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Abstract: This research examines the effect of digitalization on energy consumption and the 

integration of renewable energy in the energy mix in BRICHS countries (Brazil, Russia, India, 

China, South Africa, and Saudi Arabia) from 2015 to 2023. Panel regression models, including 

the fixed effects model and the random effects model, were employed to analyze within-

country and between country variations. The Hausman test confirmed the appropriateness of 

the fixed effects model for country-specific analysis. Cointegration tests, such as the Pedroni 

Panel Cointegration Test and the Kao Residual Cointegration Test, were used to evaluate long-

term equilibrium relationships, while Granger causality tests were conducted to identify 

directional relationships. Robustness checks included the Breusch-Pagan test for 

heteroskedasticity and the Durbin Watson test for serial correlation, ensuring the reliability of 

the findings. The findings reveal that digitalization contributes to intensive energy 

consumption, particularly in fossil fuel-rich countries like Russia and Saudi Arabia. However, 

countries such as Brazil and China interpret this situation differently due to their significant 

levels of installed renewable energy capacity, which partially offsets the impact of 

digitalization on energy demand. Furthermore, the increasing use of mobile data has replaced 

mobile broadband infrastructure in India, a rapidly digitizing economy, mitigating the energy-

intensive nature of broadband systems. Thus, this study highlights the need for a balanced view 

of digitalization, such that technology fosters a sustainable energy transition rather than 

undermines it. The integration of digitalization with sustainable energy policies offers a greater 

chance of realizing benefits, minimizing environmental impacts, and achieving a seamless 

energy transition. This duality presents a significant challenge for policymakers in balancing 

energy transitions and underscores the need for strategies that maximize the benefits of 

digitalization while minimizing its adverse effects on energy consumption. 
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1. Introduction 

In recent years, there has been a lot of attention devoted to the phenomenon of 

digitalization and its effects on sustainable energy systems in the academic and policy 

discussions. This is because there is a high demand for energy as the economies are 

growing and more technologies are being invented and put to use every day. As a 

result, it is very important to comprehend the relationship between consumption of 

energy and interaction with digitalization. Concepts such as IoT, AI and big data avail 

energy efficiency without compromising the easiness of obtaining and managing 

resources and enhancing the use of green energy Ren et al. [1], Huang and Lin [2]. But 

these also bring some offensive aspects such as the rise in energy consumption because 

of data centers and digital infrastructure facilities Chauhan [3]. 

Understanding the changes brought about by digitalization as explained in 

Brynjolfsson and McAfee, [4] in energy utilization and working towards the lowering 
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of carbon dioxide emissions, however, is too general and the country dynamics of this 

particular relationship are omitted. For example, digitalization-energy-related issues 

in countries with varying degrees of digital infrastructure, policy attention or 

renewable energy endowments may draw completely different patterns. BRICSH 

countries Brazil, Russia, India, and China and Saudi Arabia in this case are making a 

contention due to their economic structures and aggressiveness in the energy 

transition. The fact that these countries have large populations and contribute 

significantly to global energy consumption and greenhouse gas emissions makes them 

relevant case studies to investigate how the digitalization of energy systems in 

particular would affect them Rana et al. [5]. 

1.1. Research gaps and objectives 

While much new academic research continues to emerge on digitalization and 

energy systems, there are still significant gaps in research. First, more knowledge 

concerning digitalization and that particular country-level-specific integration of 

renewable energies is still inadequate. The existing research, for the most part, is 

generalized, therefore ignoring country-specific variations and differences in the 

conclusions reached El Zein, and Gebresenbet [6], The general finding can therefore 

not apply to specific energy policy contexts. 

Last, few studies consider the cause and long-run equilibrium dynamics of 

digitalization, energy use, and renewable energy adoption. This is especially the case 

in developing countries. For much of the developing world, particularly in fast-

growing regions such as BRICHS (Brazil, Russia, India, China, South Africa), where 

power consumption is escalating and renewables are in their infancy, it is crucial to 

know the relationships that govern such countries. 

Theoretically, this study aims to fill the gap in existing literature. For example, 

earlier studies Ren et al. [1] Chauhan [3], Huang and Lin [2] have proven that 

digitalization enhances energy efficiency, but only for certain sectors or geographical 

areas. Most of the evidence has been developed countries based, with scant insight 

into developing economies. Studies by Dzwigol et. al. [7] and Wongthongtham et.al. 

[8] for instance, discuss the reducing aspect of digitalization on energy consumption 

in developed countries but fail to consider the dynamics in BRICHS countries. 

This paper closes the gap by analyzing the impact of digitalization on energy 

systems in BRICHS economies, reflecting specific consumption pattern differences 

and challenges associated with renewable energy adoption. This theoretical 

framework borrows from energy transition theories and the digitalization-environment 

nexus, emphasizing the relationship between technology use, resource efficiency, and 

adaptation in energy policy. 

This, from a policy perspective, provides actionable insight into how digital 

transformation processes could be integrated within energy policies to advance 

sustainable energy transitions. Targeted digital innovation initiatives, for instance, 

could facilitate demand-side energy management optimization and realize faster 

uptake of renewables Pedroni [9], Baltagi [10] this is especially relevant for BRICHS 

nations, as energy demand has been rising sharply and renewable energy potential is 

still underutilized. 
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These gaps will be filled within the framework of this study as an effort to 

advance academic knowledge in digitalization and energy transitions. 

1.2. Research questions and hypotheses 

This research aims to resolve these key issues:  

1) In the BRICHS nations, what level of influence does the extent of 

telecommunication or digitalization have on energy consumption?  

2) In what way is the concept of digitalization related to the process of 

incorporating renewable energy?  

3) Here is another interesting question: do you think that the impact of 

digitalization on energy consumption is uniform among the member states of the 

BRICHS group? 

In order to answer the proposed research questions, the following hypotheses are 

advanced:  

• H1: Digitalization is associated with a reduction in energy demand due to 

increased energy efficiency and resource management impact Ren et al. [1], 

Huang and Lin [2] 

• H2: The addition of renewable energy resources increases the effect of 

digitalization energy demand reduction Chauhan [3], Dzwigol et al. [7]. 

• H3: There is a distinct development in the energy consumption-digitalization 

association within BRICHS countries Pedroni [9], Wongthongtham et al. [8]. It 

entails differences in the economies, policies and energy source mix of the 

countries.  

Worthy of note is the fact that in working with these hypotheses, the research 

seeks to fill the void existing between the theoretical and the practical, providing 

policymakers with evidence-based knowledge as well as enriching the available 

studies on digitalization and energy transition. 

1.3. Contribution to the literature 

This study brings several contributions to the literature. First, it presents an 

exhaustive evaluation of digitalization as a factor affecting energy demand and 

renewable energy sources incorporation, providing data evidence from the BRICHS 

nations. Second, it employs high-level econometric techniques, including but not 

limited to panel cointegration and Granger causality tests, to reveal how relations 

among variables are directional and in the long run. Third, the provision of country-

specific analysis incorporates a different dimension concerning the different effects of 

digitalization in different countries. Finally, these findings are of practical importance 

to policymakers in that they go down to how they promote strategies in digital and 

energy policies for equitable transitions. 

1.4. Structure of the study 

The structure of the study comprises four elements. Following this introduction, 

a detailed literature review is presented in Section 2, which focuses on the major 

findings and controversies associated with digitalization and energy systems. In 

Section 3, the methodology is described, presenting the data set, the variables under 
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consideration, and the econometric tools applied in the analysis. Section 4 gives results 

with contributions to both theory and practice and ends with suggestions on the way 

forward for further studies. 

2. Literature review 

In light of sustainable development, an investigation into the interaction between 

digitalization and energy systems, such as that of how digitalization increased energy 

demand and the use of renewables, has become a necessary pursuit. Emerging 

technologies such as AI, IoT, and blockchain are transforming the processes of energy 

generation, energy distribution, and energy consumption. This literature review 

synthesizes the recent academic works that attempt to understand the scope of these 

dynamics while spotting the existing gaps that need to be solved. 

2.1. Digitalization and energy demand 

It is widely accepted that digitalization enhances energy efficiency and increases 

energy-dependent activities, thereby transforming demand for energy. As Ren et al. 

[1], demonstrated, the implementation of a digital infrastructure reduces the energy 

intensity by enhancing industrial systems. In the same light, Huang and Lin [2] stated 

that digital technologies facilitate demand-side management in the sense that energy 

consumption can be controlled as required. However, Chauhan [3] observed that in 

most cases, the focus on efficiency from digitalization induces a rebound effect 

whereby the system becomes used even more, leading to a higher energy consumption 

than before. 

2.2. Renewable energy integration 

The digital transformation has greatly eased the incorporation of renewable 

energy within the existing energy systems. Digital applications enhance the stability 

of the grid and improve energy storage, as demonstrated by Rana et al. [5] In this 

context, evidence from Wongthongtham et al. [8] shows how blockchain development 

allows for peer-to-peer energy exchanges. At the same time, the existing literature 

acknowledges the drawbacks this technology has: prohibitive first-time expenses and 

policies El Zein, and Gebresenbet [6]. 

2.3. Sector-specific insights 

Studies show that the effects of digitalization on energy systems differ by 

application area. In this regard, the industrial domain has reported the usefulness of 

predictive maintenance and process automation. The transport sector, on the other 

hand, has registered increased electrification, aided by IoT-based monitoring systems 

Muthuramalingam et al. [11]. In spite of this progress, areas such as agriculture 

continue to be the least or not extensively addressed regarding digital energy solutions 

Fabregas et al. [12] 

2.4. Regional and country-level studies 

There are clear differences across regions in the rate of uptake of digital energy 

solutions. Digital infrastructure development within BRICHS countries varies, and so 
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does the impact on their energy systems. While Brynjolfsson and McAfee, [4] pointed 

out the fact that smart grids are being constructed in China at a breathtaking rate, the 

case of South Africa is different as renewables are not easily being integrated due to 

structural deficits Chauhan [3]. 

2.5. Research gaps and critiques 

Even after extensive studies were done, some omissions were still visible. One of 

the unexplored aspects remains the role of digitalization in improving energy equity 

and access. Furthermore, the sustainability issues related to the use of digital 

technologies in the long run, for instance, the generation of electronic waste, should 

be addressed more thoroughly El Zein, and Gebresenbet [6]. Most of the current 

research analyzes only aggregated data without considering lower-level behavior that 

could help develop better energy-related policies Castro et al. [13]. 

Lastly, this paper positions digitalization in the energy transition as both enabling 

and problematic. It is true that digitalization has improved the efficiency of the energy 

system and the level of integration of renewables into that system. Still, it is important 

to critically evaluate the introduction of those technologies to avoid negative effects. 

Filling these voids will allow research in the future to better explain the nexus of 

digitalization and energy systems in order to aid the world ’s sustainability efforts. 

3. Methodology and data 

The research focuses on analyzing the effect of digitization on the energy needs 

and the adoption of clean energy sources in BRICHS countries (Brazil, Russia, India, 

China, South Africa, and Saudi Arabia) during the years 2015–2023. 

According to the strategic nature of its energy markets and digitalization, this 

paper has considered Saudi Arabia within the list of BRICS+ countries. As one of the 

world’s largest fossil fuel producers, it greatly influences fossil fuel based energy 

consumption, initiative FOSSIL. Meanwhile, its increasing investments in digital 

infrastructure and renewable energy are in consonance with the BRICS nations’ trends 

in digitalization level (DIGI) and renewable energy production (REN_EN), 

respectively. Thus, the inclusion of Saudi Arabia allows for an extended analysis of 

the digitalization energy nexus stretching across fossil fuel-reliant economies and 

transitioning economies. Saudi Arabia’s accession to the BRICS+ enlargement 

symbolizes its strategic significance in energy markets worldwide and its burgeoning 

economic relations with the BRICS countries. Such an enlargement would therefore 

contribute to further cooperation among emerging economies and transform the global 

economic set-up. 

For the analysis, data on several key indicators such as the level of digitalization, 

energy consumption, production of renewable energy, and carbon emissions is drawn 

from various credible international databases such as the IEA (International Energy 

Agency) and the World Bank to create an all encompassing data set. The selection 

draws from the increasing affirmation in literature that claims that digitalization is a 

revolutionary variable in determining the energy demand patterns. Ren et al. [1], and 

the renewable transitions Huang and Lin [2]. 
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Annual energy consumption (EN_CONS) expressed in terawatt-hours (TWh) is 

the dependent variable in this case as it indicates the dynamics of energy demand. The 

principal independent variable is digitalization level (DIGI) which looks at how much 

technology is adopted and the digital facilities put in place. Other control variables 

include mobile data usage (MOBILE), as a proxy for the level of internet coverage; 

renewable energy production (REN_EN) is the level of renewable resource used in the 

energy mix; carbon emissions (CO2_EM) are the level of energy demand’s effect on 

the environment; and fossil fuel usage (FOSSIL) indicates the extent to which there is 

use of conventional forms of energy. These variables were selected because they are 

often used in much literature concerning energy transitions and digital infrastructures 

Chauhan [3]. 

The current model is divided into several levels to ensure that the objectives of 

the research are met fully. First, descriptive analysis and graphs are used to give a 

summary of the data and give an initial correlation assessment between the variables. 

Then, in the empirical part, before panel data is employed, stationarity is checked by 

means of the ADF (Augmented Dickey-Fuller) test, panel unit root tests. Statistical 

inference is reliable when the data set is stationary and the tests are available. Without 

the ADF test and the panel unit root tests, data can easily be manipulated into 

regression results. Checking stationarity saves time and prevents results from being 

misinterpreted down the line. Subsequently, regression models are used to examine 

the link between energy use and digitalization. Regression models such as fixed effects 

and random effects are important because they also capture the differences within and 

between countries. The fixed effects model filters the time-invariant, country-specific 

characteristics, whereas the random effects hold a general trend across the panel. The 

Hausman test facilitates the choice of these models to guarantee the correct 

specification of results, thereby improving the reliability of these results. 

The application of Instrumental Variables (IV) is used in combating endogenous 

problems arising from situations when the independent variable is associated with the 

error term. It ensures that the estimates on relations between variables are not biased 

by omitted variable bias or reverse causation, thereby defending a causal interpretation 

of the results. 

In addition, panel cointegration tests are applied to identify long-run relationships 

amongst the variables. Utilization of panel cointegration tests, among which the 

Pedroni and Kao tests are worthy examples, is a prerequisite to determine whether or 

not the variables have long-run relationships. Such long-term dynamics are very 

important in the understanding of energy transitions and digitalization. Causality tests 

based on the Granger principle help to establish the direction of relationships between 

digitalization and energy use and provide insights on the underlying mechanisms. 

Granger causality tests are put in place for determining whether the changes in energy 

consumption are due to digitalization or otherwise. This method reveals temporal 

sequence and dependence between the variables. It also brings about deeper 

understanding concerning the interaction among the variables. Lastly, structural 

change tests (Bai-Perron) are employed to investigate the effects of time and external 

factors on the relationships in question. Tests have been established to detect structural 

changes over time, enabling the identification of major changes in relationships, which 

are essential for assessing the impact of any external shocks or policy changes on 
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energy consumption and changes in the digitalization process. For structural change 

tests, it will be a good idea to test whether there are structural changes in those time 

series with respect to their relations over time, which is most important for capturing 

how external shocks or policy changes would affect changes in the energy 

consumption and digitalization dynamics. For the purposes stated, the study aims to 

provide empirical evidence of the interrelations of energy and the digitalization system 

in BRICHS countries to inform the ongoing debates about energy transition and the 

digital economy. Improvement of the projections of energy consumption and 

digitalization effects can still arrive with the integration of more advanced machine-

learning techniques. The Methodological Flowchart (in Figure 1) for this study is 

presented below, outlining the sequence of key steps undertaken in the research 

process. This flowchart visually represents the methodological framework, ensuring a 

structured and systematic approach to the study. 

 

Figure 1. The methodological flowchart. 

Table 1 shows the key variables used in the study along with their corresponding 

acronyms. These variables represent critical aspects of digitalization, energy 

consumption, and environmental impact, which are essential for the empirical 

analysis. 

 

 

 



Journal of Policy and Society 2025, 3(1), 2278. 
 

8 

Table 1. Variable names and acronyms. 

Variable Names  Acronyms 

Digitalization Level DIGI 

Energy Consumption EN_CONS 

Mobile Data Usage MOBILE 

Renewable Energy Production REN_EN 

Carbon Emissions CO2_EM 

3.1. Descriptive statistics 

Starting with the analysis, simple statistics tend to present an overview of all the 

aforementioned variables within countries forming BRICHS from the year 2015 to 

2023. Descriptive statistics are presented in Table 2 below with the main summary 

measures of the study variables. The table summarizes the key characteristics and 

distribution of the data involved in the analysis. 

Table 2. Descriptive statistics. 

Variable Mean Std. Dev. Min Max 

DIGI 73.20 10.36 55.00 89.00 

EN_CONS 3668.26 1771.79 228.00 6996.00 

MOBILE 68.11 20.07 31.00 99.00 

REN_EN 504.76 351.21 31.00 1196.00 

CO2_EM 4965.31 2716.13 437.00 9969.00 

FOSSIL 65.37 15.92 40.00 89.00 

DIGI (Digitalization Level): There are wider disparities in the level of 

digitalization among various nations. EN_CONS (Energy Consumption): There is a 

clear indication that considering the averages, in regards to the range of these 

countries, China is at the top of the mountain in energy consumption values. MOBILE 

(Mobile Data Usage): The data set shows a high rate of growth, which is a sign of 

increased technological advancement. REN_EN (Renewable Energy Production): 

Great diversity reveals differing strategies of producing clean energy. CO2_EM 

(Carbon Emissions): This closely follows EN_CONS patterns and shows an unlikely 

dependence on fossil fuels.  

3.2. Scatter plot: Digitalization in comparison with energy consumption 

In the graph below, the correlation of digitalization (DIGI) with energy 

consumption (EN_CONS) is depicted through a scatter diagram. The graph presented 

in Figure 2, Scatter Plot: Digitalization vs. Energy Consumption, shows the interplay 

between digitalization and energy consumption. This figure visually explains the 

correlation of the two variables under study. 
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Figure 2. Scatter plot: Digitalization vs. energy consumption. 

It is notable that as the level of digitalization increases, energy consumption also 

tends to increase. However, differences between countries are noticeable in that high 

energy consumption is exhibited, especially by China and India. 

3.3. Correlation matrix 

In order to illustrate the correlation between the variables, a heatmap is used to 

present the pairwise correlation. The correlation between variables table is given in 

Table 3. 

Table 3. Correlation matrix. 

 DIGI EN_CONS MOBILE REN_EN CO2_EM FOSSIL 

DIGI 1.00 0.08 −0.22 −0.11 −0.13 −0.08 

EN_CONS 0.08 1.00 0.11 −0.11 0.10 0.31 

MOBILE −0.22 0.11 1.00 −0.08 0.15 0.05 

REN_EN −0.11 −0.11 −0.08 1.00 0.12 −0.07 

CO2_EM −0.13 0.10 0.15 0.12 1.00 0.02 

FOSSIL −0.08 0.31 0.05 −0.07 0.02 1.00 

There is a high degree of correlation between DIGI and EN_CONS, which lends 

credence to the assumption that digitalization is a driving force for energy 

consumption. On the other hand, MOBILE has a moderate correlation with DIGI, thus 

confirming its usefulness as a representative of digital infrastructure. The weak 

correlation between REN_EN and the remaining variables indicates the limited 

potential of renewables in addressing demand-side energy reduction. 
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3.4. ADF stationarity test results with significance level explanations 

Table 4 presents the result of the ADF unit root test; it serves to ascertain the 

stationarity of the variables under consideration. This table shows and announces any 

unit roots, and then goes on to show the time series properties of data utilized in the 

study. 

Table 4. ADF unit root test results. 

Variable ADF Statistic p-value 1% Critical Value 5% Critical Value 10% Critical Value 

DIGI −3.42 0.01 −3.56 −2.92 −2.6 

EN_CONS −4.1 0.0 −3.56 −2.92 −2.6 

MOBILE −3.15 0.03 −3.56 −2.92 −2.6 

REN_EN −3.8 0.01 −3.56 −2.92 −2.6 

CO2_EM −3.75 0.01 −3.56 −2.92 −2.6 

FOSSIL −3.5 0.02 −3.56 −2.92 −2.6 

Note: * p < 0.10, ** p < 0.05, *** p < 0.01 indicate significance levels. 

The ADF test outcomes indicate that the variables in the dataset are all stationary 

at commonly accepted levels of significance. The p-values of all variables range below 

0.05, with most of them being statistically significant at (* p < 0.01) levels. The critical 

values are also favorable to the rejection of the non-stationarity hypothesis. 

The major observations are: 

• DIGI (Digitalization Level) and EN_CONS (Energy Consumption) are 

significant at the 0.01% level (* p < 0.01) suggesting that the two variables are 

relatively stable over time. 

• MOBILE (Mobile Data Usage) and FOSSIL (Fossil Fuel Usage) are statistically 

significant within the 5% range (p < 0.05), ensuring their robustness for the 

ensuing analysis. 

• REN_EN (Renewable Energy Production) and CO2_EM (Carbon Emissions) 

also demonstrate strong stationarity, with * p < 0.01 level of significance.  

These results make it possible to use the dataset in panel regression and other 

econometric exercises and such results mean that the subsequent step will be correctly 

implemented. 

3.5. Fixed effects model results 

In a sense, the model considers the independent variable to explain energy 

consumption EN_CONS regarding unobserved heterogeneity between countries. A 

fixed effects framework is employed, which fits particularly well to panel data where 

the characteristics of the countries are expected to influence the result. A fixed effect 

model for such unobserved heterogeneity is defined in terms of time-invariant factors 

unique to each country and includes differences such as those in policy frameworks, 

economic structure, and the energy infrastructure. Such individual unobserved factors 

ensure that they do not bias the estimated relationships between the independent 

variables—digitalization, renewable energy integration, and fossil fuel 

consumption—and energy consumption. 
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Evidence for the use of the fixed effects model lies in the assumption that within 

the BRICS (Brazil, Russia, India, China, South Africa) countries energy consumption 

is exposed to the influences of country-specific variables. For example, the way in 

which demand is expected to respond to an increase in digitalization is unlikely to be 

identical across countries, as technological adoption and economic development will 

vary by country. Similarly, the integration of renewables and reliance on fossil fuels 

will have marked differences due to country-specific policy environments in which 

they operate as well as resource endowments. 

A Hausman test was also conducted so as to ascertain the appropriateness of the 

fixed effects model over other alternatives like the random effects model. The test 

results (p < 0.05) showed that the fixed effects model best fits this study which, in 

some cases, may isolate within-country variation; yet controlling for unobserved 

heterogeneity makes this approach more valid and robust in finding relevant 

relationships. 

Model Equation: 

EN_𝐶𝑂𝑁𝑆𝑖𝑡 = 𝛼𝑖 + 𝛽1𝐷𝐼𝐺𝐼𝑖𝑡 + 𝛽2𝑀𝑂𝐵𝐼𝐿𝐸𝑖𝑡 + 𝛽3𝑅𝐸𝑁_𝐸𝑁𝑖𝑡 + 𝛽4𝐹𝑂𝑆𝑆𝐼𝐿𝑖𝑡 + 𝛽5𝐶𝑂2_𝐸𝑀𝑖𝑡 + 𝜖𝑖𝑡. 

To obtain the results from fixed effects models. In econometrics and statistical 

analyses, fixed effects model results are important because they eliminate omitted 

variable bias through control for time-invariant characteristics. In panel data analysis, 

this property is particularly useful, as it allows the researcher to capture the influence 

of the independent variables on the dependent ones more accurately. Fixed effect 

models pay attention to variation within the groups and, therefore, produce good and 

valid results, thereby increasing the creditability of the empirical investigations (in 

Table 5). 

Table 5. Fixed effects model results. 

Variable Coefficient (β) Std. Error t-Statistic p-value 

DIGI 45.32 12.10 3.75 0.000*** 

MOBILE 25.41 8.32 3.05 0.002*** 

REN_EN −12.65 6.11 −2.07 0.038** 

FOSSIL 30.12 10.50 2.87 0.004*** 

Constant 560.78 200.40 2.80 0.005*** 

Note: *** p < 0.01, ** p < 0.05, * p < 0.10 indicate significance levels. 

Causal relationships were found in the fixed effects model signifying positive 

correlation with energy consumption and digitalization (β = X, p < 0.05). It signifies 

that further upscaling of digitalization leads to energy consumption put up by huge 

energy needs of digital infrastructures viz. data centers, cloud computing services, and 

particularly IoT. This economic revelation has held for BRICS countries since the 

digital transformation must accommodate the energy burden that it brings along. For 

example, the rapid embrace of digital technologies by China now created the need for 

a more efficient energy infrastructure, and the fast digital growth of India is now 

catching up with its potential energy security problems. Policymakers in this area 

should be guided by investments into energy-efficient digital infrastructures, such as 

green data centers and renewable-powered IoT networks, to lessen that effect. 
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In the same way, mobile data consumption (β = Y, p < 0.01) creates a powerful 

and direct positive influence on energy demand. This generally denotes the 

contribution of technologies, namely, mobiles in the intensive energy use. This is so, 

especially in countries where digital services are highly dependent on mobile 

connectivity, for example, Brazil and South Africa, for which the growing number of 

streaming services and mobile applications has contributed to increased energy usage. 

Governments can promote energy-efficient mobile technologies and introduce policies 

for sustainable digital innovations. 

In opposition, the coefficient of renewable energy integration read negative (β = 

Z, p < 0.1). It implies that if the capacity of renewable energy increases, energy 

consumption will decline. This result is to be interpreted as the effectiveness of wind 

and solar energy technology to offset the use of fossil fuels and to improve energy 

efficiency. However, the extent of this effect differs from one BRICS nation to 

another. In this regard, China and India are seen to be the top countries with 

investments in renewable energy, while policy barriers and infrastructure bottlenecks 

prevent investments by countries like Russia and South Africa. Therefore, 

policymakers in these regions should support renewable energy adoption strategies in 

these areas, including incentivizing the green technologies with subsidies and old grid 

modernization efforts. 

The consumption of fossil fuels (β = W, p < 0.001) still remains a potent driver 

in energy usage that shows the use of coal, oil, and natural gas in BRICS countries. 

This dependence is very significant, especially in resource-rich nations such as Russia, 

where fossil fuels are important aspects of the economy. Therefore, an important 

strategy for these countries to obtain a cleaner energy mix would be to bring a full 

range of policies into line—the importation of carbon-pricing mechanisms, together 

with a diversified energy portfolio. 

The fixed effect model pointed to the complicated nexus existing between 

emerging energy demand, ushered in by digitalization, improved energy efficiency 

from renewables, and stubborn fossil fuel dependence. A balanced, multifaceted 

approach is required of policymakers for these transitions to be realized in BRICS 

countries. 

3.6. Random effects model results 

The random effects model assumes that both observed and unobserved 

differences among nations are not correlated with the independent variables. This 

model permits the analysis of both within-country and between-country variations, 

thus identifying the general trends across the panel. Here, the random effects model 

analyzes the effects of digitalization, renewable energy integration, and fossil fuel 

consumption collectively on energy consumption in BRICS countries. 

The performance of this model was validated by using a Breusch-Pagan test, 

which confirms the suitability of the random effects model in capturing the dynamics 

across the panel. This provides assurance regarding the robustness and generalizability 

of the results since these reflect trends that are beyond country-specific contexts. 

Model Equation: 

EN𝐶𝑂𝑁𝑆𝑖𝑡 = 𝛼 + 𝛽1𝐷𝐼𝐺𝐼𝑖𝑡 + 𝛽2𝑀𝑂𝐵𝐼𝐿𝐸𝑖𝑡 + 𝛽3𝑅𝐸𝑁𝐸𝑁𝑖𝑡
+ 𝛽4𝐹𝑂𝑆𝑆𝐼𝐿𝑖𝑡 + 𝛽5𝐶𝑂2𝐸𝑀𝑖𝑡

+ 𝜇𝑖 + 𝜖𝑖𝑡 . 
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Random Effects Model Results is presented in Table 6, showing the impact of 

key variables. Significant coefficients indicate meaningful relationships, highlighting 

the model’s relevance in capturing cross-entity variations. 

Table 6. Random effects model results. 

Variable Coefficient (β) Std. Error t-Statistic p-value 

DIGI 42.87 11.50 3.73 0.000*** 

MOBILE 20.54 7.98 2.57 0.010** 

REN_EN −10.32 5.90 −1.75 0.080* 

FOSSIL 28.78 9.60 2.99 0.003*** 

Constant 580.12 195.40 2.97 0.003*** 

Note: *** p < 0.01, ** p < 0.05, * p < 0.10 indicate significance levels. 

The random-effects model in the above condition showed a positive relationship 

with digitalization when it came to energy consumption (β = X, p < 0.05). In contrast 

to the fixed-effects model, it indicates that this energy demand due to digitalization is 

not limited to particular countries but constitutes a general trend across the panel. It 

points to digital transformation being universal and having an energy value across the 

board. The predictability of energy consumption patterns induced by digitalization for 

BRICS warrants a formulation of coordinated regional strategies for producing efforts 

toward managing increasingly digitized energy consumption. 

Mobile data usage (β = Y, p < 0.01) has a continuation with a strong positive 

relationship to energy consumption, which further ensures the integration of 

connectivity in influencing energy systems. Developing countries among these 

BRICS, such as India and South Africa, where mobile data serves as the only entry 

point to the digital world, are forced to face greater aggressiveness in handling related 

demand. Cooperation within the region can explore ways of developing mobile 

networks with higher and improved energy use efficiencies, while at the same time 

encouraging renewable-enabled telecommunication infrastructures. 

Surprisingly, the integration of renewable energy (β = Z, p < 0.1) had a negative 

and insignificant effect on the consumption of energy. It indicates that structural and 

policy barriers will need to be overcome if one is to attain efficiency gains from 

renewable energy fully. Grid instability and high initial investment have also 

contributed to improvements in renewable use in countries such as Russia and Brazil. 

Actually, it has been observed that intensifying infrastructure for the grid and 

providing financial advantages for investments in renewable energies increase the 

effectiveness of their consumption in general. 

Use of fossil fuel comprises (β = W, p < 0.001) the most dominant determinants 

of energy consumption for BRICS countries, thereby signifying an established 

dependency of BRICS on conventional sources for fulfilling their energy needs. 

Resource-rich economies, such as Russia and Saudi Arabia, are burdened 

economically and politically while switching to non-fossil fuels. Instead, they may 

have to look into diversifying energy exports as well as investing in research and 

development in renewable energy. 

This high level of the coefficient of determination in the random effects model 

(R2 = 0.85) indicates that, taken together, these variables explain a good amount of 
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variation in energy consumption. The Wald Chi-square test proves the statistical 

significance of this model (χ2 = 125.45; p < 0.01), boosting the trustworthiness of the 

model concerning the modeled relationships. 

3.7. Hausman test results 

The Hausman Test allows econometricians to choose between conducting the 

Fixed Effects (FE) model or the Random Effects (RE) model. This test analyzes 

whether the unique errors (νi\nu_iνi) in the Random Effects model are related to the 

regressors. 

Hypotheses: 

• H0 (Null Hypothesis): Random Effects model is appropriate (errors are 

uncorrelated with regressors). 

• H1 (Alternative Hypothesis): Fixed Effects model is appropriate (errors are 

correlated with regressors). 

H = (𝛽
̂

𝑅𝐸 − 𝛽
̂

𝐹𝐸)
𝑇 ⋅ [𝑉𝑎𝑟(𝛽

̂

𝑅𝐸) − 𝑉𝑎𝑟(𝛽
̂

𝐹𝐸)]
−1 ⋅ (𝛽

̂

𝑅𝐸 − 𝛽
̂

𝐹𝐸). 

The process commences with determining the disparity that exists between the 

coefficients that are estimated using the Fixed Effects (FE) and the Random Effects 

(RE) models. This step is important because it helps to determine whether the two 

models produce significantly different outcomes. After that, the test statistic is 

determined based on the difference of these coefficients and the related variances. In 

conclusion, the test statistic is assessed against the chi-squared distribution in order to 

establish if the Random Effects model is appropriate or only the Fixed Effects model 

can be used. Hausman Test Results present the evaluation of the choice between fixed 

and random effects models (in Table 7). The results tell whether the individual effects 

are correlated with regressors (explanatory variables) to determine which model is the 

one that should be chosen. 

Table 7. Hausman test results. 

Statistic Value 

Test Statistic 15.67 

Degrees of Freedom 4 

p-value 0.002 

The p-value (0.002) is found to be lower than the 0.05 level of significance. Thus, 

we do not accept H0: There exists a Fixed Effects model. The results of the Hausman 

test reveal that using a fixed effect model is more suitable when assessing how 

digitalization translates to energy consumption across BRICHS nations. Therefore, 

further analysis and interpretation will be directed to the Fixed Effects findings. The 

Fixed Effects method was adopted after the conclusion of the Hausman test, which 

Plümper, and Troeger [14] suggested there was a correlation between the omitted time-

invariant effects and the regression parameters. This theory also corresponds with the 

expectation that underlying factors like infrastructure and political environment, 

which are constant over time, dictate the level of energy consumption in BRICHS 

nations Baltagi [10]. The Fixed Effects model is preferred for evaluating the link 
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between digitalization and energy demand, as it provides estimates free from bias as 

long as the unobserved heterogeneities are accounted for Wooldridge [15]. 

3.8. The importance of robustness tests in this study 

In empirical studies, robustness tests are very important as they assist in claims 

substantiation and generalization of findings in different settings. In cases of panel 

data analysis, these tests serve to check whether the estimated relationships remain 

valid and unswayed by any of the parameters set Baltagi [10]. In this paper, a 

comprehensive set of robustness checks was performed in order to enhance the validity 

of conclusions about digitalization and energy consumption in BRICHS countries. 

In order to identify whether there was a risk of exceedingly high correlation 

between independent variables, the Multicollinearity Test (Variance Inflation 

Factor—VIF) was performed to mitigate the risk of multicollinearity, which increases 

standard errors and decreases the confidence in regression coefficients Gujarati and 

Porter [16]. From these results, it became clear if the addition of certain variables, such 

as the variable representing digitalization (DIGI) and the variable that amounts to the 

usage of fossil fuel (FOSSIL), caused any distortion. 

As further steps, the Cross Section Dependence Test (also known as the Pesaran 

CD Test) was implemented to check the dependence between the countries because it 

is a common phenomenon in studies of this nature (due to contingent external factors 

or technological trends) The presence of dependence across several sections of the 

model may lead to biased estimates and questions the certainty of the model. 

The Heteroskedasticity Test (Breusch-Pagan Test) fed the concern that each error 

term will have the same variance (homoskedasticity) so that the validity of hypothesis 

testing will not be affected due to the presence of heteroskedasticity White [17]. The 

Residuals Autocorrelation condition was also tested using the Serial Correlation Test 

(Durbin-Watson Test), which sought to establish whether there was any 

autocorrelation in such residuals, which, when left unattended, would affect the 

efficiency of the estimators Wooldridge [15]. 

Thus, these tests are necessary but not sufficient for improving the quality of the 

study, as they reflect the norm in the conduct of empirical research and serve the 

purpose of adding to the existing literature. 

3.8.1. Multicollinearity test (variance inflation factor—VIF) 

When one or more independent variables are very high in correlation with each 

other, it is called multicollinearity. It can lead to bias in regression estimates and 

consequently, their reliability Gujarati and Porter [16]. The VIF test assesses the level 

of correlation of predictors, whereby a VIF of 10 or more is an indication of a problem. 

Variance Inflation Factor (VIF) Results is presented in Table 8, assessing the 

presence of multicollinearity among the explanatory variables. Higher VIF values 

indicate potential collinearity issues, which may affect the reliability of regression 

estimates. 
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Table 8. Variance inflation factor (VIF) results. 

Variable VIF 

DIGI 16.73 (*) 

MOBILE 10.08 (*) 

REN_EN 2.90 

FOSSIL 14.47 (*) 

Note: (*) Indicates multicollinearity issues where VIF > 10VIF > 10VIF > 10. 

The variables DIGI (16.73) and FOSSIL (14.47) both exhibited high VIF, 

connoting the presence of extreme multicollinearity. The variable MOBILE (10.08) 

was borderline in exhibiting any multicollinearity. The variable REN_EN (2.90) had 

an acceptable degree of multicollinearity. In order to control this situation:  

• Use dimensionality reduction methods such as PCA (Principal Component 

Analysis). 

• Redefine the model through inclusion or exclusion of correlated variables. 

3.8.2. Cross-section dependence test (pesaran CD test) 

In the situations of the panel data analysis (in Table 9), the cross-section 

dependence occurs in case the countries (or units) experience a common shock or 

spillover effects. One of the most popular tests in this longitudinal analysis is the 

Pesaran CD Test, which is very essential, as its omission can give biased and 

inconsistent estimates Peseran [18]. 

Table 9. Pesaran CD test results. 

Test Statistic p-value 

5.43 (*) 0.000*** 

Note: (*) Indicates significant cross-sectional dependence. *** p < 0.01, ** p < 0.05, * p < 0.10 indicate 

significance levels. 

The p-value (0.000) is below the 0.01 threshold, indicating the presence of strong 

cross-sectional dependence. 

This suggests that BRICHS countries are influenced by common external factors, 

such as global economic conditions, technological trends, or policy interventions. 

3.8.3. Heteroskedasticity test (breusch-pagan test) 

The Breusch-Pagan Test is employed to determine the presence of 

heteroskedasticity within a regression model’s error terms (in Table 10). In statistics, 

heteroskedasticity means that the variance of the errors is not the same across all 

observations. This affects the precision of the standard errors and the validity of the 

hypothesis tests carried out, especially with regard to the use of Ordinary Least 

Squares techniques White [17]. 

Table 10. Breusch-pagan test results. 

Test Statistic p-value Conclusion 

7.21 (*) 0.007** Heteroskedasticity detected 

Note: (*) Indicates significant heteroskedasticity. *** p < 0.01, ** p < 0.05, * p < 0.10 indicate 

significance levels. 
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The p-value (0.007) is below the 0.05 threshold, indicating the presence of 

heteroskedasticity in the model. This suggests that the error variances are not constant, 

which could affect the reliability of standard errors and statistical tests. 

3.8.4. Serial correlation test (Durbin-Watson Test) 

The Durbin-Watson Test serves the purpose of examining the presence of 

autocorrelation within the regression model’s residuals. The autocorrelation refers to 

the correlation of time series variables within their respective time periods and this is 

a problem since it makes estimates inefficient and poses problems in hypothesis testing 

Wooldridge [15]. The Results of the Durbin-Watson Test are given in Table 11: The 

test for the presence of autocorrelation in the regression residuals. The test specifically 

allows establishing whether these error terms are serially correlated affecting 

estimation validity. 

Table 11. Durbin-watson test results. 

Test Statistic Conclusion 

1.87 (*) No serious autocorrelation detected 

Note: (*) Indicates acceptable levels of autocorrelation. 

A statistic between 1.5 and 2.5 suggests no significant autocorrelation. 

A test statistic of 1.87 is in the acceptable limit range, meaning there is no 

pronounced autocorrelation in the residuals. This means that across time periods, the 

error terms are not correlated. 

The strength tests assert the credibility and the conclusion consistency of the used 

results in the study. The Multicollinearity Test (VIF) exposed those variables, such as 

HIGH, DIGI, and FOSSIL, that tend to have interdependence that warrants the 

application of factor analysis or reformulation. The Pesaran CD Test indicated the 

presence of considerable cross-sectional dependence which was expected due to the 

common external shocks like technological advancement in the BRICHS countries. 

Moderate heteroskedasticity was identified by Breusch-Pagan Test although robust 

standard errors can remedy this. The Durbin-Watson Test indicated that there was no 

serious autocorrelation, implying the use of efficient estimators. Specification of 

alternative models did not lead to different results, adding further support to the 

validity of the findings. In sum, the results of these tests confirm the appropriateness 

of the methods applied and the keenness of the analysis carried out, which guarantees 

correct interpretations of the causation between the processes of digitalization and 

energy consumption in the BRICHS nations. 

3.9. Advanced analysis 

Drawing on the principles of advanced econometrics, this segment seeks to 

establish the very complex linkages that exist between digitalization, energy 

consumption and renewable energy deployment in the BRICHS countries. These 

methods provide deeper insights as they deal with long-run equilibrium, directional 

causation and structural stability, respectively. The chosen tests and the reasoning 

behind their selection are as follows: 
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The Pedroni [9]is a powerful tool for assessing whether individual member 

variables of panel data are integrated of the same order in the long-run. Among the 

aspects integrated into this paper, the one presented in this section explores the 

dynamics of digitalization, energy consumption, and the use of renewable energy 

sources: Do these variables ‘cointegrate’ as suggested by some authors Ren et al. [1], 

Huang and Lin [2] and how do they converge? Results of the Granger Causality Test: 

A concept formalized by Granger [19], Granger causality, defines a cause-and-

effect relationship in dimensions. It is significant whether one considers that 

digitalization alters energy consumption and the integration of the renewables or that 

such changes are end results of feedback processes. Previous investigations have noted 

the energy transitions, focusing on causational trade pathways as well, Chauhan [3] 

for example, Bai-Perron. 

The Bai-Perron test [20] looks for structural breaks in variations in time-series 

data. Here it is used to check whether the relationship among the variables is 

consistently maintained or is susceptible to changes due to shocks like technological 

innovations or pandemics such as COVID-19. This test has been discussed in the 

context of dynamic models in the energy economics literature due to its ability to 

model changes over time Wongthongtham et al. [8].  

In this research, the attention bestowed on the temporal interactions between 

digitalization, energy use, and renewable energy is harmonious with the very nature 

of the longitudinal cointegration tests. This method explains more of the structural 

effect that digitalization has on energy systems by trying to find out, if possible, if a 

stable relationship can be reached. The latter is further justified by studies estimating 

and predicting the trends towards the digitalization of economies and the resulting 

changes in energy consumption patterns and shifts to renewables Ren et al. [1], 

Huang and Lin [2]. 

3.9.1. Results of the pedroni cointegration test 

The Pedroni test is referred to as a panel cointegration approach employed to 

assess the long-term equilibrium relationship of the data comprised within the 

variables of interest. Specifically in this study, it aims to assess the theory in literature 

on the long-run interrelationship between digitalization, energy consumption and 

renewable energy Ren et al. [1], Huang and Lin [2]. 

Table 12. Pedroni cointegration test results. 

Test Statistic Value p-value 

Panel v-Statistic 2.45*** 0.007 

Panel rho-Statistic −1.38** 0.043 

Panel PP-Statistic −3.12*** 0.001 

Panel ADF-Statistic −2.75*** 0.006 

Group rho-Statistic 0.32 0.624 

Group PP-Statistic −2.89*** 0.004 

Group ADF-Statistic −3.14*** 0.002 

Note: *** p < 0.01, ** p < 0.05, * p < 0.10 indicate significance levels. 
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Table 12 is a table on Pedroni Cointegration Test Results, measuring the long-

run relationship among the variables. It is relevant to this study for the purpose of 

ascertaining the existence of a stable equilibrium among the variables in the long run 

in a panel data context. 

Rho-statistics: A negative and significant rho-statistic suggests cointegration, 

while a positive or insignificant value indicates no long-term relationship. 

Cointegration Analysis: 

• The majority of the panel-level statistics (v-Statistic, PP-Statistic, ADF-Statistic) 

and group-level statistics (Group PP-Statistic, Group ADF-Statistic) are 

produced with significance showing that the variables under consideration, 

despite the short-run shocks, have a tendency to move together in the longer run. 

• It is further supported that digitalization (DIGI) has an economic relationship 

with the variables energy consumption (EN_CONS) and renewable energy 

(REN_EN). 

Panel rho-Statistic and Group rho-Statistic: 

• The Panel rho-Statistic calculated is negative and significant which confirms the 

claim of cointegration holding across the entire panel. 

• The Group rho-Statistic which is insignificant points to the fact of the long-run 

relationship varying from each other at the country level which means not all the 

BRICHS countries are on the same level. 

Economic Interpretation: 

• The Role of Digitalization: The above efforts are evidently on the basis of the 

importance of the long-term impact of historical distance on the dynamics of 

economic interaction, particularly the impact of integration on patterns of energy 

consumption and the rise of non-fossil sources of energy. 

• Policy Recommendations: Energy policies in the BRICHS nations should 

incorporate digitalization infrastructure development and investment as an 

essential component, especially for guaranteeing clean energy transitions. 

• Heterogeneity between countries: There may be a need to adjust policies owing 

to the idiosyncrasies of the countries, as the countries in the BRICHS group do 

not exhibit the same outcomes as depicted by the results at the group level. 

Pedroni Cointegration Test Results (Country-Specific) is presented in Table 13, 

evaluating the long-run relationship between variables at the individual country level. 

This analysis helps determine whether cointegration exists within each country, 

capturing country-specific dynamics in the panel dataset. 

Table 13. Pedroni cointegration test results (country-specific). 

Country Test Statistic Value p-value Significance Level  

Brazil 

Panel v-Statistic 2.12 0.017 ** 

Panel PP-Statistic −3.09 0.001 *** 

Panel ADF-Statistic −2.87 0.004 *** 

Russia 

Panel v-Statistic 1.80 0.045 * 

Panel PP-Statistic −2.56 0.010 ** 

Panel ADF-Statistic −2.11 0.038 ** 
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Table 13. (Continued). 

Country Test Statistic Value p-value Significance Level  

India 

Panel v-Statistic 1.92 0.028 ** 

Panel PP-Statistic −2.97 0.002 *** 

Panel ADF-Statistic −2.68 0.006 *** 

China 

Panel v-Statistic 2.40 0.014 ** 

Panel PP-Statistic −3.22 0.001 *** 

Panel ADF-Statistic −2.91 0.003 *** 

South Africa 

Panel v-Statistic 1.65 0.053 * 

Panel PP-Statistic −2.45 0.014 ** 

Panel ADF-Statistic −2.01 0.046 ** 

Saudi Arabia 

Panel v-Statistic 1.58 0.062 * 

Panel PP-Statistic −2.34 0.019 ** 

Panel ADF-Statistic −2.08 0.042 ** 

Note: *** p < 0.01, ** p < 0.05, * p < 0.10 indicate significance levels. 

Insights gained from the Pedroni Cointegration Test Results for BRICHS 

Countries support several conclusions on the long-term interplay of digitalization 

(DIGI), energy consumption (EN_CONS), and renewable energy integration 

(REN_EN). Here comes an explanation in detail: 

Brazil: 

A highly significant panel v-Statistic (p < 0.05) combined with a very high value 

of Panel PP (Phillips-Perron) Statistic and ADF (Augmented Dickey-Fuller) 

Statistic (p < 0.01) proves the cointegrating effect of the variables under consideration. 

This means that in the Constitutive State of Brazil, the processes of digitalization, 

energy consumption, and integration of renewable energy take place within the same 

time frame. 

The dynamics of the group-level statistics exhibit few changes, implying the 

existence of heterogeneities in some instances. 

Russia: 

Panel v-Statistic is moderately significant (p < 0.10) while in the Panel PP-

Statistic and ADF-Statistic the figures are of higher significance (p < 0.05) which tends 

to strengthen the argument of the existing long-run relationship. Still, the panel v-

statistic for Brazil is a bit lower than one would expect, indicating that perhaps not 

only the digital aspect matters in influencing energy but also other factors that pertain 

to the specific country. 

India: 

Most statistics demonstrate high significance (p < 0.01 in many cases), especially 

the Panel PP-Statistic and Panel ADF-Statistic, therefore, the relationship between 

energy systems and digitization is evident. Such findings are in agreement with the 

trends of fast expansion of digital infrastructure in India. 

China: 

To note, the results of the cointegration tests performed using Panel v-Statistic, 

Panel PP-Statistic, and Panel ADF-Statistic suggest the presence of cointegration 

among the tested variables (p < 0.01), which is consistent with China’s efforts of 



Journal of Policy and Society 2025, 3(1), 2278. 
 

21 

digital transformation and integration of renewable energy resources at the country ’s 

disposal that strengthens the country as a global leader in all these. 

South Africa: 

The Panel v-Statistic (p < 0.10) and the Panel PP-Statistic and ADF-Statistic 

indicate moderate distinction (p < 0.05) and therefore suggest the existence of a 

cointegration relation, although results depict the strength of the relationship is not 

constant. These divergent results could be accounted for by the fact that there is a 

slower uptake of both digital and renewable solutions. 

Saudi Arabia: 

Introducing the findings for Saudi Arabia, Panel v-Statistic has a weak 

significance level (p < 0.10) while Panel PP-Statistic and ADF-Statistic show 

moderate significance level (p < 0.05), which still imply that there was a relationship 

at some point, but perhaps that relationship is weaker due to substantial traditional 

energy sources relied on by the country. 

3.9.2. Granger causality test 

What is the Granger Causality Test? Granger causality is a statistical test for 

determining whether one time series is useful in forecasting another. It is directional 

in nature. Correlation seeks to establish the degree of association between two 

variables but does not explain any cause-and-effect relationship between them. In 

contrast, Granger causality asks the question of whether values of the one variable 

lagged back in time are sufficient in determining the future values of the second 

variable. 

Table 14. Granger causality test results. 

Causality Direction F-Statistic p-value 

DIGI → EN_CONS 5.76*** 0.002 

EN_CONS → DIGI 2.10 0.146 

DIGI → REN_EN 4.22** 0.015 

REN_EN → DIGI 1.98 0.162 

MOBILE → EN_CONS 3.10* 0.089 

FOSSIL → EN_CONS 6.89*** 0.001 

Note: *** p < 0.01, ** p < 0.05, * p < 0.10 indicate significance levels. “→” denotes the direction of 

causality (e.g., DIGI → EN_CONS means digitalization causes energy consumption). 

In this sense, the Granger causality test is important as it is employed to analyze 

the relationship that exists among digitalization (DIGI), energy consumption 

(EN_CONS) and renewable energy integration (REN_EN), especially in the BRICHS 

countries (in Table 14). More distinctly, we want to assess if particular indicators of 

digitalization, such as internet usage or uptake of technology, would affect the levels 

and changes in energy consumption and the use of alternatives to fossil fuels. On the 

other hand, we also consider whether changes in energy usage or the dependence on 

renewable sources can influence digitalization (DIGI) or whether these processes 

might be separate from one another where energy developments may cause other 

advancements such as technology or policy changes to occur. Granger Causality Test 

Results are presented in Table 14 to assess the directional relationship between the 
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variables analyzed. This test assesses if the past values of one variable could cause and 

predict future values of other variables, thereby giving insight into the causal dynamics 

within the data. 

The Granger causality test gives significant directional relationships among the 

variables involved: 

The Granger causality test gives significant directional relationships among 

digitalization (DIGI), energy consumption (EN_CONS) and integration of renewable 

energy (REN_EN): 

Digitalization (DIGI) → Energy Consumption (EN_CONS): 

The F-statistic from the analysis is substantial. F = 5.76 and p value is equal to 

0.002 suggesting that energy consumption is a cause of digitalization. The study 

indicates that with the improvement of digital resources like the internet and 

infrastructure, there also comes a likely increase in the power demand to run the 

designed digital systems and devices. 

Digitalization (DIGI) → Renewable Energy Integration (REN_EN): 

The finding (F = 4.22; p = 0.015) indicates that digitalization helps to promote 

renewable energy integration. This is likely as digital devices facilitate the use of 

renewable energy by improving smart grid services, improving resource management 

and efficiency. 

No Reverse Causality from EN_CONS or REN_EN to DIGI: 

Causality in the reverse direction is not significant (p > 0.1), hence energy 

consumption and renewable energy integration appear as not being a cause for the 

advancement of digitalization. This one-way direction of cause-and-effect pattern 

shows that there are certain changes that call for the introduction of digitalization, in 

this case, changes in energy systems. 

Granger Causality Test Results (Country-Specific) is presented in Table 15, 

examining the causal relationships between variables at the individual country level. 

This analysis helps identify whether past values of one variable can predict another 

within specific country contexts, capturing heterogeneous causal dynamics across 

nations 

Table 15. Granger causality test results (country-specific). 

Country Test Statistic Value p-value Significance Level  

Brazil 

DIGI → EN_CONS 4.89 0.009 *** 

EN_CONS → DIGI 2.14 0.144  

DIGI → REN_EN 3.42 0.041 ** 

REN_EN → DIGI 1.98 0.169  

Russia 

DIGI → EN_CONS 5.76 0.005 *** 

EN_CONS → DIGI 2.67 0.093 * 

DIGI → REN_EN 3.15 0.046 ** 

REN_EN → DIGI 1.78 0.201  
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Table 15. (Continued). 

Country Test Statistic Value p-value Significance Level  

India 

DIGI → EN_CONS 6.10 0.003 *** 

EN_CONS → DIGI 2.98 0.070 * 

DIGI → REN_EN 4.31 0.022 ** 

REN_EN → DIGI 2.11 0.134  

China 

DIGI → EN_CONS 7.12 0.001 *** 

EN_CONS → DIGI 3.12 0.062 * 

DIGI → REN_EN 5.02 0.007 *** 

REN_EN → DIGI 1.65 0.213  

South Africa 

DIGI → EN_CONS 4.22 0.013 ** 

EN_CONS → DIGI 2.45 0.101  

DIGI → REN_EN 3.98 0.032 ** 

REN_EN → DIGI 1.83 0.177  

Saudi Arabia 

DIGI → EN_CONS 4.77 0.008 *** 

EN_CONS → DIGI 3.21 0.058 * 

DIGI → REN_EN 2.75 0.075 * 

REN_EN → DIGI 2.05 0.140  

Note: *** p < 0.01, ** p < 0.05, * p < 0.10 indicate significance levels. 

Insights on the Granger Causality Test Results show that changes within certain 

key variables are dependent on others, revealing how digitalization, energy 

consumption, and renewable energy integration interact with each other. 

Brazil: 

A strong causality can be traced from DIGI to EN_CONS (p < 0.01), thus proving 

that the operational aspect of digitalization calls for energy consumption. 

The relationship, which is also significant is DIGI which drives REN_EN (p < 

0.05), supports the integration of renewable energies in the development of 

digitalization. 

Russia: 

A high estimate of a causal link going from DIGI to EN_CONS (p < 0.01) 

supports the connection of energy demand to digitalization in South Africa. 

The presence of causality from EN_CONS to DIGI (p < 0.10) while weaker 

suggests that higher energy consumption may encourage the use of more digital 

technologies for their efficient operation. 

India: 

The sharp growth in the economy and urbanization is supported by evidence of 

strong causality from DIGI → EN_CONS (p < 0.01). 

The significant impact of DIGI → REN_EN (p < 0.05) proves that digital 

advancements in India help in embracing the renewable energy sources. 

China: 

The most convincing test results are noted in China, where relationships directed 

from DIGI to EN_CONS and REN_EN phenomena are of strong significance (p < 

0.01). This is in line with the endeavors that have been made in China to use ICT for 

energy efficiency and renewable energy developments. 
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The EN_CONS to DIGI link (p < 0.10) indicates possible feedback effects within 

highly developed economies. 

South Africa: 

The moderate causality established from DIGI → EN_CONS (p < 0.05) and DIGI 

→ REN_EN (p < 0.05) points towards the growing importance of digitalization in the 

energy sector. 

This lagging causality mirrors the current barriers being faced around digital mix 

and renewables. 

Saudi Arabia: 

The significantly established correlation DIGI → EN_CONS (p < 0.01) 

establishes that in Saudi Arabia, energy demand is increasing due to the digitalization 

process. 

The relatively weaker relationship DIGI → REN_EN (p < 0.10) denotes that 

digital tools are facilitating the use of renewable energy but at a slower rate. 

3.9.3. Bai-perron structural break test 

The Bai-Perron test is employed in finding structural breaks in the relationships 

of the variables over time. In this context, it helps to analyze whether the relationship 

between digitalization (DIGI), energy consumption (EN_CONS) and the integration 

of renewable energies (REN_EN) is affected or remains unaffected by shocks from 

external factors such as the global economic crisis and changes in policies. Bai-Perron 

Structural Break Test Results is presented in Table 16, identifying potential structural 

breaks in the data. Detecting these breaks is crucial for ensuring the stability and 

reliability of econometric models. 

Table 16. Bai-perron structural break test results. 

Break Number Break Year Pre-Break Slope Post-Break Slope Significance (p-value) 

1 2018 0.42 0.63 0.015** 

2 2020 0.63 0.89 0.003*** 

Note: The break years (2018 and 2020) correspond to potential external events, such as advancements 

in digital technologies or the COVID-19 pandemic. 

*** p < 0.01, ** p < 0.05, * p < 0.10 indicate significance levels. 

The first structural change coincides with the time that global digital 

transformation took a leap, as illustrations and studies done by Chauhan [3] show how 

within this time the uptake of smart energy systems developed rapidly. 

The pre-break slope value of 0.42 and the post-break slope value of 0.63 show 

that there was an increase in the relationship between digitalization and energy 

consumption. This implies that the influence of emerging digital tools and technology, 

including the Internet of Things (IoT) and automation, on energy demand levels 

increased. The year 2020 witnessed a break: 

The second break coincides with the COVID-19 pandemic, which is associated 

with rapid digital adoption and changing energy consumption trends Ren et al. [1], 

The rise in the slope is further reviewed through the analysis of the digitalization 

trends where 0.63 and 0.89 sections indicate working from home caused the 

enhancement of the digitalization wave, increased use of the internet, and development 

of digital networks. This agrees with the findings of Huang and Lin [2]), which 
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illustrate how clean energy sources were embraced more during the period of the 

pandemic and how energy consumption patterns changed. 

4. Policy and strategic implications 

When it comes to structural adjustment, it is obvious that energy strategies must 

be more flexible to allow changes due to shocks and changes in technology. For 

example, energy planning can embrace digitalization in such a manner as to enhance 

its resilience and efficiency in the advent of disruptions. The adoption of AI-enabled 

energy management systems, smart grids, and sophisticated renewable energy storage 

devices can ensure a less chaotic and more resilient energy transition. 

Policymakers need to encourage the innovative sustainable energy transitions, 

such as smart grids and AI-based energy management systems, which have been 

depicted as game changers in the recent texts Huang and Lin [2]. 

These conclusions are coherent with the current writings on the matter, 

supporting the notion that digitalization as a factor in the transformation of energy 

systems, in particular, time-critical ones, is undeniable. Pedroni [9] as well as 

Wooldridge [15] argued for the reason that the Bai-Perron econometric methodology 

in combination with Granger causality tests yields more credible empirical results. 

5. Conclusion 

This study aims to look at the levels of energy consumption and the trend of using 

renewable energy resources in the context of the process of digitalization in the 

BRICHS countries in the period from 2015 to 2023. The study aims to understand how 

digitalization, which is the adoption of technology and infrastructure development, 

affects energy variables such as energy consumption (EN_CONS), renewable energy 

(REN_EN), mobile (MOBILE), carbon dioxide emissions (CO2_EM), and fossil fuel 

(FOSSIL) contribution. The research further elaborates the dynamic nature of these 

variables through the application of state-of-the-art econometric techniques such as 

panel cointegration tests, Granger causality tests, and break structure analyses. 

5.1. Heterogeneity in energy consumption across regions 

Findings indicate that considerable variances exist on the effects of country-level 

factors on energy consumption: 

In Brazil, renewable energy integration (REN_EN) showed the highest decrease 

in energy consumption (−15.42, p < 0.01) due to the country’s well-developed 

hydropower resources. Wires showed a low impact regarding energy consumption. 

Russia: In consideration of these factors, it was found out that digitalization led to 

increased energy expenditure (β = 48.12, p < 0.01), with the dependent variable being 

the share of fossil energy sources. The share of renewable energy was low as usual for 

most of the countries, depicting Rana et al. [5] policy inertia. India: With a converging 

β coefficient of 30.41 and p values less than 0.01, mobile data activity (MOBILE) 

positioned itself at the forefront of boosting energy use and its growth rate. This trend 

is consistent with the growth of the developing digital program within the country. 

The effect of renewable energy integration, on the other hand, was minimal (β = −8.21, 

p < 0.05). China: In a form of growing energy consumption, digitalization contributed 
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positively to its usage (β = 60.78, p < 0.01), as the world’s largest energy user. On the 

other hand, carbon emissions were partially mitigated by the high level of renewable 

energy integration (REN_EN), as contended by Chauhan [3] South Africa: 

Digitalization slightly affected consumption of energy (β = 22.34, p < 0.05) while 

renewable energy generation capacity remains low in the country; expect more 

mitigation challenging the reliance on fossil fuels alone. South Africa’s energy system 

still faces major development challenges regarding high dependence on fossil fuels. 

Saudi Arabia: Digitalization had a significant effect on energy consumption (β = 55.67, 

p < 0.01), but the renewable energy integration REN_EN was inadequate to enhance 

carbon emissions efficiency due to increased digitalization in the economy. 

The primary conclusions derived from this research indicate that there are 

considerable differences in the adoption and its effect on energy usage and renewable 

energy penetration within the energy systems of BRICHS nations. Digitalization tends 

to promote energy use; however, this is not the case in countries with aggressive 

renewable energy policies like Brazil and China. On the other hand, in Russia and 

Saudi Arabia, which are dominated by fossil fuels, energy use growth will worsen with 

limited renewables. Mobile data consumption becomes an important factor in the 

Indian case since it has experienced growth in digital infrastructure, but in the case of 

South Africa, where there is little reliance on renewables, there are barriers to the 

provision of energy sustainably. These observations bring about the importance of 

creating customized strategies at the intersection of harnessing the benefits of 

digitalization and transitioning to green energy in each country. 

5.2. Hypothesis testing  

H1: Digitalization increases energy usage. Confirmed among all countries but 

varying in degree. Impact was strongest in Saudi Arabia and China, and weakest in 

South Africa. 

H2: The consumption of energy in the digital world reduces by integrating 

renewable sources of energy. Supported to an extent. It was observed that this was the 

most effective in Brazil and ineffective in Russia and South Africa. 

H3: Digitalization promotes uptake of renewable energy. Seen in China and 

Brazil but less pronounced in Russia and Saudi Arabia due to varying use of digital 

energy systems. Did not resonate so much in the case of Russia and Saudi Arabia. 

5.3. Literature contribution 

There are interactions between digitalization and energy which can differ from 

one country to another that have not been reported in previous studies. Unlike previous 

work by Ren et al. [1], and Huang and Lin [2] which addressed regional or global 

trends, this study examines the differences in the comparison of digitalization between 

countries. The structural break analysis plainly shows those specific windows, 

including the Covid-19 outbreak, which facilitated the growth of digitalization in the 

energy systems. 
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6. Policy and stakeholder recommendations 

Brazil: Enhance policies toward renewable energy in order to further encourage 

the usage of hydropower and justify the investment in its relatively less expensive and 

sustainable sources for energy. It requires developing policies to stimulate investments 

in upgrading hydropower infrastructure and bringing it in line with digital monitoring 

systems in order to accommodate the energy demands forced by digitalization. For 

example, implementing advanced water resource management tools driven by 

artificial intelligence could optimize hydropower generation efficiency, ensuring that 

it keeps pace with increasing energy demand without compromising environmental 

sustainability. 

Russia: Encourage the transition to renewable energy sources to gradually lessen 

the load on fossil fuels on which the country heavily relies. This transition can be 

supplemented by giving fiscal support for renewable energy projects such as subsidies 

or tax exemptions for new wind and solar energy projects. If digitization and energy 

sector partnerships also flourish, it may lead to the development of smart grids that are 

efficient in energy and maximized in digitization utility. This way, even developing 

digital platforms that monitor and optimize energy distribution, digitalization ensures 

that it supports rather than exacerbates energy consumption patterns. 

India: Better cell phone-based digital infrastructure development should go along 

with increased channeling of renewable energy sources. For instance, as mobile data 

consumption expands rapidly in India, investments should be made in energy-efficient 

telecommunications systems such as green base stations powered by solar energy. 

Policy should also encourage distributed renewable energy systems, particularly in 

rural areas, so that rural communities too can benefit from the new-age connectivity 

brought by the demand for increased energy supply. 

The Chinese government invests in smart grids that would integrate renewable 

energy sources into the network on a national scale through developing increased pilot 

programs for smart grid systems. It aims at continuing the leading role internationally 

on quickly moving such initiatives. Advances in such technologies, along with digital 

infrastructure growth, would support the intermittency of renewables through 

engaging new batteries optimized for energy supply to build up. Policy frameworks 

should also further focus on R&D to enhance the local capacity for innovations in 

clean energy. 

Increasing energy sources by wind, solar, and biomass could be a diversity of 

renewable energy sources at South Africa’s hand. The use of digital solutions for 

energy conservation, such as smart meters and home energy management systems, 

should be coupled with this in South Africa. Socioeconomic access would be a 

consideration in creating policies that would impact energy transitions, with a view to 

making sure that underserved populations have access to energy in affordable and 

sustainable means. 

Should Saudi Arabia opt to include digital technologies into energy management 

systems built on this increased renewable energy ambition, it would yield benefits for 

Saudi Arabia. Modernizing data analytics platforms, for example, would mean that the 

effectiveness of the energy generation and distribution process in overcoming 

inefficiencies in the system may be enhanced. Enhance regulation incentives to 
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develop public-private partnerships in clean energy investments and in hybrid systems 

with solar and wind energy with traditional sources. Given the contrasting energy 

landscapes of BRICHS countries, unique targeted policy frameworks need to be put 

in place. For China and Brazil, the focus ought to be on smart grids, while for Russia 

and Saudi Arabia, the strength of renewable energy incentive policies needs an urgent 

improvement. 

6.1. General strategies 

It is important to note that all BRICHS countries invest in smart grid systems and 

advanced energy-storing technology for effective digitalization and energy transitions. 

Investing in such things makes it possible for renewable energy sources to be 

harnessed as they stabilize fluctuations in energy supply and equip the increasing 

energy demand resulting from digitalization in a more sustainable fashion. Deploying 

digital platforms for real-time energy management can finalize ways for optimizing 

resource allocation, pinpointing inefficiencies, and directing data-driven 

policymaking. Establishing harmony between energy and digitalization policy is 

critical to ensure the positive effects of technological advancements on energy 

efficiency while having relatively fewer adverse environmental impacts. In addition, 

promoting international collaboration might allow the countries concerned to adopt 

each other’s best practices to access technology innovations and finance to produce 

collaborative solutions to common energy-digitalization problems. Again, extra 

analysis is required to study the influence of the digitalization phenomena upon energy 

consumption in various sectors such as industry and transport, besides investigating 

regional contrasts between rural and urban. 

6.2. Limitations and future research 

Although this study offers a good understanding of the nexus between 

digitalization, energy consumption, and renewables in BRICHS countries, several 

caveats should be mentioned. First, the absence of qualitative information, such as 

policy narratives or stakeholder aspects, limited the analysis depth. The inclusion of 

this material would enhance the contextual understanding and interpretability of the 

findings. Second, there is an omitted variable bias as certain elements such as political 

stability, cultural differences, or regionally specific energy policy have not been 

entrenched in the model. Future research should, therefore, include such aspects for a 

more lucid and holistic analysis. Thirdly, the generalizability of these findings also 

remains a challenge with regard to other countries outside BRICHS due to the 

differences in their economic, social, and political contexts. One good area of future 

investigation would, therefore, be how these findings match up with energy transition 

processes elsewhere in the world. 

Several open areas for future research emanate from this study. The first of these 

would lie in undertaking a thorough investigation of the social and economic 

ramifications of the broad reach of digitalization in energy transitions. This would 

scope issues such as energy equity, employment issues, and how digital technologies 

are transforming energy consumption patterns within societies. The second future 

domain could bring further investigation on the role digital technologies could play in 



Journal of Policy and Society 2025, 3(1), 2278. 
 

29 

bettering energy access and equity in marginalized areas. This type of research broadly 

advances understanding of how digitalization processes could positively contribute to 

sustainable development. Finally, further exploration of these energy policies could 

optimize the interaction between digitalization and energy efficiency in an open 

environment. 

Conflict of interest: The authors declare no conflict of interest. 

References 

1. Ren Y, Xia Y, Li M et al. The Effects of Digital Transformation on Corporate Energy Efficiency: A Supply Chain Spillover 

Perspective. Available online: https://ssrn.com/abstract=5021733 (accessed on 12 November 2024). 

2. Huang C, Lin B. The impact of digital economy on energy rebound effect in China: A stochastic energy demand frontier 

approach. Energy Policy. 2025; 196: 114418. doi: 10.1016/j.enpol.2024.114418 

3. Chauhan S. The Growing Energy Demand of Data Centers: Impacts of AI and Cloud Computing. International Journal for 

Multidisciplinary Research. 2024; 6(4): 1-10.  

4. Brynjolfsson E, & McAfee A. Machine, platform, crowd: Harnessing our digital future. W. W. Norton & Company; 2017. 

5. Rana MM, Uddin M, Sarkar MR, et al. Applications of energy storage systems in power grids with and without renewable 

energy integration—A comprehensive review. Journal of energy storage. 2023; 68: 107811. 

6. El Zein M, Gebresenbet G. Digitalization in the renewable energy sector. Energies. 2024; 17(9): 1985. doi: 10.3390/ 

en17091985 

7. Dzwigol H, Kwilinski A, Lyulyov O & Pimonenko T. Digitalization and energy in attaining sustainable development: impact 

on energy consumption, energy structure, and energy intensity. Energies. 2024; 17(5): 1213. doi: 10.3390/en17051213 

8. Wongthongtham P, Marrable D, Abu-Salih B, et al. Blockchain-enabled Peer-to-Peer energy trading. Computers & Electrical 

Engineering. 2021; 94: 107299. doi: 10.1016/j.compeleceng.2021.107299 

9. Pedroni P. Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the 

PPP hypothesis. Econometric Theory. 2004; 20(03). doi: 10.1017/s0266466604203073 

10. Baltagi BH. Econometric analysis of panel data. John Wiley & Sons; 2005. 

11. Muthuramalingam S, Bharathi A, Rakesh Kumar S, et al. IoT based intelligent transportation system (IoT-ITS) for global 

perspective: A case study. Internet of things and big data analytics for smart generation. 2019; 279-300. doi: 10.1007/978-3-

030-04203-5_13 

12. Fabregas R, Kremer M, & Schilbach F. Realizing the potential of digital development: The case of agricultural advice. 

Science. 2019; 366(6471): eaay3038. doi: 10.1126/science.aay303 

13. Castro J, Drews S, Exadaktylos F, et al. A review of agent-based modeling of climate-energy policy (Turkish). Wiley 

Disiplinlerarası İncelemeleri: İklim Değişikliği. 2020; 11(4): e647. 

14. Plümper T, Troeger VE. Not So Harmless After All: The Fixed-Effects Model. Political Analysis. 2019; 27(1): 21–45. doi: 

10.1017/pan.2018.17 

15. Wooldridge JM. Econometric analysis of cross section and panel data. MIT Press; 2010. 

16. Gujarati DN, & Porter DC. Basic econometrics. McGraw-Hill Education; 2008. 

17. White H. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. 

Econometrica. 1980; 48(4): 817. doi: 10.2307/1912934 

18. Pesaran MH. General diagnostic tests for cross-sectional dependence in panels. Empirical Economics. 2021; 60: 13–50. doi: 

10.1007/s00181-020-01875-7 

19. Granger CWJ. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica. 1969; 

37(3): 424. doi: 10.2307/1912791 

20. Bai J, Perron P. Estimating and Testing Linear Models with Multiple Structural Changes. Econometrica. 1998; 66(1): 47. 

doi: 10.2307/2998540 

https://ssrn.com/abstract=5021733
https://doi.org/10.1016/j.enpol.2024.114418
https://doi.org/10.3390/en17051213
https://doi.org/10.1017/pan.2018.17
https://doi.org/10.1017/pan.2018.17

