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Abstract: Usage of supercapacitors in energy storage applications has now become a new trend 
due to their auspicious features. The introduction of pseudocapacitance has increased its 
weightage to be used in a greater number of practical applications. Electrodes are the major 
constituents of a supercapacitor, based on which the electrochemical performance of the 
supercapacitor is decided. Among the varieties of electrode materials available, transition metal 
oxides are the most suitable ones to fulfill the required criteria. Due to the occurrence of faradic 
redox reactions on the surface of electrodes, the selection of efficient and favorable electrode 
material plays a major role. Co3O4 (cobalt (III) oxide) is one of the most desirable electrode 
materials due to its various peculiar features. This paper reviews briefly several factors of 
Co3O4 as electrode material in supercapacitor applications. It includes comparative discussions 
towards different synthesize methodologies and the influence of its dimensional morphology 
on the electrochemical outputs like specific capacitance, energy density, and power density. 

Keywords: cobalt oxide; morphological structure; specific capacitance; energy density; power 
density 

1. Introduction 

Supercapacitors are one of the topmost investigated materials, which expand their 
applications further day by day. It has overwhelmed the constraints of fuel cells and 
the batteries for energy storage practices in assorted fields, including regenerative 
breaks, submarines, backup power systems, and voltage stabilizers. Also, due to the 
high efficiency of supercapacitors and high oil cost, supercapacitors rapidly engage all 
automobile applications [1]. Multiple investigations are under progress to enhance the 
competence and explore its usage in more and more fields with major practical 
applications. The electrolyte, separator, and electrodes are the major components of 
the supercapacitor, which highly impacts the electrochemical output. Here in this 
paper, a brief review of several factors of Co3O4, which is one of the highly demanded 
electrode materials, is discussed. 

A number of materials are available that are applied as the electrode materials for 
these supercapacitors. But transition metal oxides own their importance due to their 
highly ambitious features with high stability and durability [2,3]. Prime transition 
metal oxides like ruthenium oxide, manganese oxide, vanadium pentoxide, nickel 
oxide, and cobalt oxide come across this route. They assure less toxicity and more 
economic and environmental friendliness [4,5]. Kumar et al. [3] used nickel oxide to 
fabricate the electrodes with highly applicable upshots. A vast literature survey proves 
that Co3O4 based electrodes establish their eminence role with exclusively anticipating 
qualities [6–8]. Zhu et al. [9] synthesized Co3O4 microspheres via hydrothermal route 
and reached a specific capacitance of 879 Fg−1. Tian et al. [10] synthesized Co3O4 thin 
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films using the chemical bath deposition method, which demonstrated a high specific 
capacitance of 743 Fg−1. 

There are various convenient procedures to synthesize desired Co3O4 
nanostructures, including co-precipitation, solvothermal, hydrothermal, chemical bath 
deposition, and so on. Nan et al. [11] synthesized Co3O4/In2O3 nanostructures utilizing 
hydrothermal strategy. Luo et al. [12] synthesized a composite of MXene-Co3O4 via 
solvothermal approach. Xiao et al. [13] evidenced the synthesize of Pt@Co3O4 by in 
situ methods. Barbieri et al. [14] synthesized cobalt oxide nanostructures with 
chemical deposition manner with the gain of 130 Fg−1 of specific capacitance. 

Since transition metal oxides execute the redox reactions, the charge storage 
mechanism behind these supercapacitors is pseudocapacitive in nature. Hence the 
outcome obviously depends on the availability of electrode surface area for the redox 
reactions, flexibility and agglomerations of nanoparticles of electrode material, 
presence of pores in the nanostructures, and dimensionality of the nanostructures. 
Hence, synthesizing nanostructures with tunable morphology is being developed by 
different researchers [15]. Utilizing a number of synthesis procedures, a variety of 
morphological features of nanomaterials can be obtained. Zero-dimensional (0D) 
nanomaterials include nanospheres and nanoclusters; one-dimensional (1D) 
nanomaterials include nanorods, nanowires, nanotubes, and nanofibers; and two-
dimensional (2D) nanomaterials include thin films, nanodiscs, and nanoplates. 
Similarly, wide varieties of three-dimensional (3D) structures like nanoballs, 
nanocoils, nanocones, nanopillars, and nanoflowers can be synthesized. Luo et al. [16] 
synthesized Co3O4 with the 3D enoki mushroom-like structures. Raman et al. [17] 
synthesized Co3O4 with block and sphere morphology. Morphological structure, 
which donates the highest electrochemical outputs with practical applications, is most 
desired. 

In this paper, transition metal oxides to be implemented in developing electrodes 
for supercapacitors are examined, and Co3O4 is found to be the most anticipating 
material for this. A brief overview of the different synthesize procedures is carried out, 
and the hydrothermal route of synthesizing is considered the best one to serve the 
electrochemical features like high specific capacitance. Finally, the impact of zero- to 
three-dimensional Co3O4 nanostructures on electrochemical outputs like specific 
capacitance, energy, and power density is scrutinized. A three-dimensional structure 
with its high efficiency is found to be at the top of all other-dimensional morphology 
[18]. 

2. Result and discussion 

A simple combination of electrode-separator networks is folded and impregnated 
with the electrolyte to get the basic structure of a supercapacitor. Here the nature of 
electrodes forms a major contributor to the consequences of the supercapacitor 
applications. Nanostructured transition metal oxides are well-known materials with 
the most aspiring features to be used in the manufacture of electrodes. The presence 
of several oxidation states brings their applications to the next level. Due to this, an 
extremely large number of conducting paths can be formed, which increases the 
number of electrochemical redox reactions. Moreover, these materials demonstrate 
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high electrical and electrochemical stability, fast and reversible redox reactions, and 
elevated cycling stability. 

Based on observations of several investigations [19–27], Figure 1 shows the 
maximum specific capacitance reached when composites of several transition metal 
oxides are used. For example, in the case of ruthenium oxide, rGO/RuO2 is used as the 
electrode material. Similarly, composites of nickel oxide (NiO nanocrystals as 
electrodes), molybdenum oxide (carbon/α-MnO2 electrodes), indium oxide (In2O3), 
iron oxide (Fe3O4), manganese oxide (MnO2), cobalt oxide (Co3O4), vanadium 
pentoxide (V2O5), and bismuth oxide (copper bismuth oxide electrode) are used in 
fabricating the electrode materials of supercapacitors. Besides these, there are some 
lesser-used oxides like perovskite bismuth iron oxide, ferrites, Ti-V-W-O/Ti oxide, 
and Na2SO3. But due to their various limitations and considerably lesser 
electrochemical outputs, they are not mentioned. 

 
Figure 1. Maximum specific capacitance reached using composites of different 
transition metal oxides as electrode materials. 

Among all the above transition metal oxides, cobalt oxide is found to demonstrate 
the highest specific capacitance value on account of its small band gap, structure of 
Co3O4 spinel, high crystallinity, high flexibility, exhibition of different morphological 
structures, and utilization of maximum oxidation states. Pure Co3O4 and Co3O4-based 
composites submit maximum impression on the enhancement of electrochemical 
activity of the generated electrodes [28]. All the other transition metal oxides exhibited 
considerably lesser electrochemical performance compared with the electrodes 
developed by cobalt oxide spinels. The number of investigations is increasing; 
concentrating on extracting several features of Co3O4 shows the efficiency of this 
spinel. Highly flexible Co3O4 nanostructures in various external features with high 
energy and power density values are employed in both pseudocapacitors and hybrid 
capacitors [29,30]. 

The synthesize strategy of these Co3O4 nanostructures in various appearances is 
large in counts applicable in accordance with convenience and availability of primary 
materials [31]. 

There are several, which are time-, cost-, and manpower-saving approaches like 
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hydrothermal, solvothermal, co-precipitation, in situ, chemical bath deposition, and 
solution combustion, as mentioned in Figure 2. This figure expresses the maximum 
specific capacitance exhibited by the differently prepared Co3O4 nanostructures used 
in the electrodes. Hydrothermal is a single-step easy method where cobalt nitrate and 
urea solution is heated at 150 °C under high pressure, followed by calcination for 24 
h. Solvothermal includes dissolution of 0.1 M of cobalt II acetylacetonate and 0.2 M 
of cobalt III acetylacetonate in dilute ethanol, followed by heating at different 
temperatures under high pressure. Co-precipitation includes the drop-wise addition of 
cobalt nitrate solution to sodium hydroxide solution under a constant temperature of 
90 ℃ and a constant pH of 10. This is followed by the collection, filtration, and 

calcination processes. In-situ synthesizes highly yields various metal-organic 
frameworks containing composites of Co3O4 nanostructures by various chemical 
reactions. Using a precursor solution, a chemical bath method can be used by 
depositing thin films of required materials like Co3O4. A chemical bath was generated 
by using proper amounts of solutions of 1 M CoSO4, NH3·H2O, 0.25 M K2S2O8 and 
demineralized water, and it was deposited on a suitable substrate. The solution 
combustion method includes the distribution of ions from exothermic reactions in a 
sol-gel medium. To synthesize Co3O4, various solvents like citric acid monohydrate, 
cobalt nitrate hexahydrate, and ammonium nitrate can be utilized in the form of fuel, 
oxidizer, and combustion enhancer, followed by the calcination process [32–35]. 
When these techniques are electrochemically compared, the Co3O4 nanostructure 
developed using the hydrothermal technique submitted the highest outputs. 

 
Figure 2. Maximum specific capacitance reached using differently synthesized 
Co3O4 nanoparticles as electrode materials. 

The reason behind this can be justified as follows: The hydrothermal method is a 
soft chemical technique where an insoluble material at ambient temperatures is 
possible to make soluble at high temperatures and pressures. The hydrothermal 
technique shows the maximum possibility to process the advanced materials from the 
bulk to the nanorange, where the toughest and most complex compounds are 
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synthesized [36]. A number of merits can be observed in the hydrothermal method 
over other synthesize methods, and it is used to bring out nanomaterials that are not 
stable at elevated temperatures [37,38]. Since the resultant nanopowder is ultrapure, 
the high-temperature calcinations are not necessary. This fact eliminates the chance of 
re-clustering of nanoparticles and contamination. Nanoparticles with high vapor 
pressures can be prepared where the stoichiometry of the reaction and the size, shape, 
and composition of the resultant can be easily controlled. The purity of the prepared 
samples will be higher than the purity of the raw materials [39–41]. 

External morphology, including shape, porosity, and flexibility of the electrode 
material, shows a high impact on the electrochemical charge storage mechanism and 
hence on the efficiency of the supercapacitor. Wang et al. [42] synthesized a 3D 
nanonet hollow structure via the heterogeneous precipitation method and obtained 820 
F/g of specific capacitance. Hou et al. [43] developed microspherical structures of 
Co3O4 by co-precipitation technique, and 614 F/g of specific capacitance was 
achieved. Piskin et al. [44] synthesized a 1D zinc oxide/cobalt oxide composite with 
the highest power density of 7500 Wg−1. Co3O4 nanostructures, which are used as the 
electrode materials, exist in all 0, 1, 2, or 3D shapes synthesized via different routes 
[45–47]. Figure 3 represents the relation between the maximum specific capacitance 
reached versus the dimensional morphology of Co3O4 nanostructures. 

 
Figure 3. Relation between maximum specific capacitance and dimensional 
morphology of Co3O4 nanostructure. 

0D nanomaterials exhibit high specific capacitance because of their high 
conductance, chemical inertness, minimized agglomeration, high mechanical stability, 
and high surface area available for faradaic redox reactions when compared with 1D 
or 2D nanomaterials. Yuan et al. [48] synthesized nanospheres for electrodes of 
supercapacitors with a specific capacitance of 928 Fg−1. Deng et al. [49] showed that 
with the high agglomeration of nanoparticles, the specific capacitance decreased to 
362 Fg−1. 

1D nanostructures of Co3O4 ensure external active area, thereby facilitating the 
motion of charged particles due to the influence of nanoscopic scale. But only the 
longitudinal axis of the material is the major pathway for the electron transfer [50]. 

https://www.sciencedirect.com/topics/materials-science/nanocrystalline-material
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Gao et al. [51] developed nanowire arrays that could provide a specific capacitance of 
746 Fg−1. Different morphological types of 1D nanostructures can be formed by 
different foldings of nanosheets with differences in their electrical conductivity. 

In the 2D nanosized structures, even though surface area is available, it lacks 
depth and dimensions. Also, due to the presence of point and line defects like 
vacancies, grain boundaries and pattern defects, cracks, and areal defects, the 
conductivity will be reduced. Yuan et al. [52] fabricated 2D Co3O4 film with 
mesoporous walls with the 443 Fg−1 of specific capacitance. 3D nanomaterials are the 
most abundant materials in comparison with other dimensional materials. 

3D nanoparticles can be arranged into layers on surfaces, availing a high surface 
area, leading to increased surface activities [53]. They provide high absorption sites in 
all dimensions to cover all the molecules present. In addition to this, porous 3D 
nanostructures highly contribute to increased transportation of charged particles. 3D 
printing technology also favors the electrochemical results of the supercapacitors [54]. 
Zheng et al. [55] prepared a 3D hierarchical structure of Co3O4 with the highest 
specific capacitance of 978 Fg−1. 

Nearly the same result appears in Figures 4 and 5, which show the variation of 
energy and power density with respect to the dimensional morphology of Co3O4 
nanostructures [56,57]. The energy density (E, Wh kg−1) and power density (P, W 
kg−1) are calculated using the equations [58,59], 

E = 0.5 × CS × (ΔV2)/3.6 
P = E × 3600/Δt 

where ΔV speaks for the potential window during discharging time Δt. 

 
Figure 4. Relation between maximum energy density and dimensional morphology 
of Co3O4 nanostructure. 
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Figure 5. Relation between maximum power density and dimensional morphology 
of Co3O4 nanostructure. 

Variation in energy density can be observed when specific capacitance and 
potential window vary. Also, power density depends upon energy density and the 
discharge time [60–64]. In both cases, as expected, 3D nanostructures provide a huge 
amount of electrochemical output. 

3. Conclusion 

Considering all transition metal oxides, Co3O4 is appraised as the efficient 
electrode material with innumerable practical merits. It can be synthesized by simple, 
time-saving, low-cost procedures in various morphological structures. According to a 
huge literature study, hydrothermal is found to be the most suitable method that has 
provided high electrochemical outputs. Though all 0D to 3D nanostructured Co3O4 is 
widely used in the electrodes of supercapacitors, 3D structured have proven 
comparatively more efficient due to accessibility of large surface area, possibility of 
various shapes and porosity, along with high conductance. Hence it leads to enhanced 
electrochemical results like high specific capacitance, energy, and the power density 
of a supercapacitor. 
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