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Abstract: Specifical original problem of attitude controlling for spacecraft was proposed in 

this paper. Problem of optimal rotation from a known initial state in a prescribed spatial 

orientation was studied in detail (turnaround time is not fixed). Design of optimal program of 

reorientation is based on new indicator of quality that combines energy costs including the 

contribution of controlling torques and integral of rotary energy (in a known proportion) and 

reorientation time; presence of duration factor bounds time of rotation finish. To construct an 

optimal control of angular momentum changing, quaternionic method and the maximum 

principle were applied. Differential equation that relates spacecraft angular momentum and 

quaternion of spacecraft orientation is a base to obtain analytic solution to a problem. We 

reveal the properties of optimum control program analytically, and study key features of 

optimum motion in details. Also, we write the formalized equations, mathematical formulas 

to design optimal law for change of spacecraft’s angular momentum. Analytic relations and 

equations are given for finding the optimal solution. Control law (in as explicit dependence 

between phase variables and con-trolling variables has been formulated. Main relations 

determining optimum values of parameters for rotation control algorithm were given. The 

closed-form law for rotation was obtained for dynamically symmetric solids. Numerical 

example as well as results of mathematical modeling of spacecraft motion that formed using 

optimum control are presented. This data as addition to the made theoretic descriptions shows 

reorientation process (in virtual form) and demonstrates practical feasibility of the developed 

control method. A designed algorithm for optimal control of rotation improves an efficiency 

of attitude system, and originates more economical performing of space vehicle during its 

flight along orbit. 

Keywords: quaternion; spatial attitude; optimal control; angular momentum; maximum 

principle; combined criterion of quality; boundary value problem 

1. Introduction 

Spacecraft transfer problem from its initial spatial position into a given angular 

position has been solved. Spatial reorientation consists in moving of spacecraft axis 

from the known attitude in another given position within finite time T. Spacecraft 

attitude is specified with respect to the chosen frame of reference. A case when 

inertial frame was reference basis has been considered. Use of new quality indicator 

(without any constraint for the control variables) is principial difference in solution 

proposed. 

Problem of controlling the angular position of a solid is known very well [1–

28]. It was considered in various formulations and studied by different methods in 

wide range, including analytic design of optimum controllers [1], or basing on 

inverse dynamics problem [2] and others, as well as issues of optimum control [1,3–
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26]. Methods for optimizations are very different, for example, optimization based 

on the maximum principle [9–26], where classical criteria for estimate control 

process (a speed-optimal [4–12], energy costs [11,13,14,19], minimum fuel 

consumption [14], etc.) have been used, or kinematic problems on turning [15–18]. 

Optimum control problem in dynamic statements is of special interest; in particular 

case (when process end time is fixed) method of variables separation was applied 

[14]. Analytic solution of optimum turn controlling in a closed form remain 

practically important because this solution allow a finished law of program control to 

be applied onboard (as well as variation of optimal rotation trajectory of spacecraft). 

But extremely difficult to solve problem and find optimum law for solids when 

moments of inertia are arbitrary. Consequently, approximate numeric methods can 

be used only for solving the problem of a turn. Some special cases of control were 

known in case of spherically symmetric [12,19] or solids with dynamical symmetry 

[8–11,16,20–22]. Specifical features of control for the spacecrafts equipped with 

inertial actuators (for example, the gyrodins) were investigated earlier [29–31]. 

Attitude system based on control using the gyrodins (or other control moment 

gyroscopes) can use the patented method [31]. 

Personal contribution of authors of papers published earlier is: Sinitsin and 

Kramlikh [1] advanced the method of analytical construction of optimal regulators 

for problems of spacecraft attitude. Velishchanskii and Krishchenko [2] successfully 

adapted the method of inverse problems of dynamics well-known in the theory of 

dynamic systems to the problems of angular motion control. Branets and 

Shmyglevskii [12] have developed theory of quaternion application to is-sues of 

description of solid rotations kinematics and control of a spacecraft (in other 

domains of sciences, quaternionic approach was used also). Zelepukina et al. [16] 

investigated in detail the construction of optimal laws of variation in the angular 

momentum vector during spatial turn (including for axisymmetric rigid space-craft). 

Huge range of problems of optimal control with application of maximum principle 

basing on the quaternions were solved by Molodenkov and Sapunkov [10] in 

different years (approximate solutions or numerical solutions are given); analytical 

solutions were obtained for axisymmetric spacecraft and spherically symmetric 

spacecrafts, moreover, different criteria of quality was used. Lastly, Aipanov and 

Zhakypov [14] proposed the method of separation of variables for solving the 

problems of optimal turn control. 

Below, we will solve a problem of optimum spacecraft rotation with new 

indicator of quality that combines (in an assigned proportion) the contribution of 

control for performing a maneuver (in energy consumption sense) and an integral of 

rotary energy; a presence of such integral leads to limitation of energy of rotation 

during a turn). Phase variables are orientation quaternion and spacecraft angular 

momentum. This problem statement differs significantly from earlier research with 

the complex functional by type of optimality index which includes both control 

variables and phase variables, as well as time of maneuver [21–26]. In our paper, the 

adopted functional characterizes complex combination of the energy costs and time, 

necessary for a turning. Minimization of such functional is important issue for 

spaceflight practice. Currently, cost-efficiency control remains very relevant for 

space engineering. Defining and studying an optimum rotation control from one 
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attitude to other attitude (with minimum of a selected optimality index) is topic and 

subject of research. 

2. Statement of the optimal control problem 

Let us describe spatial motion about center mass by mathematic apparatus of 

quaternions (Rodrigues-Hamilton parameters). A motion of body frame E relative to 

reference frame is given by normalized quaternion  (body frame E, or spacecraft 

coordinate system, is formed by the principal central axis of inertia), ||||= 1 [12]. We 

assume that reference frame is inertial. Initial and final spacecraft attitude in inertial 

frame we specify by quaternions 𝛬in and 𝛬𝑓. Kinematic equation has the form [12]: 

2𝛬̇ = 𝛬 ∘ (𝐼−1𝐿) (1) 

where symbol ∘ is mark for quaternion multiplication. Spacecraft angular momentum 

(as rigid body) changes according to the equation [24,26]: 

𝐿̇ + (𝐼−1𝐿) × 𝐿 = 𝑀 (2) 

where L is spacecraft angular momentum, I is inertia tensor, M is control torque 

(symbol × means a vector product of vectors). Disturbance torques (atmosphere and 

perturbation caused by external field) are negligibly small, it is very important for 

spacecraft control during spaceflight. The spacecraft is controlled around center of 

mass by vector M. The boundary conditions for controlled system Equations (1) and 

(2) are: 

𝛬(0) = 𝛬in, 𝐿(0) = 0 (3) 

𝛬(𝑇) = 𝛬𝑓 , 𝐿(𝑇) = 0 (4) 

where T is rotation end time; 𝛬in, and 𝛬𝑓 specify attitude of a spacecraft at initial and 

final instant (they must satisfy a requirement ||in|| = ||𝛬𝑓|| = 1). It is set that rotary 

motion is regulated using control system which creates torques about three main 

central axis of inertia. For optimization of control program, its efficiency is specified 

by indicator: 

𝐺 = ∫ (М1
2/𝐽1 + М2

2/𝐽2 + М3
2/𝐽3)𝑑𝑡 + 𝑘1 ∫ (𝐿1

2/𝐽1 + 𝐿2
2 /𝐽2 + 𝐿3

2 /𝐽3)𝑑𝑡 +
𝑇

0

𝑇

0

𝑘2Т (5) 

where Mi are projections of control torque M on principal central axis of spacecraft’s 

inertia (i = 1, 2, 3); Li are projections of angular momentum L on axis of spacecraft 

frame; Ji are principal central moments of inertia; k1 > 0, k2 > 0 are the positive 

constant coefficients (k1  0, k2  0). 

We formulate optimal control problem as following: spacecraft needs to be 

turned from Equation (3) into Equation (4) according to Equations (1) and (2) and 

minimum sum Equation (5), where f  in. Duration of turn T is unfixed. Solution-

function M(t) is found within piecewise-continuous functions of time. 

Accepted criteria of optimality Equation (5) distinguishes our problem of 

optimization from other considered tasks by functional type that must be minimized. 

Index Equation (5) combines energy costs (including the contributions of control) 
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and time (in its proportion). An adopted criteria allows to estimate an energetically 

advantageous trajectory from initial orientation in to a required termination attitude 

f with minimum costs of the controlling resources and energy, and for 

determination of control mode corresponding to optimum turn. Energy integral in 

(2.5) limits kinetic energy during rotation. The required turn may be executed for 

any values in, f and J1, J2, J3, k1 и k2 because the time T is not fixed. Since 

combination of quadratic performance criterion and time is optimized, optimal 

duration of a turn Topt exists to be minimum of Equation (5). The optimal rotation 

problem, when control process quality is estimated by the index Equation (5), is 

relevant. 

Note that angular momentum control for spatial turn minimizing an indicator 

Equation (5) is useful for spacecraft’s attitude system using electric-jet engines 

(EJE): when controlled using EJE (in particular, with use of ion-engines), in 

Equation (5) first integral is proportional to electric energy consumed (for EJE, 

thrust and electric current are directly-proportional [32], and torque of EJE is 

proportional to an arm of engine installation). We know about a necessity of all-

round decrease of electrical consumption for control of motion, a select of functional 

is clear. 

3. Materials and methods 

Optimal control problem proposed is dynamical problem of optimum turn [12]; 

consequently, Mi are the functions that should be found (control by optimal way of 

spatial motion), but L and  are the phase variables. A norm of quaternion  is 

constant, |||| = const [12]. We solve optimum control issue and find optimum law of 

spacecraft’s angular momentum changing during spatial rotation basing on the 

method of quaternions and Pontryagin’s maximum principle [12,33]. They were used 

by many scientists and researchers, but for other index form [1,12,13–17,21–28]. 

Quaternions is mathematical tool that were effective applied in another domains of 

sciences [34–36], also in research process on controled motion of solids. Also, we 

apply numerical simulation (mathematical modeling) (for proof feasibility in 

engineering practice). To solve differential equations systems, we made method of 

successive approximations (shooting algorithm). Method of iteration was applied for 

solving two-point boundary value problem; other numerical methods have been used 

also. 

The procedure of solving the optimization problem proposed and formulated in 

section 2 is as follows. In accordance with the Pontryagin’s maximum principle [33], 

conjugate variables 𝜙𝑖  corresponding to angular momentum projections on 

spacecraft axis Li are introduced. The Hamiltonian H for the problem Equations (1)–

(5) is: 

𝐻 = −𝑘2 − 𝑘1(𝐿1
2/𝐽1 + 𝐿2

2 /𝐽2 + 𝐿3
2 /𝐽3) − 𝑀1

2 𝐽1 − 𝑀2
2 𝐽2 − 𝑀3

2 𝐽3⁄⁄⁄ + 𝜙1(𝑀1

+ (1/𝐽3 − 1/𝐽2)𝐿2𝐿3) + 𝜙2(𝑀2 + (1/𝐽1 − 1/𝐽3)𝐿1𝐿3) + 𝜙3(𝑀3

+ (1/𝐽2 − 1/𝐽1)𝐿1𝐿2) + 𝐿1𝑟1/𝐽1 + 𝐿2𝑟2/𝐽2 + 𝐿3𝑟3/𝐽3 

where ri are [19,24]: 
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𝑟1 = (𝜆0𝜓1 + 𝜆3𝜓2 − 𝜆1𝜓0 − 𝜆2𝜓3)/2, 

𝑟2 = (𝜆0𝜓2 + 𝜆1𝜓3 − 𝜆2𝜓0 − 𝜆3𝜓1)/2, 

𝑟3 = (𝜆0𝜓3 + 𝜆2𝜓1 − 𝜆3𝜓0 − 𝜆1𝜓2)/2 

𝜓𝑗 are conjugate variables, corresponding to components of quaternion 𝜆𝑗 (j = 

0, 1, 2, 3). 

Writing and structure of H does not take into account phase constraint ||||=1 

due to ||(0)|| = 1. We use universal variables ri proposed earlier [12,19] because the 

minimized index (2.5) does not depend on quaternion . The equations for vector r 

formed by variables ri (optimal functions ri also) are [24–26]: 

𝑟̇1 = 𝐿3𝑟2/𝐽3 − 𝐿2𝑟3/𝐽2, 

𝑟̇2 = 𝐿1𝑟3/𝐽1 − 𝐿3𝑟1/𝐽3, 

𝑟̇3 = 𝐿2𝑟1/𝐽2 − 𝐿1𝑟2/𝐽1, 

𝑟̇ = 𝑟 × (𝐼−1𝐿) (6) 

It is known that r turns out to be motionless in inertial frame, |r| = const  0 

[19]. 

In accordance with the maximum principle, for functions 𝜙𝑖, the equations are 

[33]: 

𝜙̇𝑖 = −
𝜕𝐻

𝜕𝐿𝑖
 (i = 1, 2, 3) 

Conjugate equations system (after differentiation of H) has the form 

𝜙̇1 = 2𝑘1𝐿1/𝐽1 + 𝐿3𝜙2(1/𝐽3 − 1/𝐽1) + 𝐿2𝜙3(1/𝐽1 − 1/𝐽2) − 𝑟1/𝐽1 

𝜙̇2 = 2𝑘1𝐿2/𝐽2 + 𝐿1𝜙3(1/𝐽1 − 1/𝐽2) + 𝐿3𝜙1(1/𝐽2 − 1/𝐽3) − 𝑟2/𝐽2 (7) 

𝜙̇3 = 2𝑘1𝐿3/𝐽3 + 𝐿2𝜙1(1/𝐽2 − 1/𝐽3) + 𝐿1𝜙2(1/𝐽3 − 1/𝐽1) − 𝑟3/𝐽3  

Searching an optimum mode is in writing and solving the equations of motion 

Equations (1) and (2) and the Equations (6) and (7) under condition that a found 

control itself is selected by maximization of Hamiltonian. Equation (6) that defines 

behavior of r in body frame E, will be used, replacing the conjugate equations for 𝜓𝑗. 

Optimum function r(t) and quaternion (t) are related [19,24–28] 

𝑟 = 𝛬̃ ∘ 𝑐𝐸 ∘ 𝛬, 

where cE= const=Λin ∘ r(0) ∘ 𝛬̃in 

where 𝛬̃ is quaternion conjugate to  [12, p. 10–20]; and r(0)  0 (in another case r1 

= r2 = r3 = 0 and solution of problem loses sense).  

Vector direction cE is determined by initial and terminal spacecraft attitude: cE 

must be defined by solution of Equation (1) and 𝛬(𝑇) = 𝛬𝑓. Differential Equations 

(6) and (7), together with requirement of maximum for Hamilton function H, are 

necessary optimality conditions. Conditions of maximum for H determine control 

function M(t); also, Λ(0), L(0), Λ(T), L(T) determine solutions (t) and r(t), L(t) [24]. 
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A boundary-value problem of maximum principle is in calculating such r(0) for 

which solving of differential Equations (1) and (2), Equations (6) and (7) together 

with Hamiltonian maximization, at any time, satisfies the conditions Equations (3) 

and (4). The restriction ||𝛬(t)||=1 for phase variable  not taken into account because 

it holds for Equation (1). 

4. Principle scheme and algorithm of solving control problem 

To specify controlling function M(t) and vector r, maximality conditions for H 

should be formalized. If 𝑢𝑖 = 𝑀𝑖 √𝐽𝑖⁄  and 𝑛𝑖 = 𝜙𝑖√𝐽𝑖 , writing of H gives, using 

variables ui and ni  

𝐻 = 𝑢 ⋅ 𝑛 − |𝑢|2 + 𝐻𝑖𝑛𝑣 = |𝑛||𝑢| cos𝛿 − |𝑢|2 + 𝐻𝑖𝑛𝑣 

where Hinv not explicitly depends on the functions Mi; n and u are two vectors of ui 

and ni; angle between u and n is  (sign “” means scalar product of vectors). The 

Hamiltonian Н is quadratic function of functions Mi, H is maximum if only δ = 0. 

Necessary conditions of extremum are 𝜕Н 𝜕𝑀𝑖⁄ = 0. After applying them: 

Mi = Jii/2 (8) 

Problem of determination of optimum control is in a solving of Equations (1) 

and (2), and Equations (6) and (7) under requirement that a sought control M is 

generated by Equation (8). The problem of optimum control Equations (1)–(5) 

formulated above is completely solved. Since |r| = const = |r(0)|0, transfer to a 

normalized vector p: p = r/|r|, and |r(0)| =r0 (|p| = 1). For p, or elements pi: 

𝑝̇ = 𝑝 × (𝐼−1𝐿) 

𝑝̇1 = 𝐿3𝑝2/𝐽3 − 𝐿2𝑝3/𝐽2 

𝑝̇2 = 𝐿1𝑝3/𝐽1 − 𝐿3𝑝1/𝐽3 

𝑝̇3 = 𝐿2𝑝1/𝐽2 − 𝐿1𝑝2/𝐽1 

(9) 

Note: ri = |r(0)|pi. Since L(0) = L(Т) = 0, we see that our issue Equations (1)–(5) has 

single and unique solving: 

𝜙𝑖 = 𝑎(𝑡)𝑝𝑖/𝐽𝑖 (10) 

Li = b(t)pi (11) 

where pi = ri /r0; a(t) and b (t) are scalar time functions (but b (t)  0). Respectively, 

Mi = a(t)pi/2. 

Successive substitution of dependences Equation (10) into Equation (7), by 

taking into account relations Equation (11) with ri = r0 pi, proofs a validity of 

solution which we specified. i.e., Equations (10) and (11) for the differential 

equations system Equations (2) and (7), Equations (8) and (9) is truly (relation 

Equation (11) follows directly from the system Equations (2), (8) and (10). From 

Equations (7), (10) and (11), we see that optimal functions satisfy the relation. 

𝑎̇(𝑡) = 2𝑘1𝑏 − 𝑟0 (12) 
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The Equations (7), (8) and (11) give dependence 𝑏̇ = 𝑎/2 for b(t), or 

𝑏(𝑡) = 0.5 ∫ 𝑎(𝑡)𝑑𝑡
𝑡

0

 

Taking into account last dependence and condition Equation (12), we obtain 

𝑎̈ = 𝑘1𝑎 for a (t), which has analytical form: 

𝑎(𝑡) = 𝐶1 𝑒𝑥𝑝( − 𝑡√𝑘1) + 𝐶2 𝑒𝑥𝑝( 𝑡√𝑘1) (13) 

where C1 and C2 are some constants that will be determined below. 

It is seen, b(0) = b(T) = 0 and 𝑎̇(0) = 𝑎̇(𝑇) = −𝑟0, since L(0) = 0, L(T) = 0. As 

consequence, r0 =√𝑘1(𝐶1 − 𝐶2). Therefore, for optimal rotation, b(t) is: 

𝑏(𝑡) = (𝑎̇(𝑡) + 𝑟0)/(2𝑘1) = [𝐶2 𝑒𝑥𝑝( 𝑡√𝑘1) − 𝐶1 𝑒𝑥𝑝( − 𝑡√𝑘1) + 𝐶1 − 𝐶2] (2√𝑘1⁄ ) (14) 

Hamilton function H not explicitly depends on the time explicitly, and time of 

rotation finish T is not fixed. Whence, for optimal control Н = const = 0 [37]. At 

ends of trajectory L = L = 0, hence: 

𝐻(0) = 𝐻(𝑇) = −𝐾2 −
𝐽1𝜙1

2 + 𝐽2𝜙2
2 + 𝐽3𝜙3

2

4
+

𝐽1𝜙1
2 + 𝐽2𝜙2

2 + 𝐽3𝜙3
2

2
= (𝐽1𝜙1

2 + 𝐽2𝜙2
2 + 𝐽3𝜙3

2)/4 − 𝑘2 

or H(0) = H(T) = 𝑀1
2 𝐽1 + 𝑀2

2 𝐽2 + 𝑀3
2 𝐽3 − 𝑘2⁄⁄⁄  = 0. Whence a2(0) = a2(T) = 

4k2/(𝑝1
2 𝐽1⁄ + 𝑝2

2 𝐽2⁄ + 𝑝3
2 𝐽3⁄ ). 

Optimal rotation has specific property: 𝑝1
2 𝐽1 + 𝑝2

2 𝐽2 + 𝑝3
2 𝐽3⁄⁄⁄ = const for pi 

(or ort p). To confirm this feature, left side was differentiated (with accounting for 

Equations (9) and (11)). After substitution 𝑝̇𝑖  by Equation (9) and then Li by the 

formulas Equation (11), we show that the resulting derivative is zero. For optimum 

function a(t), must satisfy the requirements: 

𝑎(0) = 2√𝑘2 𝐶⁄ 𝑎(𝑇) = −2√𝑘2 𝐶⁄ 𝑎(𝑇/2) = 0, 𝑎̇(0) = 𝑎̇(𝑇) = −𝑟0(С = √𝑝10
2 𝐽1⁄ + 𝑝20

2 𝐽2⁄ + 𝑝30
2 𝐽3⁄ ) 

Last equality follows from Equation (12), since b(0) = b(T) = 0; conditions L(0) 

= 0 and L(T) = 0 for optimal turn. The property a(T) = −a(0) follows from the 

necessary condition of optimality H(0) = H(T) = 0 (and Equations (8) and (10)). We 

can write (on the base Equation (13)): 

𝑎̇(𝑡) = √𝑘1(𝐶2 𝑒𝑥𝑝( 𝑡√𝑘1) − 𝐶1 𝑒𝑥𝑝( − 𝑡√𝑘1)) 

𝑎̇(0) = √𝑘1(𝐶2 − 𝐶1) = 𝑎̇(𝑇) = √𝑘1(𝐶2 𝑒𝑥𝑝( 𝑇√𝑘1) − 𝐶1 𝑒𝑥𝑝( − 𝑇√𝑘1)) 

Comparation of 𝑎̇(0)  and 𝑎̇(𝑇)  gives the equations 𝐶2(𝑒𝑥𝑝( 𝑇√𝑘1) − 1) =

𝐶1(𝑒𝑥𝑝( − 𝑇√𝑘1) − 1), or 𝐶1 = −𝐶2 𝑒𝑥𝑝( 𝑇√𝑘1). From Equation (14), we proof 

b(0) = 0, b(T) = 0. Also a(T) = −a(0) and a(T/2) = 0, since we have (basing on 

Equation (13)): a(0) = C1 + C2, a(T)=𝐶1 𝑒𝑥𝑝( − 𝑇√𝑘1) + 𝐶2 𝑒𝑥𝑝( 𝑇√𝑘1) = −C2 − 

C1, 

𝑎(𝑇/2) = 𝐶2(𝑒𝑥𝑝( 𝑇√𝑘1/2) − 𝑒𝑥𝑝( 𝑇√𝑘1) 𝑒𝑥𝑝( − 𝑇√𝑘1/2)) 

But r0 =√𝑘1(𝐶1 − 𝐶2) =𝐶1√𝑘1(𝑒𝑥𝑝( − 𝑇√𝑘1) + 1) > 0, whence C1 > 0, C2 < 

0 (and |C1| > |C2|). 
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Structure analysis of optimal a(t) shows 𝑎̇ < 0 in every instant t [0, T], 𝑎̇ is 

minimum at right and left bound points of trajectory: 𝑎̇(0) = 𝑎̇(𝑇) = −𝑟0. Note see, 

that 𝑎̇(0) < 0, 𝑎̇(𝑇) < 0, and C1 > 0, but C2 < 0, therefore a(0)>0 , but a(T)<0 . If 

t<T/2, then a>0 and 𝑎̈> 0, but 𝑎̇ < 0; within interval t > T/2 we have a < 0 and 𝑎 ̈ < 0, 

but 𝑎̇ < 0. At instant t = T/2 we see that 𝑎̇ is maximum (since a(T/2) = 0 and b has 

maximal value). Also, 𝑎̇(𝑇/2)  = −2𝐶1√𝑘1 𝑒𝑥𝑝( − 𝑇√𝑘1/2)  < 0. Hence, 𝑎̇ < 0 

during time period t [0, T], time when 𝑎̇(𝑡) = 0 is absent. Concrete values of C1, 

C2 depend on the coefficients k1, k2 and integral. 

𝑄 = ∫ |𝐿(𝑡)|𝑑𝑡
𝑇

0

= ∫ 𝑏(𝑡)𝑑𝑡
𝑇

0

 (15) 

Its value not depends on behavior of function b(t) (for motions according to 

Equations (9) and (11)); it is defined solely by attitude in, f, and spacecraft’s 

moments of inertia [18] (Q is computed together with р0). 

Maximum rotary energy Ek and maximum angular momentum achieved at t = 

T/2; Emax = Ek(T/2); Lmax = L(T/2). If k1 = 0, a(t) is linear time function a(t) 

=2√𝑘2(1 − 2𝑡/𝑇) С⁄  

(modulus of spacecraft angular momentum is quadratic function of time, 

respectively), duration of reorientation is 𝑇 = √6𝐶𝑄 √𝑘2⁄ . Hence, 

𝐿√3𝑄√𝑘2/(8𝐶)
𝑚𝑎𝑥

 and 𝐸√𝑘2𝑚𝑎𝑥
. 

Figure 1 shows the form of optimum b(t), a(t) (depending of coefficient k1 of 

optimized index (2.5) (k1
(2) > k1

(1) > 0, k1
(3) > k1

(2)); the dotted lines correspond to a 

case k1 → 0. The values a(0) and a(T) are fixed (they do not change if variate value 

k1), 𝑎(0) = 2√𝑘2 𝐶⁄ , 𝑎(𝑇) = −2√𝑘2 𝐶⁄ , a(T/2) = 0. 
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Figure 1. Optimum of a(t) and b(t). 

If k1 more, then function b(t) more fast transfer to segment with 𝑏 ̇  0. When 

bmax decreases, a finish time of rotation maneuver increases, since the value (4.8) is 

invariable (it does not depend on the coefficients k1, k2). Thus, the function b(t) more 

remotes from quadratic function (parabolic form) and is approximated to piecewise 

linear dependence when k1 increases, it can approximate by function included the 

following segments: time interval with 𝑏̇√𝑘2 𝐶⁄ , further b  const, and then motion 

with 𝑏̇−√𝑘2 𝐶⁄ . Under unbounded increasing of coefficients k1 and k2, maximal 

energy of rotation Emax approximates to the level E0 = k2/(2k1). 

In optimal solution (when k1  0), constants C1, C2 and time T are calculated by 

the equations: 
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(𝑒𝑥𝑝( 𝑇√𝑘1) + 1)𝑇 = (𝑄𝐶√𝑘1/𝑘2 + 2/√𝑘1)(𝑒𝑥𝑝( 𝑇√𝑘1) − 1) (16) 

𝐶1 = 2√𝑘2 (𝐶(1 − 𝑒𝑥𝑝( − 𝑇√𝑘1)))⁄ , 𝐶2 = 2√𝑘2 𝐶⁄ − 𝐶1 

Time of optimal turn T decreases with increasing of coefficient k2 (if k1 is 

invariable). 

Boundary-value problem is to compute p0 (or, р10, р20, р30), and positive 

constant r0, that lead to satisfaction of the terminal condition (2.4) for solution of 

equations system Equations (1) and (2), Equations (7)–(9) with initial condition (2.3) 

and dependence ri = r0pi (r0 > 0). 

If take into account Equation (8), Equations (10) and (11) and optimal values of 

constants C1 and C2 for functions a, b, optimum control and optimum motion is 

described by expressions: 

𝑀𝑖 = 𝐶1[𝑒𝑥𝑝( − 𝑡√𝑘1) − 𝑒𝑥𝑝( (𝑡 − 𝑇)√𝑘1)] 𝑝𝑖/2 (17) 

𝐿𝑖 = 𝐶1 [1 + 𝑒𝑥𝑝( − 𝑇√𝑘1) − 𝑒𝑥𝑝( − 𝑡√𝑘1) − 𝑒𝑥𝑝( (𝑡 − 𝑇)√𝑘1)]𝑝𝑖 (2√𝑘1⁄ ) (18) 

pi satisfy Equation (9) and p =𝛬̃ ∘in∘р0∘ 𝛬̃𝑖𝑛 ∘, 𝐶1 = 2√𝑘2/(𝐶(1 − 𝑒𝑥𝑝( −

𝑇√𝑘1))). Time T is calculated from Equation (16). 

Optimum orientation program is determined by the system Equations (5) and 

(6), Equations (17) and (18); controlling functions Мi and angular momentum 

projections Li variate according to Equations (17) and (18). The value р0 as well as 

the integral Q, characterizing complexity of a turn, are computed in solution process 

of boundary-value problem of a turn. Program value of control М relates with 

attitude  

𝑀 = 𝑎(𝑡)𝛬̃ ∘in∘р0∘ 𝛬̃𝑖𝑛 ∘/2 

at which a(t) changes by the law Equation (13). 

Under optimal angular momentum L(t), spacecraft rotation has symmetry 

properties (for b(t), a(t), primarily) as well as regularities: 

𝑎(0) = −𝑎(𝑇) > 0, 𝑎(𝑇 − 𝑡) = −𝑎(𝑡), 

𝑏(𝑡) ≥ 0，𝑏(𝑇 − 𝑡) = 𝑏(𝑡) 

∫ 𝑏(𝑡), 𝑑𝑡
𝑇/2

0
=∫ , 𝑏(𝑡)𝑑𝑡,

𝑇

Т/2 ∫ |𝑎(𝑡)|, 𝑑𝑡
𝑇/2

0
=∫ |𝑎(𝑡)|𝑑𝑡

𝑇

Т/2
 

𝛬 ∘ 𝑀(𝑇 − 𝑡) ∘ 𝛬̃ = −𝛬 ∘ 𝑀(𝑡) ∘ 𝛬̃, 𝛬 ∘ 𝐿(𝑇 − 𝑡) ∘ 𝛬̃ = 𝛬 ∘ 𝐿(𝑡) ∘ 𝛬̃ 

𝑚𝑎𝑥
0≤𝑡≤𝑇

|𝑀(𝑡)| = √𝑘2 𝐶⁄ , 𝐿𝑚𝑎𝑥 = 𝑚𝑎𝑥
0<𝑡<𝑇

√𝐿1
2 + 𝐿2

2 + 𝐿3
2 = |𝐿(𝑇/2)| 

𝐿𝑚𝑎𝑥 =
𝑟0 + √𝑟0

2 −
4𝑘1𝑘2

𝐶2

(2𝑘1)или𝐿𝑚𝑎𝑥
= (√(С1 − С2)2/4 − 𝑘2/𝐶2 + (𝐶1 − 𝐶2)/2)/√𝑘1 

Angular momentum and optimum control M satisfy the following relationships: 

𝛬 ∘ 𝑀(𝑇 − 𝑡) ∘ 𝛬̃ = −𝛬 ∘ 𝑀(𝑡) ∘ 𝛬̃, 𝛬 ∘ 𝐿(𝑇 − 𝑡) ∘ 𝛬̃ = 𝛬 ∘ 𝐿(𝑡) ∘ 𝛬̃ 
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The conditions Equation (11) show: р is ort for angular momentum; optimum 

functions i(t), рi(t), Li(t) meet dependences Equations (10) and (11), where рi(t) 

satisfy the system (4.2). Optimal control is determined using (4.10); for any instant t 

 [0, T], М and L are collinear. At instant t = T/2, direction of torque М variates to 

an opposite, and modulus |L| has maximal value |L(T/2)| = Lmax . Control Equation 

(17) is truly optimum, since this is single function satisfying to Equations (1) and (7), 

Equations (8) and (9). Optimal rotation (in sense of minimum index Equation (5)) 

occurs along “trajectory of free motion” [9]. Specify properties of optimum rotation 

follow from the system Equation (9) with equalities Equations (11) and (14). 

Original solution is determined by close equations system Equation (1), Equations 

(9) and (11), and conditions Equations (3) and (4) for function 𝛬(t). Additionally, 

controlling torque M is smooth time function. Note: during rotation by inertia, body 

occupies positions 𝛬 that form “trajectory of free motion” [9,24,26]. 

Ratio of angular momentum and kinetic energy Ek under optimum control is 

expression: 

𝐸𝑘 = 𝑏2 (𝑝1
2 𝐽1⁄ + 𝑝2

2 𝐽2⁄ + 𝑝3
2 𝐽3⁄ )/2 

Proportion is 𝐸𝑘/|𝐿|2 = (𝑝1
2 𝐽1⁄ + 𝑝2

2 𝐽2⁄ + 𝑝3
2 𝐽3⁄ )/2 = const for any time 

within period 0 ≤ t ≤ T. It is key property for spacecraft motion according to criterion 

Equation (5). 

Problem of optimum control synthesis mainly consists in determination of such 

vector p(0) under which the motion, according to the Equation (1), Equations (9) and 

(18) with condition Equation (3), satisfies the equality Equation (4). To solve this 

equations system is difficult in general case: its obtaining to compute p(0), and p(T) 

by Equations (9) and (11) and formula: 

𝛬𝑓 ∘ 𝑝(𝑇) ∘ 𝛬̃𝑓 = 𝛬in ∘ 𝑝(0) ∘ 𝛬̃in (19) 

Significant difference of an offered result is applying of new optimality 

criterion which combines a contribution of control action (in sense of energy 

consumption) in motion of a spacecraft during a turn, integral of rotational energy, 

and maneuver time, with known ratio. Integral of the square form of controlling 

torques in Equation (5) provides limiting of controlling torques, and secondly, 

controlling variables are smooth (angular momentum is smooth time function, also). 

Introduction of time in a minimized indicator reduces duration of turn T. For any 

turn conditions Equations (3) and (4) (any in, f) and J1, J2, J3, k1, k2, kinetic energy 

of rotation E(t)  k2/(2k1). 

5. Particular cases of optimal turn 

The determination of optimum rotation mode with minimum index Equation (5) 

is not trivial issue, p(0) depends on respective attitude f and in, and characteristics 

J1, J2, J3. It is non-easy to solve the problem of three-dimensional rotation for an 

arbitrary moments of inertia J1  J2  J3 and attitude in initial and terminal time 

instants in and f. Difficulty is to find p(T), p(0) which satisfy Equation (19). 

Solution of system Equation (1), Equations (9) and (11) (in analytic form) is known 

for dynamically symmetric and spherical solid only. For body with spherically 
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symmetry (J1 = J2 = J3), function p(t) is: 

𝑝𝑖(𝑡) = 𝑐𝑜𝑛𝑠𝑡 = 𝑝𝑖 0 = 𝜈𝑖/√𝜈1
2 + 𝜈2

2 + 𝜈3
2 

𝑀𝑗 = 𝐶1[𝑒𝑥𝑝( − 𝑡√𝑘1) − 𝑒𝑥𝑝( (𝑡 − 𝑇)√𝑘1)]𝑝𝑖 0/2 

𝐿𝑖(𝑡) = 𝐶1 [1 + 𝑒𝑥𝑝( − 𝑇√𝑘1) − 𝑒𝑥𝑝( − 𝑡√𝑘1) − 𝑒𝑥𝑝( (𝑡 − 𝑇)√𝑘1)]𝑝𝑖0 (2√𝑘1⁄ ), 𝑖 = 1,3 

(𝜈0, 𝜈1, 𝜈2, 𝜈3 are the components of quaternion 𝛬𝑡 = 𝛬̃in ∘ 𝛬𝑓); Q = 2 J1 accost 

0. 

During optimal reorientation, spherical spacecraft rotates about the Euler axis, 

optimum trajectory (t) (in analytic form) is 

𝛬(𝑡) = 𝛬𝑖𝑛 ∘ е𝒑0𝑠(𝑡)/(2𝐽1), s(t)=∫ 𝑏(𝑡)𝑑𝑡
𝑡

0
 

For dynamically symmetric solid body (for example, J2 = J3), we can solve 

optimum control problem completely also (in this case р1 = const = р10): we have 

conic motion of spacecraft [10] angular momentum modulus is proportional to 

velocity about longitudinal axis, and angle between longitudinal axis and angular 

momentum  is constant. Optimal p(t) is: 

𝑝1 = 𝑝10 = const= 𝑐𝑜𝑠 𝜗, 

𝑝2 = 𝑝20 𝑐𝑜𝑠 𝛽 + 𝑝30 𝑠𝑖𝑛 𝛽, 

𝑝3 = −𝑝20 𝑠𝑖𝑛 𝛽 + 𝑝30 𝑐𝑜𝑠 𝛽, 

𝛽 =
𝐽3 − 𝐽1

𝐽1𝐽2
∫ 𝐿1(𝑡)𝑑𝑡

𝑡

0

 (20) 

𝛬𝑓 = 𝛬𝑖𝑛 ∘ е𝒑𝑜𝛽/2 ∘ 𝑒𝒆1𝛼/2 

where е1 is unit vector of longitudinal axis of spacecraft;  and  are angles of 

turns about longitudinal axis, and about p, accordingly (   , 0 ≤ 𝛽 ≤ 𝜋). 

For this case, the relations Equations (17) and (18), Equation (20) are solution 

for system of Equations (2) and (9) under condition Equation (8); p generates the 

cone about axis of body’s symmetry in body frame (spacecraft coordinate system). 

To transfer body from attitude in in attitude f, it rotates simultaneously about its 

own longitudinal axis, and about cE, that is constant in inertial coordinate system. 

Axial-symmetric solid rotates along “conical trajectory”. Note, p0 (corresponding to 

optimum solution) we can calculate by device [38]. Optimal functions Mi(t) are 

written in analytical form: 

𝑀1 = 𝐶1[𝑒𝑥𝑝( − 𝑡√𝑘1) − 𝑒𝑥𝑝( (𝑡 − 𝑇)√𝑘1)]𝑝10/2 

𝑀2 = 𝐶1[𝑒𝑥𝑝( − 𝑡√𝑘1) − 𝑒𝑥𝑝( (𝑡 − 𝑇)√𝑘1)]√1 − 𝑝10
2 𝑠𝑖𝑛( 𝜅 + 𝛾)/2 

𝑀3 = 𝐶1[𝑒𝑥𝑝( − 𝑡√𝑘1) − 𝑒𝑥𝑝( (𝑡 − 𝑇)√𝑘1)]√1 − 𝑝10
2 𝑐𝑜𝑠( 𝜅 + 𝛾)/2 

Programmed values Li (the components of angular momentum L) are: 

𝐿1 = 𝐶1 [1 + 𝑒𝑥𝑝( − 𝑇√𝑘1) − 𝑒𝑥𝑝( − 𝑡√𝑘1) − 𝑒𝑥𝑝( (𝑡 − 𝑇)√𝑘1)]𝑝10 (2√𝑘1⁄ ) 
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𝐿2 = 𝐶1 [1 + 𝑒𝑥𝑝( − 𝑇√𝑘1) − 𝑒𝑥𝑝( − 𝑡√𝑘1) − 𝑒𝑥𝑝( (𝑡 − 𝑇)√𝑘1)]√1 − 𝑝10
2 𝑠𝑖𝑛( 𝜅 + 𝛾) (2√𝑘1⁄ ) 

𝐿3 = 𝐶1 [1 + 𝑒𝑥𝑝( − 𝑇√𝑘1) − 𝑒𝑥𝑝( − 𝑡√𝑘1) − 𝑒𝑥𝑝( (𝑡 − 𝑇)√𝑘1)]√1 − 𝑝10
2 𝑐𝑜𝑠( 𝜅 + 𝛾) (2𝐽√𝑘1⁄ ) 

where 𝛾 = 𝑎𝑟𝑐𝑠𝑖𝑛 (𝑝20 √1 − 𝑝10
2⁄ ) , if р30  0 , or 𝛾 = 𝜋 −

𝑎𝑟𝑐𝑠𝑖𝑛 (𝑝20 √1 − 𝑝10
2⁄ ) ,если𝑝30 < 0  ( |𝑝10| ≠ 1 ); case р10= 1 corresponds to 

planar rotation around axis ОХ, and it is not considered. 

Optimal trajectory (t) is: 

𝛬(𝑡) = 𝛬𝑖𝑛 ∘ е𝒑0𝜎/2 ∘ 𝑒𝜇𝒆1/2 

where: 

𝜎 = 𝐶1 [(𝑒𝑥𝑝( − 𝑇√𝑘1) + 1)𝑡/(2√𝑘1) + (𝑒𝑥𝑝( − 𝑡√𝑘1) + 𝑒𝑥𝑝( − 𝑇√𝑘1) − 𝑒𝑥𝑝( (𝑡 − 𝑇)√𝑘1) − 1)/(2𝑘1)] 𝐽2⁄  

𝜇 = 𝑝10𝜎(𝐽2 − 𝐽1)/𝐽1 (for optimal p0 and t = T, conditions Equations (3) and (4) 

are satisfied). 

For asymmetric body (J1  J2  J3), the system Equation (1), Equations (9) and 

(11) can be solved using only numeric methods (for example, method of successive 

approximations, or iterations methods). One of such methods has been described in 

detail in the article [9]. We know that the solution p(0) which satisfies the conditions 

(0) = in, (Т) = f and (4.12) for the system of Equation (1), Equations (9) and 

(11) does not depend on a type of changing the magnitude of angular momentum 

[18] (therefore, we take b = const  0 in Equation (11) for search of p(0)). To 

compute the vector p(0), we must solve the boundary problem (0) = in, (Т) = f, 

taking into account the Equations (1) and (2) in which Mi = 0. As a result, vector of 

angular momentum at initial instant of time Lcal, for which a spacecraft rotates with 

its free motion (M = 0) from the state (0) = in, L(0) = Lcal to the state (Т) = f, 

will be found. The vector p0 = p(0) relates to Lcal as follows: 

р𝑖 0 =
𝐿𝑖 cal

√𝐿1cal
2 + 𝐿2cal

2 + 𝐿3cal
2

 

Other schemes of computing can be successful for some specifical or particular 

cases [39–41]. 

6. Example and results of mathematical modeling 

Now, we demonstrate numeric example of optimal turn with minimum of 

Equation (5). Let us take spatial reorientation for 180 degrees from state in, 

corresponding to spatial position when spacecraft axis are parallel to the axis of 

inertial frame I, in an assigned attitude f, if angular rate is absent at instants t = 0, 

and t=T (i.e., L(0) = L(T) = 0). The quaternion f has the following components: 

0 = 0, 1 = 0.707107, 2 = 0.5, 3 = 0.5 

It is assumed that spacecraft has characteristics: 

J1 = 63559 kgm2, J2 = 192218.5 kgm2, J3 = 176809 kgm2 
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Further, after constructing the control program for optimum angular momentum 

variation during spacecraft rotation from state Equation (3) in the required state 

Equation (4), result of mathematic simulation of optimum turn are presented for the 

following coefficients: k1 = 0.002 s−2 and k2 = 0.04 J/s2. 

Decision of boundary-value problem of the turn from attitude (0) = in to 

orientation (Т) = f give p0 = {0.49535062; –0.11725655; 0.86074309} calculated. 

The method of iterations has been used, ensuring process of successive-

approximation to true p0 [9] (the method ensures asymptotic approaching in absolute 

most of cases). Maximum of control torque modulus is M(0) = 70.2 N m, and Q = 

401.63 kN m s2. 

7. Result and discussion 

Mathematical calculations results and numerical simulation of optimum turn 

process are shown on Figures 2–5 (in graphical form). Figure 2 presents a variating 

of angular momentum as time function (L1(t), L2(t), L3(t) as projections on the body 

frame axes). Behavior of spacecraft attitude (t) during optimum maneuver is 

illustrated by Figure 3 (functions 0, 1, 2, 3). Dynamics of p1, p2, p3 for p is 

reflected on Figure 4. Finally, Figure 5 give behavior of angular momentum 

modulus. Duration of optimal maneuver is Т = 271.2 s. The rotational energy during 

a turn does not exceed Emax = 9.9 joules, spacecraft angular momentum has 

maximum magnitude Lmax = 1562 N m s at time t = 135.6 s. It is seen that p1 changes 

lot less than p2, p3. For optimum control, all pi, Li, j are smooth time functions. 

  

Figure 2. Angular momentum components during optimum turn. 

t, s 
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Figure 3. Quaternion (t) elements during optimum maneuver. 

 

Figure 4. Variation of p under optimum control. 

 

Figure 5. Variation of angular momentum modulus during optimal process. 

8. Conclusion 

Problem of optimum control of rotation from the initial attitude to the 

р2 

р1 
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prescribed final attitude was researched in detail. In the considered investigation, 

new control method of spacecraft was designed; chosen optimality criterion is 

unique. The developed method for motion control was described in details. For 

optimization, the selected index of quality combines time, integral of the kinetic 

energy of rotation and control contribution (as energy consumption), necessary for 

turn realization. A solved problem is very topical. The issue of economical control of 

rotation is relevant very march, therefore, a task considered above is very important 

practically. Importance (implication, or significance) of the made research is that 

optimization of the adopted quality index minimizes energy costs (for example, 

electric energy consumption if spacecraft orientation control is performed by EJE-

engines). 

Main properties of reorientation and trajectory type corresponding to a chosen 

index of quality Equation (5) have been discovered. The maximum principle and 

quaternion models were used. As was shown, ratio of kinetic rotary energy to a 

squared modulus of angular momentum is constant. It was illustrated, mode of 

control when an angular momentum and a controlling moment are parallel over 

entire time period of rotation is optimal turn. The Hamilton and the conjugate 

equations system as well as analytical expressions for optimum controlling functions 

were written for optimization problem formulated in article. The structure of optimal 

control was defined, basing on the necessary optimality conditions. Relations for 

determining a spatial rotation were given, analytical formulas were written. The 

found optimal solution is unique. 

Algorithm for orientation control is an essential element of attitude control 

system (for spacecrafts, and orbital stations, in particular). Analytical solving of a 

proposed problem has been presented. Computing expressions (and equations 

formalized) have been written for optimum program of controlled turn. Formulas to 

estimate maximum rotational energy and calculate maximum control torque 

magnitude were written analytically. Expressions of temporal characteristics of 

optimum process were presented. Implementation of controlled turn was described, 

also. Presence of calculated formulas given in explicit form, does a made work 

practically suitable and significant for direct applying in spaceflights practice. 

Optimum algorithms designed for spacecraft motion control improves a control 

system efficiency, originating spacecraft performance more economic during orbital 

flight. 

Principal difference of solution, presented in this research, is new quality index 

used, and control torques cannot be unboundedly large even restrictions in absence 

for control. It is the original point of this article. Presence of energy integral in 

Equation (5) limits spacecraft’s kinetic energy of rotation. Also, in an obtained 

mode, controlling torque modulus is not constant. Single admissible version of 

optimal solution is motion with variable control torque modulus (rotation period with 

constant control modulus are absent absolutely). How flat change the modulus of an 

angular momentum modulus, is defined by the coefficient of proportion k1. The 

coefficients k1 and k2 (the ratio k2/k1) specify maximal energy of rotation. 

Example of mathematic modeling which demonstrated a behavior of attitude 

parameters was given. For dynamically symmetric spacecraft (as special particular 

case), design of optimum control has been completed: the equations system has been 
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written analytically (in direct form) that allows to solve two-point boundary value 

problem directly (to calculate the constants required for control law). The developed 

method of spacecraft control differs from all known publications. Its usefulness lies 

in significantly saving of control resources that will increase possibilities of 

spacecraft. In particular, interest causes use our method in spacecraft with EJE (or 

ion engines) because modern EJE has very large value of specific impulse (6000–

6500 s approximately [42]) that require less fuel costs, and first integral in Equation 

(5) estimates electrical consumption. Second integral in Equation (5) limits kinetic 

energy of rotation (it is important in spaceflight, also). Necessity to reduce energy 

consumption is relevant problem, therefore research and optimization of optimal turn 

using on Equation (5) is topical. 

Conflict of interest: The author declares no conflict of interest. 
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