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Abstract: In the present article, it attempts to present the determination of optimal parameters 

of machining processes by means of probabilistic multi-objective optimization (PMOO), in 

which the optimal objectives (attributes) are fundamentally divided into beneficial type and 

unbeneficial type, moreover all attributes of both beneficial type and unbeneficial type are 

evaluated separately with equivalent manner to get their partial preferable probability. Finally, 

the total preferable probability of each alternative is obtained by the product of all partial 

preferable probabilities, which is the unique and decisive representative of the alternative to 

join the competitive optimization, the optimum alternative is with the highest total preferable 

probability. An example of parametric optimization and determination of aerospace component 

with Electro Chemical Machining (ECM) is taken to illuminate the procedure. In the case of 

ECM, the current, voltage, and feed rate are as the optimal parameters to be investigated, while 

Material Removal Rate (MRR), and Surface Roughness (SR) are the optimal objective 

responses to be measured. The experimental runs were designed using an L27 Taguchi 

orthogonal array. In the assessment of PMOO for ECM, the objective MRR belongs to the 

beneficial attribute, and the objective SR is as the unbeneficial attribute. The novelty of this 

work is to reflect the simultaneity and the irreplacement of optimization of objectives MRR 

and SR in the optimal system. The evaluated results reveal that the optimized experimental 

scheme is the alternative 8, which is with the optimal responses of MRR of 280.112 g/min and 

SR of 0.45 m, the corresponding optimum experimental parameters are voltage of 12 V, 

electrolyte flow rate of 12 m/s and tool feed rate of 0.4 mm/min, respectively. The achievement 

of the present article indicates the validity of the corresponding approach and algorithm. 
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1. Introduction 

Parametric optimization and determination in machining processes could 

improve the productivity of the aerospace industry. In general, the machining 

performance could be measured in terms of Material Removal Rate (MRR), Surface 

Roughness (SR) and Tool Wear Rate (TWR) [1]. Producing components with high 

accuracy increases the performance of the mechanical parts [2].  

In order to meet the requirements for aero-components, there appears some 

significant and essentially Unconventional Machining Process for production 

technologies, such as Electro Chemical Machining (ECM), Plasma Arc Machining 

(PAM), Electric Beam Machining (EBM), Electric Discharge Machining (EDM) and 

Ultra Sonic Machining (USM), which avoids the direct contact of metal to tool [3–5]. 
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Electrochemical machining (ECM) is one of the most appropriate approaches for 

machining of aero-components since it has distinctive benefits, including negligible 

tool wear, excellent machining efficiency, autonomy, and low cost in accordance with 

the exact physical properties of the corresponding material [6,7]. 

However, the optimization of a machining system with many objective responses 

simultaneously is still a problem, though some so called “multi criteria decision 

making methods” were frequently used to deal with the relevant problems [8], such as 

Grey Rational Analysis (GRA), Technique for Order Performance by Similarity to 

Ideal Solution (TOPSIS), Vlse Kriterijumska Optimizacija I Kompromisno Resenje 

(VIKOR), Multi- Objective Optimization on the Basis of Ratio Analysis (MOORA), 

ELimination and Choice Expressing Reality (ELECTRE), Preference Ranking for 

Organization Method for Enrichment Evaluation (PROMETHEE), etc. The intrinsic 

drawback of above methods is the lack of revealing the simultaneity and the 

irreplacement of many optimal objectives in the system. The fatal shortcoming of these 

methods is not aware. 

Recently, probabilistic multi-objective optimization (PMOO) was proposed [8], 

which could reveal the simultaneity and the irreplacement of many optimal objective 

responses in the system properly, in which the optimal objectives (attributes) are 

basically divided into both beneficial type and unbeneficial type, furthermore all 

attributes of above two types are evaluated separately with equivalent manner to obtain 

their partial preferable probability. Finally, the total preferable probability of each 

alternative is gained by the product of all partial preferable probabilities, which is the 

unique and decisive representative of the alternative to join the optimization 

competitively. The optimum alternative with the highest total preferable probability 

wins the competition at last [8].  

In the present article, the parametric optimization and determination of aerospace 

component with Electro Chemical Machining (ECM) is taken as an example to 

illuminate the successful utility of probabilistic multi-objective optimization (PMOO) 

in machining processes. 

2. Brief introduction of methodology of probabilistic multi-

objective optimization 

The probabilistic multi-objective optimization (PMOO) is concisely 

demonstrated here [8]. 

Generally, in a multi-objective optimization (MOO) problem some attribute 

utility indexes are with the characteristics of “the higher the better” [8], i.e., the 

attribute with higher value is inevitably more welcomed and could get more preference, 

this type of attribute is called beneficial index. In this case, a term “preferable 

probability” could be introduced to reflect the “preference degree” of the attribute in 

the optimization process reasonably [8]. Furthermore, for the simplicity, it assumes 

that the partial preferable probability of such kind of attribute responses is proportional 

to the specific value of its attribute utility index positively, i.e., 

Pij = AjUij, i = 1, 2, ..., n, j = 1, 2, ..., m. (1) 
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In Equation (1), n is the total number of alternatives in the relevant candidate 

system; m represents the total number of objective response indicators of each 

alternative; Uij is the utility value of the j-th objective indicator of the i-th alternative; 

Pij represents the partial preferable probability of the beneficial attribute index Uij; Aj 

represents the normalization factor of the j-th beneficial attribute (objective) indicator.  

In the light of general principle of probability theory [9], for the j-th material 

objective response index, it derives following expression for the normalization factor 

[8],  

𝐴𝑗 = 1/(𝑛𝑈𝑗) (2) 

In Equation (2), jU  is the average utility value of the j-th attribute index in the 

attribute group involved.  

On the other hand, in a MOO problem some attribute utility indexes are with the 

characteristics of “the lower the better” [8], i.e., the attribute with lower value is more 

welcomed and could get more preference, this type of objective responses is called 

unbeneficial index. In this case, the partial preferable probability of the unbeneficial 

attribute is assumed to be linearly related to its attribute utility index value negatively 

in the optimization process equivalently,  

Pij = Bj(Ujmax+Ujmin –Uij), i = 1, 2, ..., n, j = 1, 2, ..., m. (3) 

In Equation (3), both Ujmin and Ujmax represent the minimum and maximum utility 

values of the attribute indicators in the j-th objective (attribute) group, respectively; Bj 

is the normalization factor of the j-th unbeneficial attribute index, which can be 

expressed as [8],  

])(/[1 minmax jjjj UnUUnB −+=  (4) 

In Equation (4), the symbols jU , Ujmin and Ujmax are with the same meanings as 

in the previous paragraphs. 

Furthermore, according to the fundamentals of probability theory [9], the total 

preferable probability of the i-th alternative can be written as the product of all partial 

preferable probabilities, 

𝑃𝑖 = 𝑃𝑖1 ⋅ 𝑃𝑖2 ⋅. . .⋅ 𝑃𝑖𝑗 ⋅. . . = ∏ 𝑃𝑖𝑗
𝑚
𝑗=1 . (5) 

Obviously, in this assessment, the total preferable probability of each alternative 

is the unique and decisive index in the optimization process. This is the probabilistic 

multi-objective optimization (PMOO). Besides, through above procedures with 

Equations (1)–(5), the multi-objective optimization problem is now transformed into 

a single-objective optimization one in term of total preferable probability naturally. At 

last, the optimum alternative corresponds to the specific candidate that is with the 

highest total preferable probability, which is the optimal result of this overall 

optimization. 

Moreover, if there is a weighting factor wj for j-th objective response, the total 

preferable probability of the i-th alternative can be expressed in following form [8], 

𝑃𝑖 = 𝑃𝑖1
𝑤1 ⋅ 𝑃𝑖2

𝑤2 ⋅. . .⋅ 𝑃𝑖𝑗
𝑤𝑗 ⋅. . . = ∏ 𝑃𝑖𝑗

𝑤𝑗𝑚
𝑗=1 . (6) 
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Many applications of above approach are performed [8], which gave acceptable 

consequences and are consistent with known. This indicates the reasonability of the 

approach. 

In next section, the parametric optimization and determination of aerospace 

component with Electro Chemical Machining (ECM) is taken as an example to 

illuminate the utility of probabilistic multi-objective optimization in machining 

processes. 

3. Application example and results 

Parametric optimization and determination of aerospace component with Electro 

Chemical Machining (ECM) is illuminated as an example here [7]. In the case of ECM, 

the current, voltage, and feed rate are used as the optimal parameters to be investigated, 

while the Material Removal Rate (MRR), and Surface Roughness (SR) are the optimal 

objective responses to be measured and assessed. The experimental runs were 

designed using an L27 Taguchi orthogonal array. 

In the experiment, 27 trial runs completed [7], which is cited in Table 1. In the 

assessment of PMOO for this issue, the objective MRR is as the beneficial attribute, 

and the objective SR is as the unbeneficial attribute.  

The assessment result of this issue is presented in Table 2. In Table 2, the 

columns 4, 5, and 6 give the assessed results of partial preferable probability PMRR for 

Material Removal Rate (MRR), partial preferable probability PSR for Surface 

Roughness (SR), and total preferable probability Pt  103 for each alternative, 

respectively. The column 7 gives the ranking value according to the total preferable 

probability of each alternative. 

From Table 2, it can be seen that the experimental scheme 8 is with the highest 

total preferable probability and at rank 1 position in the assessment by means of 

probabilistic multi-objective optimization, thus the optimized experimental scheme is 

alternative 8 with the optimum responses of MRR of 280.112 g/min and SR of 0.45 

m, which is with the optimum experimental parameters of voltage of 12 V, electrolyte 

flow rate of 12 m/s and tool feed rate of 0.4 mm/min. However, Animesh Kumar 

Sharma et al got the alternative 3 as their optimized the experimental scheme by means 

of using VIKOR and TOPSIS [7], the latter is with the responses of MRR of 117.824 

g/min and SR of 0.89 m. Obviously the responses of MRR and SR of alternative 8 

are much superior to those of alternative 3. 

Table 1. Experimental results of the aerospace component with ECM. 

No. Voltage (V) Electrolyte flow rate (m/s) Tool feed rate (mm/min) MRR (g/min) SR (m) 

1 12 8 0.2 288.176 1.23 

2 12 8 0.4 208.656 0.91 

3 12 8 0.6 117.824 0.89 

4 12 10 0.2  235.424 0.57 

5 12 10  0.4  330.512  1.22 

6 12 10  0.6  311.472  1.87 

7 12 12  0.2 235.424 1.12 
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Table 1. (Continued). 

No. Voltage (V) Electrolyte flow rate (m/s) Tool feed rate (mm/min) MRR (g/min) SR (m) 

8 12 12 0.4  280.112  0.45 

9 12  12 0.6  140.896  1.46 

10 15  8 0.2  344.960 1.21 

11 15 8 0.4  205.744 1.32 

12 15 8 0.6 328.608  0.78 

13 15 10 0.2 160.720 1.93 

14 15 10 0.4  228.032 0.81 

15 15 10 0.6  114.016 0.90 

16 15  12 0.2  205.520 1.36 

17 15  12 0.4  219.072 1.72 

18  15 12 0.6  177.744  1.78 

19 18 8 0.2  202.272 0.85 

20 18 8 0.4  339.472  1.97 

21 18 8 0.6  271.264  1.58 

22 18 10 0.2  308.112  1.49 

23 18 10 0.4  302.848  1.18 

24 18 10 0.6  314.048  1.27 

25 18 12 0.2  268.912  1.48 

26 18 12 0.4  132.384  1.61 

27 18 12 0.6  134.848  2.01 

Table 2. Assessment result of the aerospace component with ECM. 

No. 
MRR 

(g/min) 

SR 

(m) 

Partial preferable probability for 

MRR, PMRR 

Partial preferable probability 

for SR, PSR 

Total preferable probability, 

Pt  103 
Rank 

1 288.176 1.23 0.0450 0.0391 1.7591 9 

2 208.656 0.91 0.0326 0.0493 1.6050 11 

3 117.824 0.89 0.0184 0.0499 0.9180 18 

4 235.424 0.57 0.0367 0.0601 2.2082 3 

5 330.512  1.22 0.0516 0.0394 2.0339 5 

6 311.472  1.87 0.0486 0.0188 0.9120 19 

7 235.424 1.12 0.0367 0.0426 1.5656 12 

8 280.112  0.45 0.0437 0.0639 2.7941 1 

9 140.896  1.46 0.0220 0.0318 0.6992 23 

10 344.960 1.21 0.0538 0.0397 2.1399 4 

11 205.744 1.32 0.0321 0.0362 1.1640 16 

12 328.608  0.78 0.0513 0.0534 2.7397 2 

13 160.720 1.93 0.0251 0.0169 0.4227 26 

14 228.032 0.81 0.0356 0.0525 1.8672 7 

15 114.016 0.90 0.0178 0.0496 0.8827 20 

16 205.520 1.36 0.0321 0.0350 1.1219 17 

17 219.072 1.72 0.0342 0.0235 0.8045 22 
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Table 2. (Continued). 

No. 
MRR 

(g/min) 

SR 

(m) 

Partial preferable probability for 

MRR, PMRR 
Partial preferable probability 

for SR, PSR 

Total preferable probability, 

Pt  103 
Rank 

18  177.744  1.78 0.0277 0.0216 0.5998 24 

19 202.272 0.85 0.0316 0.0512 1.6161 10 

20 339.472  1.97 0.0530 0.0156 0.8255 21 

21 271.264  1.58 0.0423 0.0280 1.1847 15 

22 308.112  1.49 0.0481 0.0308 1.4832 13 

23 302.848  1.18 0.0473 0.0407 1.9238 6 

24 314.048  1.27 0.0490 0.0378 1.8547 8 

25 268.912  1.48 0.0420 0.0312 1.3078 14 

26 132.384  1.61 0.0207 0.0270 0.5584 25 

27 134.848  2.01 0.0210 0.0143 0.3011 27 

4. Conclusion 

The probabilistic multi-objective optimization is an effective methodology to 

deal with the parametric optimization and determination in machining processes. In 

the PMOO assessment, the optimal objectives (attributes) are basically divided into 

both beneficial type and unbeneficial type; all objective responses of either beneficial 

type or unbeneficial type are evaluated separately with equivalent manner 

simultaneously. The achievement of the present article reflects the validity of the 

corresponding approach and algorithm for the utilization of multi-objective 

optimization in machining processes. 
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