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Abstract: Na+-K+-ATPase is a membrane-bound enzyme responsible for the transport of ions 

through the membrane and the immediate release of energy. This enzyme is known to be an 

early target for oxygen radical-induced damage to intact cells. Exposure of C. punctatus to 

subacute concentrations of lindane for 96 h caused a significant reduction in the activities of 

Na+-K+-ATPase in all the tissues of the fish tested, with the brain being maximally affected 

and the heart being the least affected organ at the highest concentration of lindane (0.1 mg/L). 

The effect of pesticides was concentration-dependent. The percent decrease in the activity of 

Na+-K+-ATPase in brain, gills, heart, kidney, liver, and muscle was found to be 36.7, 23.4, 

19.2, 29, 22.9, and 29.7, respectively. The order of level of enzyme activity recorded was as 

follows: liver > gills > kidney > brain > muscle > heart in the control. 
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1. Introduction 

The aquatic ecosystem is an open system exposed to all different kinds of 
pollutants, toxicants, and surfactants, thus polluting the aquatic environment. Their 
direct discharge without any pre-treatment either leads to large-scale destruction of 
aquatic life or accumulation in water, soil, or bioaccumulation in biotic aquata. Though 
the pollutants could be biodegradable or non-biodegradable, these pollutants 
sometimes decrease the rate of decay of biodegradables. Thus, the increase in the 
contaminants may allow their environmental persistence for a longer period. Excessive 
use of nitrate and phosphate fertilizers may lead to eutrophication, thereby reducing 
the amount of oxygen in the aquatic biota and increasing the biological oxygen 
demand of that water for a prolonged period. Industrial smokes, burning of wood, 
petroleum, and vehicle fumes all gave rise to gases like sulphur dioxide, nitrogen 
oxides, and carbon dioxide; lead and the particulate matter have all caused serious 
harm to the environment and humans [1–3]. Reports on the increased levels of heavy 
metals and pesticides and their effects on oxidative stress have been exhaustively 
documented [4–8]. Many bacteria like Vibrio anguillarum, Aeromonas, 
Flavobacterium, Pseudomonas, Serratia, and Yersina, etc. have been shown to grow 
in water, which has less oxygen, increased organic matter, and an unsuitable pH for 
aquatic life. 

The presence of organic matter may be due to leakage from septic tanks or 
contamination by domestic sewage [9]. Aquatic life may suffer from diseases like fin 
rot, papilloma, hyper-neoplasia, gill diseases, etc. Gills are the main respiratory organs 
of fish; they regulate ion concentration and osmotic balance for survival in unfavorable 
concentrations [10]. A decrease in function of gills has been reported when exposed 
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to a pH of water less than or more than 7 [11]. Lindane is an organochlorine, 
hydrophobic, and highly persistent pesticide. Due to its lipophilic nature, it gets easily 
bioaccumulated in aquatic organisms. Lindane is strongly adsorbed on soils that 
contain a large amount of organic matter. It can move downward by capillary action 
through the soil with water from rainfall or artificial irrigation. In the UV light, it 
undergoes rapid dichlorination or degradation to form pentachlorocyclohexenes and 
tetrachlorocyclohexenes. The fish are able to bioaccumulate due to direct exposure to 
chemicals in water and ingestion of contaminated food or prey [12]. Their 
accumulation in low concentration in aquatic animals generates warning signals about 
the environment. Ultimately, in the long run, when these fish are eaten by humans or 
animals, the pesticide residues accumulate in different organs of the exposed living 
systems and hence may pose serious health problems [13]. The pesticide and its 
residues are known to get strongly adsorbed on clays and sediments of surface water 
where several fish populations reside for feeding. 

Sodium Potassium ATPases (Na+-K+-ATPase, EC 3.6. 3.9) are membrane-bound 
sulfhydryl-containing oligomeric enzymes whose function is critical for the 
maintenance of cell viability. It works as an electrogenic P-type pump involved in 
monovalent ion transport across membranes, utilizing the energy of ATP hydrolysis. 
It pumps 3 sodium outside (extracellular) and 2 potassium inside the cell membrane 
(intracellular) for 1 ATP. The concentration gradient created due to ion transport 
across the membranes helps in other secondary transports [14,15]. This pump has 
many diverse functions like contractions, signalling, homeostasis (osmoregulation), 
and cell-cell adhesions [16,17]. It also governs many physiological processes like 
reabsorption, filtration, pH, electrolyte osmotic regulation by kidneys [18], sperm 
motility [19], and action potential in neurons [20–23]. This pump consists of 3 subunits 
α, β, and FXYD. The α subunit is for ion transport (catalytic) and is under the influence 
of the β (auxiliary) and FXYD (tissue-specific) subunits [24]. The β2 subunit of Na+-
K+-ATPase is responsible for regulation of egg development in Aedes aegypti, the 
causative organism of many vector-borne diseases like yellow fever, zika, dengue, and 
chicken guinea. The reduced expression of mRNA of β2 Na+-K+-ATPase in the 
knockdown mice showed less egg formation, which directly reduced their population 
and so less spread of disease [25]. In humans, decreased heart functions or heart 
failures have been reported due to a decrease in its activity [26]. In plants, it helps in 
nutrient uptake, root development, stomatal regulation, and response to environmental 
stresses. It helps plants to maintain proper ion balance, participate in nutrient 
absorption, and regulate turgor pressure in cells. In the environment, it acts as a marker 
for organisms facing challenges such as varying salinity, ion concentrations, or 
osmotic stress. In the present study, the effect of subacute concentrations of lindane 
(0.025, 0.05, 0.1 mg/L) on the activity of Na+-K+-ATPase was assessed in order to 
evaluate the perturbations in the transport of ions in different fish tissues exposed for 
96 h. 

2. Materials and methods 

2.1. Experimental design and exposure to lindane 

The healthy and active fish of 30–40 gm with no signs of any diseases or external 
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injury were equally distributed in four aquaria of 1 × 1 ft. The subacute concentrations 
of lindane (0.025, 0.05, 0.1 mg/L) prepared in acetone were used for the exposure of 
C. punctatus for 96 h. In the control group, an equal volume of acetone was added. All 
aquaria were constantly aerated during the period of exposure by the aerator, and the 
fish were fed properly. The water of all 4 aquaria was changed in 24 h and replenished 
with fresh lindane. 

2.2. Preparation of cell-free extracts and biochemical assays 

1) Protein determination: The quantitative estimation of total protein in various 
tissue extracts and solutions was done according to the known procedure [27]. 
The samples were homogenized 10% (w/v) in 0.05 m sodium phosphate buffer, 
pH 7.4, and centrifuged at 10,000 rpm for 10 min in a cold (4 ℃) condition. The 
supernatants were collected in labelled vials, and volume was noted. 
Determination of protein was done using a Folin-Ciocalteau reagent. The bovine 
serum albumin (BSA) was used as a standard. A blank was prepared, which 
contained all reagents but no protein. The intensity of the blue color was 
measured colorimetrically at 620 

2) Assay of Na+-K+-ATPase activity: The Na+-K+-ATPase activity was determined 
as inorganic phosphorus (Pi) production using the method of Svobaca and 
Mossinger [28] and Fiske and Subbarow [29]. The reaction mixture is given in 
Table 1. 

Table 1. Process for assay of Na+-K+-ATPase activity. 

10% (w/v) tissue homogenized in 0.25 m sucrose (pH 7.4) 

15 min centrifugation 12,000 rpm at 4 ℃ 

Supernatant collected 

1 2 

0.2 mL of 200 mm KCl  

0.2 mL of 1 m NaCl 0.1 mL of 1000 mm MgCl2 

0.1 mL of 1000 mm MgCl2 1.0 mL of 200 mm Tris buffer, pH 7.4 

1.0 mL of 200 mm Tris buffer, pH 7.4 100–200 µg supernatant 

0.2 mL distilled water 0.16 mL distilled water 

100–200 µg supernatant 0.2 mL of 10 mm ouabain 

Leave 5 min/35–37 ℃ 

0.2 mL of 25 mm ATP (di sodium salt) 0.2 mL of NaCl + 0.2 mL of 25 mm ATP 

Leave 15 min/35–37 ℃ 

1 mL of 10%TCA 

3000 rpm/5 min 

Supernatant collected 

0.5 mL supernatant 

3.0 mL DW 

0.5 mL of 2.5% ammonium molybdate in 5N H2SO4 

0.2 mL of 1, 2, 3, 4 ANSA 

Vortexed/10 min 

Reading at 600 nm 

Difference between 1 and 2 gives activity of Na+-K+-ATPase in µmol Pi liberated/mg protein/h. 

ANSA = aminonaphthol sulphonic. 

All reagents were obtained from Sigma Chemical Company, USA. The pesticide 
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used in the experiments was from Rallis India Limited. The double-distilled water was 
used for all biochemical experiments. 

2.3. Statistical analysis 

The values were presented as means ± standard error of mean (SEM) of observed 
data of three to five replicates. GraphPad Prism version 3.0 (GraphPad Prism Software 
Inc., San Diego, CA, USA) was used to analyze the data. Results obtained from treated 
and control fish were compared using the Turkey H test. 

3. Results and discussion 

Effect of lindane on the activity of Na+-K+-ATPase in different organs of 
lindane exposed fish 

The data demonstrated the highest activity of Na+-K+-ATPase to be present in 
liver (41.67 ± 0.35 units/mg protein) and lowest in heart (16.73 ± 0.11 units/mg 
protein) of the control fish. The activities of Na+-K+-ATPase in other fish tissues such 
as gills, kidney, brain, and muscle were recorded as 33.78 ± 0.23, 32.87 ± 0.19, 30.29 
± 0.07, and 21.29 ± 0.09 units/mg protein, respectively. The order of level of enzyme 
activity recorded in the control fish tissues was as follows: liver > gills > kidney > 
brain > muscle > heart (Table 2, Figure 1). 

Table 2. Effect of lindane (mg/L) on the specific activity of Na+-K+-ATPase 
(units/mg protein) in different tissues of C. punctatus exposed for 96 h. 

Lindane Gills Heart Kidney Liver Muscle Brain 

0 33.78 ± 0.23 16.73 ± 0.11 32.87 ± 0.19 41.67 ± 0.35 21.29 ± 0.09 30.29 ± 0.07 

0.025 
30.59 ± 0.21 
(9.42) 

15.69 ± 0.09 
(6.21) 

29.79 ± 0.18 
(9.37) 

39.27 ± 0.33 
(5.76) 

19.17 ± 0.08 
(9.95) 

25.31 ± 0.05 
(16.44)  

0.05 
28.67 ± 0.22 
(14.98) 

14.87 ± 0.07 
(11.10) 

25.66 ± 0.15 
(21.97) 

37.09 ± 0.32 
(11.01) 

17.15 ± 0.07 
(19.47) 

22.11 ± 0.06 
(27.02) 

0.1 
25.87 ± 0.20 
(23.41) 

13.52 ± 0.08 
(19.19) 

23.35 ± 0.16 
(28.94) 

32.13 ± 0.29 
(22.92) 

14.97 ± 0.07 
(29.70) 

19.17 ± 0.04 
(36.68) 

 
Figure 1. Lindane exposure at different concentrations (0, 0.025, 0.05, 0.1 ppm) on 
the specific activity of Na+-K+-ATPase (units/mg protein) in different tissues of C. 
punctatus exposed for 96 h. 
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Values are represented as µm of Pi released/h/mg wet weight of tissue. Each 
value represents the mean ± SEM of ten different observations. Values in parenthesis 

are percent change over control. The () sign represents a decrease over control. h 
represents time in hours. SEM = standard error of mean. 

From the Turkeys HSD test all pairwise comparisons between different 
concentrations (0.025, 0.05, 0.1 mg/L) and control (0 mg/L) were statistically 
significant with p < 0.05. This indicates that there are significant differences in the 
mean values between the control and each of the concentrations, as well as between 
the different concentrations themselves for organs brain, muscle and liver. The non-
significant differences were observed in the gills and kidney with 0.1 vs. 0.05mg/L 
and heart 0.05 vs. 0.025 mg/L (Table 3). 

Table 3. Statistical inference of data based on pairwise comparisons between different concentrations of lindane 
(mg/L). 

Lindane  Gills Heart Kidney Liver Muscle Brain 

0.025 vs. 0 P < 0.001 S P < 0.001 S P < 0.001 S P < 0.001 S P < 0.001 S P < 0.001 S 

0.05 vs. 0 P < 0.001 S P < 0.001 S P < 0.001 S P < 0.001 S P < 0.001 S P < 0.001 S 

0.1 vs. 0 P < 0.001 S P < 0.001 S P < 0.001  S P < 0.001 S P < 0.001 S P < 0.001 S 

0.05 vs. 0.025 P < 0.001 S P = 0.34 NS P < 0.001 S P < 0.001 S P < 0.001 S P < 0.001 S 

0.1 vs. 0.025 P < 0.001 S P < 0.001 S P < 0.001 S P < 0.001 S P < 0.001 S P < 0.001 S 

0.1 vs. 0.05 P = 0.52 NS P < 0.001 S P = 0.16 NS P < 0.001 S P < 0.001 S P < 0.001 S 

S = Significant, NS = Not significant. 

The treatment of the fish with three subacute concentrations of lindane displayed 
a marked decrease in the activity of Na+-K+-ATPase in all the tissues tested, i.e., the 
brain was maximally affected at all of these concentrations. At the lowest 
concentration of lindane (0.025 mg/L), the fish tissues such as gills, kidneys, and 
muscles showed the same level of percent inhibition (about 9%–10%) in the enzyme 
activity (Table 2). 

At the highest concentration of the pesticide (0.1 mg/L), the brain of the fish 
exhibited a maximum decrease of 37% in the enzyme activity, and the heart indicated 
a minimum decrease of 19% after 96 h of treatment duration. The decrease in the 
enzyme activity was in a concentration-dependent manner. The percent decrease in 
the activity of Na+-K+-ATPase in brain, gills, heart, kidney, liver, and muscle was 
found to be 36.7, 23.4, 19.2, 29, 22.9, and 29.7, respectively. The data indicated that 
the gills and liver were affected by lindane to a similar level, showing about a 23% 
decrease in enzyme activity. Further, the kidney and muscle displayed almost the same 
level of enzyme inhibition to about 29% when the fish was treated with lindane at a 
0.1 mg/L concentration for 96 h. The extent of inhibition in the enzyme activity from 
these fish tissues treated with the highest pesticide concentration (0.1 mg/L) was found 
in the following order: brain > muscle = kidney > gills = liver > heart (Table 2). 

This enzyme is known to be an early target for oxygen radical-induced damage 
to intact cells [30,31]. Sharma observed a significant reduction of liver ATPase 
activity in C. gaucha upon ensdosulphan exposure [32]. Oruc et al. reported a 
reduction of liver activity in Tillapia zilli and O. niloticus and suggested that increased 
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lipid peroxidation disturbed the anatomical integrity of the biomembrane and 
diminished its fluidity, leading to inhibition of activities of several membrane-bound 
enzymes, including Na+-K+-ATPase [33]. Very recently, cypermethrin at lethal (5.03 
µg/L) and sublethal (1.02 µg/L) concentrations has been shown to cause significant 
alterations in the gills, liver, and muscle of the fish Cirrhinus mrigala [34]. 

Similar observations have been reported in C. punctatus exposed to pyrethroids 
[35] and Clarias gariepinus juvenile exposed to oxadiazon [35]. Increased activity in 
gills of silver catfish (Rhamdia quelen) was reported in water pH 9.0 and no significant 
change in kidney [36]. In a hypotonic environment, the kidneys of fish species excrete 
more dilute urine to maintain homeostasis [37], and in hypertonic they suffer from 
dehydration, and so they drink more sea water, excreting out extra salts [38,39]. At 
lethal concentration, the insecticide caused an increase in enzyme activity, whereas at 
sublethal concentration the enzyme activity decreased [40]. Maiti exposed the fish 
Clarius batrachus to 5.69 mg/L and 11.38 mg/L of chromium (lll) for 96 h and 
reported a decrease in activity in the brain [41–45]. This inactivity can lead to diverse 
alterations in the neurons, such as partial membrane depolarization, Ca+2 influx, 
altered neurotransmitter release, and even apoptosis, and all can be co-related to 
functional deficits in the brain [46]. 

4. Conclusions 

The significance of sodium-potassium ATPase (Na+-K+-ATPase) in the 
environment is its role in maintaining cellular homeostasis both in plants and animals. 
It contributes to the adaptability and survival of organisms in diverse environmental 
conditions and serves as a sensitive indicator of environmental stress and toxicity. The 
exposure of the fish to varying subacute concentrations of lindane has caused 
significant perturbations in the activity of this enzyme in different organs of the fish 
tested. The results may serve as an indicator of pesticide contamination in water and 
better management of pesticide application in agricultural practices to secure 
environmental health. 

Author contributions: Conceptualization, methodology and drafting, BS; performed 
experiment, AG. All authors have read and agreed to the published version of the 
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