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Abstract: Active Vibration Control (AVC) stands out as a prominent technique in the realm 

of vibration mitigation and structural dynamics. Unlike passive vibration control methods that 

rely on dampers or isolators, AVC systems actively manipulate forces or motions within a 

structure in real-time to counteract undesirable vibrations. In this paper, the main distinguishing 

characteristic of AVC lies in its proactive approach, wherein control algorithms and actuators 

are employed to actively sense and respond to dynamic changes in the system. The application 

of Newton’s second law allows a model of the vibration sensors operation, followed by 

simulations to improve their performance, which contributes to the advancement of the active 

vibration control system by enabling more precise detection and measurement of vibrations. 
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1. Introduction 

Vibration analysis for Active Vibration Control (AVC) is a critical aspect of the 
overall process, involving the assessment and monitoring of vibrations within a 
structure to inform the dynamic response of the Active Vibration Control system [1–
6]. This analysis is essential for designing an effective AVC system and ensuring its 
optimal performance [7–12]. 

The process of vibration analysis begins with the strategic placement of sensors 
throughout the structure [13–18]. These sensors, including accelerometers, strain 
gauges, and displacement sensors, are selected and positioned carefully to capture 
comprehensive data on the structure’s vibrations [19–22]. Continuously collecting 
real-time data on the vibrations, these sensors provide crucial information regarding 
amplitude, frequency, and phase, forming the basis for understanding the structure’s 
dynamic behavior and designing an effective Active Vibration Control (AVC) system 
[23–29]. 

Vibration analysis entails conducting frequency analysis to identify the natural 
frequencies of the structure. This analysis helps in determining which frequencies 
contribute significantly to the vibrations, guiding the tuning of the AVC system to 
address specific resonant frequencies effectively. By leveraging the insights gained 
from vibration analysis, engineers can optimize the AVC system’s performance and 
mitigate structural vibrations efficiently [30–32]. 

Vibrations in multi-story buildings pose a critical challenge to both structural 
integrity and occupant comfort. Dynamic forces from sources like wind, earthquakes, 
and machinery can lead to undesirable oscillations, necessitating advanced solutions 
for effective mitigation [33–35]. Active Vibration Control (AVC) has emerged as a 
sophisticated technology designed to address these concerns by actively counteracting 
vibrations in real-time. This article provides an insightful exploration into the 
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principles of Active Vibration Control and its specific application in three-story 
buildings [36–41]. 

In this examination, the article delves into the key components of Active 
Vibration Control, including sensors, actuators, and advanced control algorithms. The 
sensors, strategically placed within the building, continuously monitor vibrations, 
providing real-time data to the AVC system. Electromagnetic, hydraulic, or 
piezoelectric actuators generate forces to counteract detected vibrations, working in 
tandem to stabilize the structure. Advanced control algorithms, such as adaptive and 
predictive strategies, interpret sensor data to ensure precise and dynamic adjustments 
tailored to specific structural characteristics and environmental conditions [42–47]. 

The application of Active Vibration Control to a three-story building involves 
addressing structural resonance, wind-induced vibrations, seismic events, and internal 
sources of vibrations such as machinery. The technology actively identifies and 
counteracts resonant frequencies, minimizes wind-induced swaying, enhances seismic 
resilience, and improves overall occupant comfort by mitigating vibrations caused by 
internal sources [48–52]. 

As Active Vibration Control continues to evolve, its integration into building 
design and construction practices holds significant promise for creating safer, more 
resilient, and more comfortable structures. This abstract provides a comprehensive 
overview of the challenges associated with vibrations in multi-story buildings, the 
principles of AVC, and its specific application in mitigating vibrations in three-story 
structures [53–55]. 

2. Understanding active vibration control 

The management of vibrations in structures is a critical consideration in the realm 
of engineering, particularly in the construction of multi-story buildings and industrial 
facilities. Active Vibration Control (AVC) has emerged as a cutting-edge technology 
aimed at addressing this challenge with unparalleled precision. By leveraging an 
intricate interplay of sensors, actuators, and advanced control algorithms, AVC 
represents a proactive and dynamic approach to counteract and minimize unwanted 
vibrations in real-time [56]. 

In stark contrast to passive damping systems, which dissipate energy after 
vibrations have already occurred, Active Vibration Control intervenes actively as 
vibrations happen. This proactive strategy enables the system to instantaneously 
counterbalance the forces responsible for the vibrations, providing a level of 
responsiveness and precision that traditional methods lack. 

At the heart of AVC are sensors strategically placed within the structure to 
continuously monitor vibrations. These sensors, including accelerometers, strain 
gauges, and displacement sensors, generate real-time data essential for the system’s 
timely response. Actuators, the driving force behind AVC, then come into play. 
Whether electromagnetic, hydraulic, or piezoelectric, these actuators generate forces 
to actively counteract and mitigate the detected vibrations [56]. 

The sophistication of Active Vibration Control is further emphasized by the 
implementation of advanced control algorithms. These algorithms interpret the data 
provided by sensors, determining the optimal response from the actuators. The 
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proactive nature of AVC, combined with these algorithms, allows for precise control 
and adjustment, enabling the system to address specific frequencies and amplitudes of 
vibrations with unparalleled accuracy (see Figure 1). 

 
Figure 1. Active vibration control. 

In this dynamic landscape of structural engineering, where the integrity of 
buildings and the comfort of occupants are paramount, Active Vibration Control 
stands out as a technology that goes beyond traditional passive solutions. This 
introduction sets the stage for a deeper exploration of the principles and applications 
of AVC, unveiling its potential to revolutionize the mitigation of structural vibrations 
and enhance the overall performance of diverse structures. 

3. Importance of active vibration control 

Active Vibration Control (AVC) plays a pivotal role in various industries and 
applications due to its significance in mitigating and managing unwanted vibrations in 
structures. The importance of Active Vibration Control is underscored by several key 
factors [57]: 

Structural stability: Active Vibration Control is crucial for maintaining the 
structural stability of buildings and infrastructure. By actively countering and 
minimizing vibrations, it prevents long-term structural damage, ensuring the safety 
and durability of constructed assets. 

Occupant comfort: Uncontrolled vibrations in structures can lead to discomfort 
for occupants, particularly in tall buildings or those situated in regions prone to seismic 
activity. AVC contributes to a more comfortable living and working environment by 
minimizing vibrations caused by external forces like wind or internal sources such as 
machinery. 

Preservation of equipment and machinery: In industrial settings, vibrations can 
negatively impact the performance and longevity of machinery. Active Vibration 
Control helps preserve equipment by reducing dynamic forces, preventing premature 
wear and tear, and maintaining operational efficiency. 

Enhanced performance in sensitive environments: In environments where 
precision is critical, such as laboratories or medical facilities, AVC is essential for 
protecting sensitive equipment from vibrations. This is crucial for applications where 
accurate measurements or delicate processes are integral to operations. 
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Seismic resilience: In earthquake-prone areas, AVC becomes a vital technology 
for enhancing a structure’s resilience. By actively responding to seismic forces in real-
time, it minimizes the potential damage caused by ground motion, ensuring the safety 
of occupants and protecting against structural failures. 

Optimization of industrial processes: Active Vibration Control is instrumental in 
optimizing industrial processes by reducing vibrations that could affect manufacturing 
accuracy and efficiency. It contributes to smoother and more reliable production 
processes, minimizing disruptions and improving overall operational performance. 

Compliance with regulations: Many industries are subject to regulations and 
standards related to vibrations to ensure the safety and well-being of occupants and 
the surrounding environment. AVC systems assist in meeting these regulatory 
requirements, preventing legal and safety issues. 

Cost efficiency: While the initial investment in AVC systems may be substantial, 
the long-term benefits include significant cost savings. By minimizing structural 
damage, reducing maintenance costs, and prolonging the lifespan of equipment, AVC 
contributes to overall cost efficiency in both construction and industrial sectors. 

4. Dynamic response spectrum 

A dynamic response spectrum is a graphical representation of a structure’s 
response to seismic ground motion over a range of frequencies [57]. This spectrum is 
a fundamental tool in structural engineering and earthquake analysis, providing a 
visual depiction of how a structure is likely to react to various seismic inputs (see 
Figure 2). 

 
Figure 2. Structure is likely to react to various seismic inputs. 

In simpler terms, the dynamic response spectrum illustrates how a building or 
structure responds to ground shaking at different frequencies during an earthquake. It 
plots the maximum responses, such as accelerations, velocities, or displacements, that 
the structure experiences at different natural frequencies [57–58]. 

The dynamic response spectrum is a graphical representation of how the structure 
responds to different frequencies of ground motion or external forces. Analyzing the 
dynamic response spectrum assists in identifying critical frequencies that need 
attention in the AVC system design (see Figure 3). 
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Figure 3. Response spectrum. 

The horizontal axis of the spectrum represents the range of frequencies, while the 
vertical axis depicts the corresponding response amplitudes. Engineers use this 
information to assess the vulnerability of a structure to different seismic frequencies, 
aiding in the design and optimization of structures for earthquake resistance. 

Dynamic response spectra are crucial in seismic design because they help 
engineers understand the potential vulnerabilities and weaknesses of a structure under 
specific earthquake scenarios. By analyzing these spectra, engineers can make 
informed decisions about the design parameters and materials to enhance a structure’s 
seismic resilience and ensure the safety of its occupants. 

5. Components of active vibration control 

Active Vibration Control (AVC) systems consist of several key components 
working in tandem to actively counteract and minimize unwanted vibrations in 
structures. These components include sensors, actuators, and control algorithms, each 
playing a crucial role in the overall functionality of the system. 

5.1. Sensors 

Sensors are integral to the Active Vibration Control system, as they continuously 
monitor and measure vibrations in real time. Various types of sensors, such as 
accelerometers, strain gauges, and displacement sensors, are strategically placed 
throughout the structure to capture data on the dynamic forces affecting the building. 
This real-time information is essential for the system to make prompt and accurate 
adjustments (see Figure 4). 

 
Figure 4. Vibration sensor. 
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A vibration sensor is a sensor affixed directly to a vibrating structure to gauge its 
vibrations. Operating in tandem with the structure, it captures not the absolute 
movement y(t) but rather the relative movement z(t). This relative movement is subject 
to analysis to derive insights into the absolute movement [58]. 

The vibration sensor itself functions as a system, comprised of a mass, a spring, 
and a damper, denoted by m, K, and C, respectively. 

The established accelerometer model operates on the fundamental principle of 
motion. This model, elaborated in references [58], is expressed through Equations (1) 
and (2). The objective of this model is to enhance measurement accuracy by 
minimizing measurement errors to 1%, achieved through the judicious selection of the 
damping rate. 

Z = Y ω2/ωn
2 [(1 − (ω/ωn)2)2 + (2ζω/ωn)2]1/2 (1)

E = (z̈/Ϋ) − 1 = [1/(1 − (ω/ωn)2)2 + (2ζω/ωn)2] − 1 (2)
Z: The relative movement modulus of the sensor; E: The measurement error; Y: 

The amplitude of movement; ξ: The damping rate, ωn: The natural frequency of the 
sensor; ω: Relative frequency. 

It’s noteworthy that when the relative frequency value approaches the natural 
frequency of the accelerometer, a resonant frequency (ω = ωn) emerges. To ensure 
proper accelerometer operation while averting resonance, it is imperative that the 
relative frequency remains equal to or less than one-third of the natural frequency 
(ωn/3). The selection of the accelerometer is contingent upon the gain of the vibration 
frequency. 

In order to ascertain the most effective damping rate that minimizes measurement 
errors, two tests were systematically conducted. The outcomes of these tests were 
graphically represented in curves illustrating the sensor’s damping rate. 

In general, commercial accelerometers typically exhibit a damping rate of 
approximately 0.65, which effectively minimizes measurement error to a value equal 
to 2%. Damping is a critical characteristic of accelerometers, as it influences the 
sensor’s ability to accurately measure vibrations. A damping rate of 0.65 indicates that 
the accelerometer’s response to vibrations is sufficiently damped, allowing it to 
provide precise measurements while minimizing errors. This level of damping ensures 
that the accelerometer’s output accurately reflects the true vibration levels experienced 
by the system under observation. Additionally, the 2% measurement error represents 
the degree of deviation between the accelerometer’s measurements and the actual 
vibration levels, indicating a high level of accuracy and reliability in the sensor’s 
performance. In this paper, by closely examining and comparing the data presented in 
Figures 5 and 6, it becomes evident that the optimal damping rate, which effectively 
limits the measurement error to 1%, is identified as 0.675. This specific damping rate 
has proven to be the most advantageous in achieving the desired precision and 
accuracy in measurements, making it the preferred parameter for optimizing the 
performance of the accelerometer in the given context. 
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Figure 5. Results of first test. 

 
Figure 6. Results of second test. 

From Figures 5 and 6, the acquired results have the potential to enhance 
measurement precision to its maximum capacity, thereby contributing to the 
advancement of accelerometer performance. By identifying and implementing the 
optimal damping rate, as determined through careful testing and analysis, the accuracy 
of measurements can be significantly improved. This improvement in precision is 
essential for obtaining reliable and precise data from the accelerometer, ultimately 
leading to enhanced performance in various applications and fields. The refined 
measurement precision ensures that the accelerometer operates at its best, providing 
more accurate and reliable information about the vibrations and movements of the 
monitored structure. This, in turn, supports the overall effectiveness and functionality 
of the accelerometer in its intended use. 

The ultimate goal of this approach was to enhance the operation of the Active 
Vibration Control (AVC) system. By obtaining a precise and reliable mathematical 
model of the vibration sensor and ensuring high-precision measurement performance 
with low error, we were able to contribute to the overall improvement of the AVC 
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system. A more efficient and precise AVC system enables faster and more accurate 
detection and correction of undesirable vibrations, resulting in better protection of 
structures and equipment, reduced damage, and increased safety and reliability of the 
systems. 

5.2. Actuators 

Actuators are devices responsible for generating forces to actively counteract the 
detected vibrations. These devices come in different forms, including electromagnetic, 
hydraulic, and piezoelectric actuators, depending on the specific application and 
requirements [59,60]. Actuators are strategically positioned within the structure to 
apply dynamic forces that oppose and mitigate the effects of external and internal 
vibrations (see Figure 7). 

 
Figure 7. Different type of actuators. 

5.3. Control algorithms 

The effectiveness of Active Vibration Control relies on advanced control 
algorithms. These algorithms interpret the data provided by the sensors and determine 
the appropriate response from the actuators. Two common types of control strategies 
are adaptive control and predictive control. Adaptive control allows the system to 
adjust its parameters based on changing conditions, while predictive control 
anticipates future vibrations, enabling proactive measures. These algorithms ensure 
precise and dynamic adjustments tailored to specific structural characteristics and 
environmental conditions (see Figure 8). 

 
Figure 8. Control algorithms. 
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The collaboration of these components enables Active Vibration Control systems 
to function proactively in real-time. Sensors continuously gather data, control 
algorithms analyze this information, and actuators generate forces to actively 
counterbalance the forces causing vibrations. This holistic approach allows for precise 
control and adjustment, providing a highly effective solution to mitigate structural 
vibrations in diverse settings, from buildings to industrial facilities [61–63]. 

6. Conclusion 

Vibration analysis for Active Vibration Control is a comprehensive process that 
involves sensor deployment, data collection, frequency and mode shapes analysis, 
dynamic response spectrum examination, algorithmic processing, and system design 
optimization. This meticulous analysis ensures that the AVC system is tailored to 
effectively counteract vibrations and enhance the structural performance of the 
targeted system or building. 

In this study, we began by dissecting the operation of vibration sensors using 
fundamental principles of physics, notably Newton’s second law. This law states that 
the force applied to an object is equal to the mass of the object multiplied by its 
acceleration. By applying this law to the context of vibration sensors, we were able to 
establish a mathematical model describing the relationship between the force applied 
to the sensor, its mass, and the acceleration it measures. 

Once the mathematical model was established, we subjected it to simulation tests. 
These simulations allowed us to analyze the behavior of the sensor in various vibration 
scenarios and verify the validity of the model. We adjusted the parameters of the model 
to optimize the sensor’s performance, aiming to minimize measurement error to a 
value below 1% and increase precision to 99%. 
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