaptability to various materials, shapes, and industrial demands.  Among 

the diverse welding techniques, Submerged Arc Welding (SAW) has gained 

prominence as a specialized and highly efficient method tailored for large-scale and 

demanding applications. In SAW, the welding arc is formed between a continuously 

fed electrode wire and the workpiece, with the arc completely submerged under a layer 

of granular flux. This flux, dispensed from a hopper positioned in front of the electrode, 

serves multiple functions, including protecting the weld zone from atmospheric 

contamination, stabilizing the arc, and contributing to the chemical composition of the 

weld metal [5,6]. The shielding effect of the flux prevents oxidation and other adverse 

reactions, ensuring a high-quality weld.  What sets SAW apart from other welding 

processes is its efficiency and reliability. With a higher deposition rate compared to 

conventional methods, SAW allows for faster and more economical welding 
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operations. This efficiency is coupled with the ability to produce welds that are largely 

free from defects such as porosity and slag inclusions, which can compromise the 

structural integrity of the joint. The result is cleaner, stronger welds that meet the 

rigorous standards of industries requiring high-performance connections [7,8].  SAW 

is particularly advantageous when welding thicker materials, as it achieves deep 

penetration and uniform fusion across the joint. Additionally, the controlled heat input 

and the protective flux layer reduce thermal distortion in the workpiece, a common 

issue in other welding methods. The process’s automation further enhances its appeal 

by ensuring consistent results, minimizing human error, and boosting overall 

production efficiency. These features make SAW a preferred choice for applications 

such as shipbuilding, pipeline construction, and the fabrication of pressure vessels, 

where precision, durability, and productivity are paramount [9,10].  The quality of 

welds produced through SAW is determined by evaluating both mechanical properties 

and geometric characteristics. Mechanical attributes, including tensile strength, 

hardness, and impact resistance, are critical for ensuring the weld can withstand 

various stresses and environmental conditions. On the other hand, geometric 

parameters such as bead height, width, and penetration depth are vital in assessing the 

weld’s structural performance. Among these, penetration depth, which refers to the 

distance between the surface of the base material and the deepest part of the weld, is 

particularly significant, as it directly influences the load-bearing capacity and overall 

strength of the joint. Insufficient penetration can lead to weak bonds, reducing the 

reliability and safety of the structure [11–15]. Achieving optimal penetration depth in 

SAW requires precise control of process variables. Key parameters, including welding 

current, arc voltage, travel speed, and electrode stick-out, collectively determine the 

heat input, fusion efficiency, and quality of the weld. The interplay between these 

factors is complex, necessitating advanced methods to analyze and optimize them 

effectively [16–19].  In recent years, Artificial Neural Networks (ANNs) have emerged 

as powerful tools for studying and optimizing welding parameters. ANNs are 

computational models capable of identifying patterns and nonlinear relationships 

within datasets, making them ideal for understanding the multifaceted interactions in 

welding processes. By simulating the effects of variables such as current, voltage, and 

travel speed, ANNs enable researchers to predict welding outcomes with remarkable 

accuracy. This approach not only reduces the need for extensive experimental trials 

but also facilitates the identification of optimal parameter settings for specific 

applications, enhancing the efficiency and reliability of the welding process. In this 

study, an artificial neural network (ANN) model is applied to analyze the influence of 

arc voltage, electric current, electrode stick-out, and welding speed on penetration 

depth. In addition to the standard process parameters, the integration of nanoparticles 

has emerged as a promising approach to enhancing the microstructure and mechanical 

properties of welded joints. This novel approach underscores the potential of 

nanotechnology to address some of the longstanding challenges in welding, 

particularly in applications requiring superior performance and reliability [20–23]. 

Consequently, this research also examines the role of a layer of surface-adsorbed 

Boehmite nanoparticles containing manganese cations, exploring how this additional 

factor influences the welding process alongside other key parameters. 
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2. Boehmite nanoparticles 

Aluminum oxide, commonly known as alumina, is a white crystalline powder 

with widespread applications in various industrial fields, including ceramics, 

refractory materials, and electrotechnology. Among its many phases, Boehmite (ɣ-

AlOOH) stands out as a semi-stable form of aluminum oxide, characterized by the 

presence of unique surface hydroxyl (OH) groups. These groups facilitate the 

adsorption of various elements through OH–OH interactions, rendering Boehmite a 

versatile material for applications involving adsorption and catalysis [24]. The 

properties of Boehmite nanoparticles are particularly noteworthy due to their 

combination of chemical stability, superior mechanical strength, and remarkable 

thermal resistance. They exhibit high catalytic activity, which is further enhanced by 

their ability to transform into α-alumina, a thermodynamically stable phase, at elevated 

temperatures [25]. This transformation, combined with the cost-effective synthesis of 

Boehmite nanoparticles, has positioned them as a material of interest in numerous 

industrial and scientific endeavors [26]. One of the prominent industrial applications 

of Boehmite nanoparticles is their role as adsorbents in composite materials, especially 

in the automotive and oil industries [27]. These nanoparticles have been employed to 

remove impurities and enhance material properties, owing to their capacity to adsorb 

metallic cations. In welding processes, for instance, the incorporation of Boehmite 

nanoparticles enables the adsorption of manganese cations. During welding, the heat 

facilitates their conversion into alumina and manganese oxide, both of which 

contribute to the weld pool’s properties. This approach offers a low-cost and efficient 

method to improve the mechanical and chemical characteristics of welded joints. The 

current study focuses on synthesizing Boehmite nanoparticles and employing them as 

adsorbents for manganese cations in aqueous media. This process is achieved through 

a chemical reaction between Boehmite nanoparticles and potassium permanganate 

(KMnO4) solution. The synthesis method involves a carefully controlled procedure 

designed to ensure high adsorption efficiency and reproducibility [28,29]. The 

synthesis begins with the preparation of two distinct solutions. The first solution 

contains 6.49 g of sodium hydroxide (NaOH) dissolved in 50 mL of distilled water, 

while the second consists of 20 g of aluminum nitrate nonahydrate (Al(NO3)3·9H2O) 

dissolved in 30 mL of distilled water. The NaOH solution is then added dropwise at a 

rate of 2.94 mm/min to the aluminum nitrate solution, forming a milky suspension. To 

enhance the uniformity of the reaction, the suspension is subjected to sonication in an 

ultrasonic bath maintained at 25 ℃ for 3 h. This step ensures the homogeneous 

distribution of nanoparticles and promotes the formation of the desired Boehmite 

phase. After sonication, the precipitate is filtered and subsequently dried in an oven at 

220 ℃ for 4 h to stabilize the Boehmite nanoparticles. To enable the adsorption of 

manganese cations onto the synthesized Boehmite nanoparticles, a secondary process 

is performed. A mixture containing 60 g of Boehmite nanoparticles and 19 g of 

KMnO4 is dissolved in 400 mL of distilled water. The resulting solution undergoes 

ultrasonication at 25 ℃ for 15 min to enhance the interaction between the 

nanoparticles and the potassium permanganate. Following this, the mixture is 

subjected to reflux at a controlled temperature for 5 h, ensuring sufficient time for the 

chemical interactions to occur. To complete the process, the solution is stirred 
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continuously for 24 h, allowing maximum adsorption of manganese cations onto the 

Boehmite nanoparticle surfaces. This dual-step synthesis and adsorption methodology 

provides a straightforward yet effective means of enhancing the properties of 

Boehmite nanoparticles for specific industrial applications. The ability of these 

nanoparticles to adsorb manganese and subsequently convert into alumina and 

manganese oxide during high-temperature processes underscores their utility in 

welding and similar applications. By integrating this approach, it becomes possible to 

improve the performance and quality of welded materials while keeping production 

costs low.  The synthesis process of boehmite nanoparticles and the formation of 

crystalline phases are schematically illustrated in Figure 1. The diagram includes the 

preparation of precursors, crystallization at room temperature, formation of the 

bayerite phase, conversion to the boehmite phase through heating, and the application 

of ultrasound waves to enhance nanoparticle dispersion. 

 
Figure 1. Schematic illustration of boehmite nanoparticle synthesis and crystalline 

phase formation. 

3. Artificial neural network 

The Submerged Arc Welding (SAW) process is widely utilized in industrial 

applications due to its capability to produce high-quality welds with excellent 

mechanical properties. However, optimizing the process parameters to achieve desired 

outcomes, such as penetration depth, remains a challenging task. Various factors, 

including arc voltage, electric current, electrode stick-out, and welding speed, 

significantly influence the weld quality and characteristics. Modeling the intricate 

relationships among these parameters is crucial for improving the efficiency and 
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reliability of the SAW process. Artificial neural networks (ANNs) have emerged as a 

potent computational tool to model complex systems and nonlinear relationships 

[30,31]. These systems are inspired by the biological neural networks of the human 

brain, mimicking their ability to process and analyze data through interconnected 

layers of nodes or neurons. ANNs have been extensively employed in diverse domains, 

including image recognition, natural language processing, solving differential 

equations, and predictive modeling [32,33]. Their adaptability and capability to 

generalize make them suitable for applications in welding and materials science. A 

typical ANN structure comprises three main layers: The input layer, one or more 

hidden layers, and the output layer. The input layer serves as the interface for receiving 

raw data from the external environment. Each node in this layer corresponds to a 

specific input parameter. For the SAW process, the input parameters include arc 

voltage, electric current, electrode stick-out, welding speed, and nanoparticle layer 

thickness. These parameters are critical as they directly impact the weld penetration 

and overall quality. The hidden layer, positioned between the input and output layers, 

plays a central role in processing and analyzing the input data. The number of hidden 

layers and the nodes within each layer can be customized based on the complexity of 

the problem. For relatively simple problems, a single hidden layer with a small number 

of nodes might suffice. However, more intricate relationships demand deeper 

networks with multiple hidden layers, often requiring greater computational resources. 

In the context of SAW modeling, the hidden layer processes the input parameters 

through weighted connections and activation functions, enabling the network to learn 

and approximate the underlying relationships effectively. The output layer constitutes 

the final stage of an ANN, producing the model’s predictions or classifications. In the 

present study, the output layer consists of a single node that predicts the penetration 

depth based on the processed data from the hidden layer. By mapping the input 

parameters to the desired output, the ANN provides a robust framework for 

understanding and optimizing the SAW process. The architecture of the ANN used in 

this research is designed to capture the nonlinear dependencies between the input 

parameters and the output variable. Specifically, the input layer comprises five nodes 

representing the aforementioned parameters, while the hidden layer consists of three 

nodes to balance computational efficiency and modeling accuracy. The connections 

between the nodes are governed by weights, which are iteratively adjusted during the 

training phase to minimize the error between the predicted and actual values. This 

iterative process, known as backpropagation, involves calculating the gradient of the 

error concerning the weights and updating them accordingly. One of the key 

advantages of using ANNs for modeling the SAW process is their ability to generalize 

from training data to unseen scenarios. By leveraging a sufficient dataset that 

encapsulates a wide range of input-output combinations, the ANN can identify 

patterns and relationships that are difficult to discern through traditional analytical 

methods. Moreover, the flexibility of ANNs allows for the incorporation of additional 

input parameters or the adjustment of network architecture as needed, making them a 

versatile tool for process optimization. 

The current research focuses on utilizing an ANN model to predict the 

penetration depth during the SAW process. By systematically altering input 

parameters such as arc voltage, current, electrode stick-out, welding speed, and the 
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thickness of a nanoparticle layer composed of manganese-containing Boehmite 

nanoparticles, the model offers critical insights into the underlying process dynamics. 

The structure of the ANN used in this study, shown in Figure 2, demonstrates the 

arrangement of input, hidden, and output layers specifically designed to address the 

complexities of the SAW process. This architecture ensures a balance between 

computational efficiency and prediction accuracy. The findings emphasize the 

transformative role of ANNs in welding applications, highlighting their capability to 

manage intricate nonlinear relationships and adapt to varying operational conditions. 

By offering a robust framework for optimizing process parameters, ANNs 

significantly enhance the efficiency, quality, and consistency of welds, contributing to 

the advancement of modern manufacturing methodologies. 

 
Figure 2. Developed the structure of an artificial neural network model. 

4. Experimentation and data collection 

ST37 is a mild carbon steel known for its ease of processing and favorable 

mechanical properties. With a carbon content of approximately 0.17%, this steel is 

characterized by its ability to maintain a balance between strength and flexibility, 

making it ideal for a wide range of structural applications. Frequently used in 

industries such as construction and manufacturing, ST37’s qualities make it suitable 

for components like beams, bridges, and machinery frames that require reliable load-

bearing performance. Its excellent weldability further enhances its utility in processes 

like Submerged Arc Welding (SAW), where achieving robust, durable joints is 

essential for maintaining long-term structural integrity.  In this study, SAW was 

performed on St37 steel plates, each with dimensions of 15 × 50 × 150 mm3. The 

welding operation utilized a direct current (DC) reverse polarity configuration, known 

for its stability and efficient heat input during the welding process. The setup included 

a PARS CAT P2310 semi-automatic robotic system, ensuring precision and 

repeatability throughout the welding operations. The power supply was provided by a 

PARC ARC 1203T unit, designed with a constant voltage characteristic, which is 

critical for maintaining consistent weld quality. The consumables used in the welding 

process comprised a specialized welding wire and flux, whose detailed chemical 

compositions are provided in Table 1. These consumables were carefully selected to 
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ensure optimal compatibility with the base material and enhance the mechanical 

properties of the resulting weld joint. In addition, the experimental setup incorporated 

a layer of Boehmite nanoparticles adsorbed with manganese cations applied to the 

surface of the base material. This layer was introduced to investigate its potential 

effects on the welding process and the quality of the weld zone. The key process 

parameters examined in this investigation included arc voltage, electric current, 

electrode stick-out length, welding speed, and the thickness of the nanoparticle layer. 

Preliminary experiments were conducted using a One Variable at a Time (OVAT) 

approach to establish appropriate ranges for these variables. During these trials, each 

parameter was varied independently while maintaining all other conditions constant, 

allowing for the identification of its influence on weld quality. The outcomes of these 

initial experiments helped define the minimum and maximum values for each 

parameter, ensuring a systematic and well-controlled experimental design. These 

ranges are summarized in Table 2. Following the determining suitable parameter 

ranges, a Central Composite Rotatable Design (CCRD) was employed to organize the 

experimental framework. This statistical method enables a comprehensive evaluation 

of parameter interactions while minimizing the number of required experiments. The 

input variables were varied across five levels (−2, −1, 0, +1, and +2), creating a robust 

design matrix. The matrix and the corresponding experimental results are detailed in 

Table 3. By using this approach, the study aimed to model the complex relationships 

between the input variables and the welding outcomes, focusing particularly on the 

depth of weld penetration. Weld penetration depth is a critical factor in ensuring the 

structural integrity of welded joints, as it directly influences the mechanical 

performance and load-bearing capacity of the weld. To accurately model this 

parameter, an artificial neural network (ANN) was implemented. The ANN was 

trained using the experimental data, enabling it to predict weld penetration depth based 

on variations in the input parameters. Figure 3 illustrates the weld-melted zone 

observed in the prepared workpiece. This zone represents the region where the base 

material has undergone melting and subsequent solidification during the welding 

process. The microstructural characteristics of this region are of significant importance, 

as they directly impact the mechanical properties and long-term performance of the 

weld. The formation of a uniform and defect-free melted zone is indicative of 

successful parameter selection and process control. 

Table 1. Chemical composition of the wire and flux. 

Chemical composition of the welding wire 

Element C Mn Si Fe 

%W 0.04–0.08 0.9–1.3 0.5–0.8 Balance 

Chemical composition of the consumed flux 

SiO2 + TiO2 Al2O3 + MnO CaF2 

% 5 % 55 % 30 
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Table 2. Input parameters and their ranges. 

Parameter 
Coded values 

−2 −1 0 +1 +2 

Arc Voltage (volts) 24 26 28 30 32 

Electric current (amp) 500 550 600 650 700 

Electrode stick-out (mm) 30 32.5 35 37.5 40 

Welding Speed (mm/min) 300 350 400 450 500 

Nano-layer thickness (mm) 0 0.25 0.5 0.75 1 

 

Figure 3. Weld-melted zone in the prepared sample. 

Table 3. Input parameters and their ranges. 

Std. 
Arc voltage 

(volts) 

Electric current 

(amp) 

Electrode 

stick-out (mm) 

Welding speed 

(mm/min) 

Nano-layer 

thickness (mm) 

Penetration 

depth (mm) 
Error 

1 28 600 35 400 0.5 7.01 −0.242 

2 28 600 35 300 0.5 8.14 0.400 

3 26 650 32.5 450 0.75 7.65 0.179 

4 26 550 37.5 450 0.75 4.14 −1.363 

5 30 650 37.5 350 0.25 9.28 0.363 

6 28 700 35 400 0.5 8.80 −0.169 

7 30 650 32.5 450 0.25 10.13 1.409 

8 28 600 30 400 0.5 7.68 0.312 

9 26 550 32.5 350 0.75 5.98 0.090 

10 30 650 32.5 350 0.75 8.37 −0.599 

11 26 550 37.5 350 0.25 6.09 0.587 

12 28 600 35 400 0.5 6.90 −0.352 

13 28 600 35 400 0 8.24 0.987 

14 26 550 32.5 450 0.25 5.55 −0.129 

15 30 550 37.5 450 0.25 5.18 −0.323 

16 28 600 35 400 0.5 7.05 −0.202 

17 28 600 35 400 0.5 6.89 −0.362 

18 26 650 37.5 350 0.75 7.81 −0.207 

19 28 600 35 400 1 6.57 −0.188 
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Table 3. (Continued). 

Std. 
Arc voltage 

(volts) 

Electric current 

(amp) 

Electrode 

stick-out (mm) 

Welding speed 

(mm/min) 

Nano-layer 

thickness (mm) 

Penetration 

depth (mm) 
Error 

20 30 650 37.5 450 0.75 8.37 −0.396 

21 30 550 32.5 350 0.25 8.14 0.935 

22 30 550 37.5 350 0.75 7.29 1.787 

23 24 600 35 400 0.5 6.43 −0.823 

24 28 600 35 400 0.5 7.27 0.018 

25 30 550 32.5 450 0.75 4.62 −0.883 

26 28 600 35 400 0.5 6.98 −0.272 

27 26 650 32.5 350 0.25 7.75 −0.170 

28 26 650 37.5 450 0.25 7.48 0.227 

29 28 600 35 500 0.5 6.31 0.094 

30 32 600 35 400 0.5 7.89 −0.705 

31 28 600 40 400 0.5 6.81 1.307 

32 28 500 35 400 0.5 4.64 −0.863 

33 28 600 35 300 0.5 8.13 0.316 

34 26 650 32.5 450 0.75 7.60 0.149 

35 30 650 37.5 350 0.25 9.25 0.193 

36 28 700 35 400 0.5 8.75 0.111 

37 28 600 30 400 0.5 7.60 0.102 

38 26 550 32.5 350 0.75 6.20 0.160 

39 26 550 37.5 350 0.25 6.30 0.727 

40 28 600 35 400 0.5 6.50 −0.132 

41 26 550 32.5 450 0.25 5.70 −0.049 

42 30 550 37.5 450 0.25 5.20 −0.333 

43 28 600 35 400 0.5 7.10 −0.132 

44 26 650 37.5 350 0.75 7.80 −0.327 

45 28 600 35 400 1 6.60 −0.068 

46 30 650 37.5 450 0.75 8.40 −0.676 

47 30 550 37.5 350 0.75 7.30 1.777 

48 28 600 35 400 0.5 6.90 −0.132 

49 30 550 32.5 450 0.75 4.80 −0.893 

50 28 600 35 400 0.5 7.02 −0.132 

51 26 650 37.5 450 0.25 7.50 0.227 

52 32 600 35 400 0.5 7.80 −0.495 

53 28 600 40 400 0.5 6.80 1.257 

5. Results and discussion 

This study aimed to optimize the penetration depth in Submerged Arc Welding 

(SAW) by developing a neural network model that links input parameters to the output 
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variable, which is the penetration depth. The structure of the Artificial Neural Network 

(ANN) consisted of five neurons in the input layer and one neuron in the output layer. 

To identify the optimal welding conditions for achieving maximum penetration depth, 

regression analysis was employed alongside the neural network to evaluate the 

relationships between the input parameters and the resulting penetration depth. The 

input parameters included arc voltage, electric current, electrode stick-out, welding 

speed, and the thickness of the nanoparticle layer, while the output layer represented 

the penetration depth. For model training, data were randomly selected, and the 

Levenberg-Marquardt optimization algorithm was applied. A total of 70% of the data 

was used for training the neural network, adjusting the model based on the calculated 

error. The remaining 20% was reserved for validating the network, allowing for an 

assessment of its generalization ability and the cessation of training once further 

improvements were no longer observed. The final 10% of the data served as the test 

set, providing an independent measure of the network’s performance throughout and 

after training. Figure 4 shows an error histogram, representing the distribution of 

errors for each data group. The regression coefficients comparing the experimental 

and neural network data for maximizing penetration depth are displayed in Figure 5. 

Figure 6 illustrates the performance plot of the Artificial Neural Network (ANN) in 

terms of Mean Squared Error (MSE) and R-values, which evaluate the correlation 

between predicted outputs and target values. The MSE values for the training, 

validation, and testing datasets were 7.8396 × 10−2, 5.3101 × 10−2, and 9.1429 × 10−2, 

respectively, highlighting the model’s predictive accuracy. A lower MSE value 

corresponds to better network performance, indicating reduced deviation between 

predicted and actual values. The R-values, reflecting the correlation strength, were 

9.9712 × 10−1, 9.8534 × 10−1, and 9.6030 × 10−1 for training, validation, and testing, 

respectively. These values, close to 1, demonstrate a high correlation between network 

outputs and the target data. The performance plot shows how MSE decreases over 35 

epochs for all datasets, with a rapid decline in the initial stages, indicating effective 

learning. By epoch 29, the network achieves its optimal configuration, as denoted by 

the circled point labeled “Best.” The model exhibits the lowest validation MSE at this 

point, signifying an optimal balance between accuracy and generalization. The 

training process halts after six consecutive validation checks without improvement, 

which prevents overfitting and ensures a robust model. The consistent trend across the 

training, validation, and testing datasets suggests that the ANN maintains reliability 

across different data partitions. These findings confirm the network’s ability to 

effectively learn complex input-output relationships and provide accurate predictions 

for penetration depth in SAW. Additionally, the study explored the influence of 

various factors, including arc voltage, electric current, electrode stick-out, welding 

speed, and nanoparticle layer thickness, on the weld penetration depth. Figure 7 

illustrates the influence of various input parameters on penetration depth during the 

SAW process. The results show that electric current has the most significant impact, 

with penetration depth increasing markedly as the current rises from 500 to 700 amps 

due to higher heat input, enhancing base material melting. The results revealed that 

the intensity of the electric current plays a significant role in determining the welding 

geometry, as higher current values led to increased penetration depth. This effect is 

attributed to the greater melting of both the base metal and the welding wire. However, 
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excessively high currents can result in energy loss and deterioration of the welding 

wire [34,35].  Arc voltage also contributes to penetration depth, albeit to a lesser extent, 

with a modest increase observed as the voltage rises from 24 to 32 volts, resulting from 

slightly higher heat input without substantial changes in electrode melting rate. 

Electrode stick-out, on the other hand, exhibits an inverse relationship with penetration 

depth; increasing the distance from 30 to 40 mm reduces heat concentration at the weld 

pool, leading to shallower penetration. Similarly, welding speed inversely affects 

penetration depth, with faster speeds (300 to 500 mm/min) reducing the time for heat 

transfer, thereby diminishing weld penetration [34,35]. Lastly, the addition of 

nanoparticles reduces penetration depth by decreasing the thermal conductivity of the 

molten pool, limiting heat transfer to the workpiece as the nano-layer thickness 

increases.  

 
Figure 4. The regression coefficients of experimental data and neural network 

training data. 

 
Figure 5. The regression coefficients of experimental data and neural network 

training data. 
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Figure 6. Performance plot: The mean squared error and R-values between outputs 

and target. 

 
Figure 7. The effect of input parameters on the penetration depth. 
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6. Conclusions 

Submerged Arc Welding (SAW) is a widely employed technique in various 

industrial sectors, appreciated for its ability to produce strong, defect-free welds. In 

this research, Artificial Neural Networks (ANNs) were applied to model and optimize 

penetration depth in the SAW process, addressing the challenges posed by traditional 

experimental methods. The ANN model provided highly accurate predictions, as 

demonstrated by low Mean Squared Error (MSE) and high correlation coefficients, 

verifying its reliability in predicting the effects of input parameters on penetration 

depth.  The study revealed that electric current has the most significant impact on 

penetration depth, with higher currents increasing heat input and thus enhancing 

penetration. Arc voltage also contributed to heat transfer, but with a smaller effect. On 

the other hand, greater electrode stick-out and faster welding speeds were found to 

decrease penetration depth, as they reduce the concentration of heat in the weld pool. 

Additionally, the inclusion of nanoparticle layers on the workpiece reduced 

penetration depth due to their lower thermal conductivity, which limited heat transfer.  

These findings confirm that ANN-based modeling is a powerful tool for optimizing 

the SAW process. By offering precise predictions of penetration depth, this approach 

aids in improving the understanding of key process parameters and can help reduce 

the need for extensive experimental trials. 
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