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ABSTRACT: With accurate dynamic system parameters (embodied in 

self-awareness statements), a controller can provide precise signals for 

tracking desired state trajectories. If  dynamic system parameters are ini-

tially guessed inaccurately, a learning method may be used to find the ac-

curate parameters. In the deterministic artificial intelligence method, 

self-awareness statements are formed as mathematical expressions of  the 

governing physics. When the nonlinear, coupled expressions are precisely 

parameterized as the product of  known matrix components and unknown 

vectrix (i.e., an intermediate between a dyadic and a matrix in regression 

form) tracking errors may be projected onto the known matrix to update 

the unknown vectrix in an optimal form (in a two-norm sense). In this 

work, a modified learning method is proposed and proved to have global 

convergence of  both state error and parameter estimation error. The mod-

ified learning method is compared with those in the prequels using simu-

lation experiments of  three-dimensional rigid body dynamic rotation mo-

tion. The achieved state error convergence using the modified approach is 

two magnitudes better than using the methods in the prequels. 

KEYWORDS: nonlinear systems; mechanics; spacecraft attitude control; 

deterministic artificial intelligence; regression; learning 

 

1. Introduction 

   
         (a)                                                  (b) 

Figure 1. (a) The International Space Station’s Canadarm2 and Dextre carry the RapidScat instrument assembly after removing 
it from the trunk of the SpaceX Dragon cargo ship (upper right), which is docked at the nadir port of the Harmony node. (b) 
NASA Gateway would support a growing space economy photos taken from [1] and [2] respectively in compliance with 
NASA’s image use policy[3]. 

Consider intricate robotic operations in 
low-earth orbit near the space station as dis-
played in Figure 1, where considerable human 

intervention is available. Next, contemplate the 
requirements to autonomously do such opera-
tions in far distant cis-lunar orbits. The latter sys-
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tem must be able to learn in real-time dynamic 
changes that occur when the space robot grasps 
and grapples targeted spacecraft. Dynamics and 
control issues associated with rendezvous in 
Cis-lunar space near rectilinear halo orbits were 
investigated in [4], where a fully-safe, automatic 
rendezvous strategy was developed between a 
passive vehicle and an active one orbiting around 
the Earth-Moon L2 Lagrangian point. Bando et 
al.[4] proposed a chattering attenuation sliding 
mode control utilizing the eigen structure of the 
linearized flow around a libration point of the 
Earth-Moon circular restricted three-body prob-
lem, and this novel article serves as a reminder of 
the prevalence of linearization when dealing with 
multiple, coupled nonlinear equations. In 2021, 
Colombia presented a guidance, navigation and 
control framework for 6 degrees of freedom 
(6DOF) coupled Cislunar rendezvous and dock-
ing, and the article highlighted the importance of 
dealing with full, coupled translational-rotational 
dynamics of multi-body (i.e., highly flexible) dy-
namics seeking guaranteed coupled-state estima-
tion[5]. Immediately that same year[6], new tech-
niques for highly flexible multi-body space 
robotics were proposed as a competing narrative 
to the just-proposed “whiplash compensation” of 
flexible space robotics[7] establishing a thread of 
research offered by Cornell University. China 
now has two robotic arms attached to its space 
station[8], where a large robotic arm can “crawl” 
along the outside of the spacecraft[9]. 

An alternative thread of research is offered 
by Massachusetts Institute of Technology[10–16]. 
Noting that ubiquitous approaches rely on either 
simplifying assumptions in the dynamical model 
or on abundant computational resources, Lafarge 
et al.[10] proposed reinforcement learning for 
closed-loop control of onboard low-thrust guid-
ance. Albee et al.[11] studied active interception of 
targets for autonomous repair and deorbiting 
must account for the tumbling motion of targets, 
which is oftentimes not known a priori. A model 
reference adaptive algorithmic approach was 
proposed to identify the state of the target’s tum-

ble. In a more typical manner, Mehta et al.[12] 
proposed a quasi-physical dynamic reduced-order 
model that used a linear approximation of the 
underlying dynamics and effect of the drivers 
where data assimilation and model calibration 
utilized estimation of the model coefficients that 
represent the model parameters. One sequel arti-
cle about autonomous docking with rotating tar-
gets via reinforcement learning was offered by 
Oestreich et al.[13] proposing learning policies. 
Following the initial target search[14], analytical 
closed expressions to compute the minimum dis-
tance between any two satellites (at the same al-
titude in circular orbits), Avendaño et al. pro-
posed “flower constellations” to produce give an 
efficient method to compute the minimum angu-
lar distance between satellites. Reversing the 
method, Arnas et al.[15] proposed two-dimensional 
lattice flower constellations to design a low earth 
orbit slotting system to avoid collisions between 
compliant satellites (rather than intercept). Oes-
treich et al.[16] also highlighted dependence on 
on-orbit inspection (i.e., relative navigation and 
inertial properties estimation) to intercept tum-
bling debris objects or defunct satellites. In a late 
proposal following the M.I.T. approach, the 
master’s thesis by Roberts[17] continued to devel-
op the stochastic artificial intelligence approach 
embodied in supervised learning. Ekal et al.[18] 
highlight key parametric uncertainties are mass 
and moment of inertia, and the Cornell line of 
research also adopts this premise. 

Another line of work is presented by Stan-
ford University[19–21]. Cassinis et al.[19] introduced 
an adaptive convolutional neural network–based 
unscented Kalman filter for the pose estimation 
of uncooperative spacecraft. Park et al.[20] fol-
lowed the same approach using a shared mul-
ti-scale feature encoder and multiple prediction 
heads that perform different tasks on a shared 
feature output, while Park et al.[21] also followed a 
comparative line similar to the Cornell approach 
presented in this manuscript, where the (to be 
proposed) deterministic approach is supple-
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mented by an adaptive neural network-based un-
scented Kalman filter. 

Cornell’s Zhang et al. proposed an adaptive 
control strategy based on the full, nonlinear 
equations accounting for modeling uncertainties 
using an adaptive neural network amidst external 
disturbances[22], where the Cornell approach 
stems from naval approaches proposed in 2020, 
called deterministic artificial intelligence[23], 
which stated that the system dynamics constitute 
a feedforward control when paired with analytic 
trajectories; and when the dynamics are ex-
pressed in a canonical regression form, optimal 
feedback (in the two-norm sense) can aid control 
of spacecraft attitude. The method stems from the 
incremental development of a common nonlinear 
adaptive scheme offered by Slotine[24] for space-
craft attitude control, where elements of classical 
feedback were eliminated in 2020 and foremost 
applied to unmanned underwater robotics[25]. The 
burgeoning lineage of research continued in 2022 
when Sandberg et al.[26] compared several trajec-
tory-generation schemes and a nominal learning 
method based on the regression model, where 
applied torque is estimated by an enhanced Lu-
enberger observer. Very shortly afterwards, Rai-
goza[27] augmented Sandberg’s trajectory genera-
tors with autonomous collision avoidance. In 
November 2022, Wilt examined efficacy in the 
face of simulated craft damage and environmen-
tal disturbances[28]. This sequel substantiates a 
short communication presenting significant find-
ings that are part of the larger study of Slotine, 
Sands, Smeresky/Rizzo, Sandberg, Raigoza, and 
Wilt. 

In prequel works[23–28], the error convergence 
property is obtained using the proper design of 
the trajectory generation process. However, if the 
external disturbance makes the current state de-
viate from the trajectory, even if the system pa-
rameter is already converged to an accurate value, 
the trajectory will need to be re-calculated to fit 
the current state, so that the deterministic artifi-
cial intelligence can continue to drive the system 
using an optimal feedforward control signal. 

As a result, provided the initial error be-
tween the current state and the current desired 
trajectory as well as inaccurate initial parameter 
value, the goal of the modified learning approach 
proposed in this manuscript is to guarantee the 
convergence to zero of both parameter error and 
the state error. This work focuses on the rotation 
rate control problem of a spacecraft and provided 
2 ways of modification to the learning phase of 
the deterministic artificial intelligence algorithm 
and compared them with the original determinis-
tic artificial intelligence using simulation in 
MATLAB®. Moreover, the modified method can 
be proved to make the error converge to zero us-
ing a similar way as how Slotine and Li[24] proved 
the stability of the non-linear system controlled 
by some specific feed-forward/feed-back control-
lers. That is, the Lyapunov candidate function is 
provided, and the time derivative of the candi-
date function can be proved to be negative with 
the proposed modified learning method. 

Main contribution of the study. This paper 
provides 2 novel unknown parameter learning 
methods, that is, the time derivative of the vector 
of unknown, which are able to not just bound the 
error in parameter estimations but also the dif-
ference between the current system state and the 
desired state with respect to the planned trajectory. 
For the second method proposed, we will further 
show the convergence of parameter estimation 
error, as well as how this leads to the convergence 
of the state tracking error. The paper also dis-
cussed how the provided methods may fail to 
converge under certain conditions. 

2. Materials and methods 

2.1 Spacecraft rotation rate control 

The spacecraft rotation rate control problem 
focuses on applying torque so that the rotation 
rate of a spacecraft converges to the desired value. 
The dynamic can be described by the Euler equa-
tion (displayed in equation (1)). Euler’s moment 
equations can be parameterized in canonical re-
gression form. This full form of the coupled, 
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nonlinear equations whose importance was high- lighted by the research cited in the Introduction. 

𝜏 = 𝐼�̇� + 𝜔 × 𝐼𝜔 = �̇� �̇� − 𝜔 𝜔 �̇� + 𝜔 𝜔 −𝜔 𝜔 𝜔 − 𝜔 𝜔 𝜔𝜔 𝜔 �̇� + 𝜔 𝜔 𝜔 − 𝜔−𝜔 𝜔 𝜔 − 𝜔 �̇� − 𝜔 𝜔 �̇� �̇� − 𝜔 𝜔 −𝜔 𝜔𝜔 𝜔 �̇� + 𝜔 𝜔 �̇� ⎩⎪⎪⎨
⎪⎪⎧𝐼𝐼𝐼𝐼𝐼𝐼 ⎭⎪⎪⎬

⎪⎪⎫
  

(1) 
The matrix Φ is the matrix of known, which 

is composed of the current state and the rate of the 
state (ω and dω/dt). The matrix Θ is the vector of 
the unknown, which is composed of system pa-
rameters, in this case, the moment of inertia. The 
way of formulation shows that it is possible to 
estimate the moment of inertia with the accurate 
measurement of the current state. 

2.2 Original deterministic artificial intelli-
gence control 

The idea of deterministic artificial intelli-
gence is that if the matrix of the unknown can be 
estimated and the desired trajectory of the state is 
given, the optimal control signal will be multi-
plying the desired matrix of known (Φd), which 

includes the information of the current desired 
state, with the best guess of the parameter (𝛩). 
This turns the system dynamic to equation (2).  𝜏 = 𝛷𝛩 → 𝜏 ≡  𝛷 𝛩 

(2) 
However, the 𝛩  can be inaccurate or 

changed in the middle of the operation. Therefore, 
a learning approach should be provided so that 
the vector of the unknown can converge to an 
accurate value. The original learning approach in 
the space rotation rate control problem is de-
scribed in equation (3-a) and (3-b), which is pro-
vided by Smeresky et al.[12] and is equation (12) in 
his publication. 

𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑑 ≡ 𝛩 − 𝛩 =  𝛷 𝜏  −  𝛷𝛩  
(3-a) 𝑑Θ𝑑𝑡 = 𝑎 ∗ 𝑑 

(3-b) 
Where 𝜏  is the controller torque 

output, and the capital H means the pseudo in-
verse of a non-square matrix. In short, this pro-
vided a way to turn the difference between the 
applied torque and the expected torque into the 

parameter error 𝑑, which should be a minimal 
square error estimation using the information in 
the current time stamp. Concerning the stability 
of the parameter estimation, the learning of the 
parameter is applied incrementally, and this can 
be done using a first order low pass filter to 
smoothen the learned difference. 

Table 1. Symbols used in section 2.2 
Variable Physical meaning Variable Physical meaning 𝛩 Vector of unknown 𝐼 Moment of inertia 𝛩 Estimation on the unknown 𝜔 Angular speed vector 𝛷  Matrix of known made by trajectory 𝑑 Learned difference 𝛷 Matrix of known 𝑎 Filter time constant 𝜏 Applied torque   

    

Additionally, deterministic artificial intelli-
gence requires a trajectory generation process to 
produce a trajectory that leads from the current 
state to the desired state. If the current state devi-

ates undesirably from the trajectory, it is better to 
update the trajectory, or the error of the state may 
accumulate. Please be aware that the desired state 
of the trajectory generation is not the desired state 
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of the controller, which follows the output of the 
trajectory generator by making the trajectory the 
desired state of the controller should follow. In 
this manuscript, all the “desired states” men-
tioned are the desired state for the controller, if 
not specifically noted. 

The overall deterministic artificial intelli-
gence can be expressed with the combination of 
control feedforward based on a desired trajectory 
as well as the current best estimation on the vector 

of unknown and a “learning” mechanism that 
updates the vector of unknown until it goes to the 
actual value. Figure 2 presents the deterministic 
artificial intelligence as a block diagram and 
shows the relationship between each component. 
In sections 2.3 and 2.4, the discussion focuses on 
the learning part of deterministic artificial intelli-
gence and the goal is to learn the vector of un-
known and decrease the tracking error at the same 
time. 

  
Figure 2. The block diagram for the deterministic artificial intelligence. 

2.3 Modified learning method, a general 
version 

The target of the modification is that if the 
learning approach can also guarantee to decrease 
the error in the current state when doing the pa-
rameter estimation, the chance of regenerating 
trajectory can be decreased because the error is 
kept from growing, which increases the robust-
ness. In a general version of the modification, we 
consider all the systems that can be expressed in 

the regression form, as in equation (2), where the 
information of the current state is provided in the 
matrix of known. To study the error of the pa-
rameters and state, the error between the desired 
matrix of known and the current matrix of known 
is noted as 𝜙, and the error of the unknown vec-
tor is noted as 𝜃. Equation (2) can therefore be 
turned into equation (4). In this case, the goal 
becomes keeping both 𝜙 and 𝜃 bounded sim-
ultaneously using a modified learning method.𝛷𝜃 + 𝜙𝛩 = 0 𝑤ℎ𝑒𝑟𝑒 𝜙 = 𝛷 − 𝛷 𝑎𝑛𝑑 𝜃 = 𝛩 − 𝛩 

(4) 
Considering the Lyapunov candidate func-

tion described in equation (5), the function value 
must decrease to 0 if both 𝜙 and 𝜃 go to 0. If 
there is a parameter update approach �̇�  that 
makes the candidate function globally stable, it is 
very likely that the error of the state 𝜙 goes to 0 
together with 𝜃. Equation (7) shows that if �̇� is 
taken in the form of equation (6), and considering 

equation (4) and the time derivative of equation 
(4), the time derivative of the Lyapunov function 
will be negative semidefinite and leads to the 
global boundedness of the system as long as the 
matrix G is positive definitive. 𝑉 =  𝛩 𝜙 𝜙𝛩 + 𝜃 𝜃 

(5) 

 �̇� = − 𝑑Θ𝑑𝑡 = −𝛩 𝜙 ((𝛷�̇� )(𝛷 + 𝛷 ) + (𝛷 + 𝛷 ) 𝐺) 

(6) 
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�̇�2 = 𝛩 𝜙 𝛷�̇� + �̇� 𝛷 + �̇� 𝛷 𝜙𝛩 = −𝛩 𝜙 (𝛷 + 𝛷 ) 𝐺(𝛷 + 𝛷 )𝜙𝛩 ≤ 0 

(7) 
However, this candidate function only pro-

vided the boundedness of 𝜙𝛩 and 𝜃, and the 
derivation of  equation (7) requires the matrix of  
known to be full rank. Furthermore, the conver-
gence of  𝜙𝛩, even if  it happens, is not equivalent 
to the convergence of  the state even if  the matrix 
of  known is full rank. For example, for the target 
application in this manuscript (equation (1)), the 
rank of the matrix of known is at most 3, while 
the parameter number in the vector of unknown 
is 6, this makes the learning method provided 
unable to guarantee convergence. It is possible 
that when the unknown parameter converges to 
an accurate value and the state error still exists at 
the same time, the state error will not be going to 
be zero. This can be seen in equation (2) that 
when 𝛩 = 𝛩 , the term 𝛩 𝜙 = 𝛩 (𝛷 − 𝛷)  

will always be 0. When 𝜙 has a smaller rank 
than the number of unknowns, it is possible that 𝛩 𝜙  = 0 when 𝜙 is not zero. 

Another concern of using this method is that 
the calculation of �̇� is prone to noises and will 
cause latency in the real-time calculation because 
it requires the knowledge of the double derivative 
of the rotation rate, which generally requires spe-
cial treatments like the smoothing process. 

All in all, this version of modification will 
not guarantee the convergence of the state track-
ing error, so a closer inspection of the system 
dynamic, rather than a generalized “matrix of 
known times vector of unknown” formulation, 
may be necessary, and will be shown in section 
2.4. 

Table 2. Symbols used in section 2.3 
Variable Physical meaning Variable Physical meaning 𝜙 Error in matrix of known 𝑉 Lyapunov candidate function 𝜃 Error in vector of unknown 𝐺 Arbitrary positive definite matrix 

    

2.4 Modified learning method, a specific 
version 

To avoid the problem mentioned in section 
2.3, a specific version of the modified learning 
method is provided for the rotation rate control-
ler. The non-regression form of the system dy-
namic is considered in equation (8), and the 
modified learning method is provided in equation 
(10) which utilizes both the state error as well as 
parameter error. Also, the character “i” means 

the error in the inertia matrix in a 3 × 3 form ra-
ther than in a 1 × 6 unknown vector. The torque 
input to the system is slightly modified from 𝜔 × 𝐼𝜔  to 𝜔 × 𝐼𝜔, which improves the glob-
al stability but won’t affect the feed forward op-
timality in the deterministic artificial intelligence 
much when the state is very close to the desired 
value. (Or defined as applied torque (equation (8) 
in [12])). 

𝐼�̇� + 𝜔 × 𝐼𝜔 = 𝜏  → 𝜏 ≡ 𝐼�̇� + 𝜔 × 𝐼𝜔 𝐴𝑙𝑠𝑜, 𝑑𝑒𝑓𝑖𝑛𝑒 𝑖 = 𝐼 − 𝐼 𝑎𝑛𝑑 𝜔 = 𝜔 − 𝜔 
(8) 𝐼�̇� = −(𝜔 × 𝐼𝜔 − 𝜔 × 𝐼𝜔 ) + (𝑖�̇� + 𝜔 × 𝑖𝜔 − 𝜔 × 𝑖𝜔 ) = 𝜔 × 𝐶 + 𝐾𝜃 
(9) �̇� = − 𝑑Θ𝑑𝑡 = −𝑄𝜔 − 𝑅𝜃 

(10) 
The equation (8) is rearranged to equation 

(9), and the 𝜃, again, means the inertia in an 
unknown vector form. To prove the global con-

vergence of both state error 𝜔′ and parameter 
error 𝜃 , another Lyaponuv function (equation 
(11)) is provided, which has a physical meaning 
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close to the square error of the whole system, 
where the state square error is weighted by the 
inertia. If the Q term in equation (10) is the 
transpose of the K term in equation (9), and the R 
term in equation (10) is positive definite, the 
Lyapunov function will be bounded globally, as 
shown in equation (12). About the parameter 
vector 𝜃, it is chosen based on equation (13), 
which is the least square estimation same as the 
equation (3-a), and the value is used for the mod-
ified learning method in equation (10). 

Finally, the parameter vector 𝜃  can be 
shown to converge in this case by applying Bar-
balat’s lemma. Since the candidate function V is 
bounded, by equation (12) both tracking and es-
timation error is bounded, the desired trajectory 
has to be bounded, and K is a continuous func-
tion of 𝜔 , 𝜔 , 𝑎𝑛𝑑 �̇� , it can be concluded that ̈  is bounded, which makes �̇� converges. As a 
result, the estimation error is convergence. 𝑉(𝜔 , 𝜃) = 𝜔 𝐼𝜔 + 𝜃 𝜃 

(11) �̇�2 =  𝜔 𝐼�̇� + 𝜃 �̇� = 𝜔 (𝜔 × 𝐶) + 𝜃 (𝐾 − 𝑄)𝜔 − 𝜃 𝑅𝜃 = 𝜃 (𝐾 − 𝑄)𝜔 − 𝜃 𝑅𝜃 = −𝜃 𝑅𝜃 ≤ 0  
(12) 𝜃 = 𝛷 (𝜏 − 𝛷𝛩) 
(13) 𝑉4̈ = 𝜃 𝑅𝐾 (𝜔 , 𝜔 , �̇� )𝜔 + 𝜃 𝑅 𝜃 

(14) 
The discussion of convergence of tracking 

error can be based on the time integral of equa-
tion (10), as shown in equation (15). Since 𝜃 is 
proven to be convergence, the right-hand side is 
now a constant and both terms at the right-hand 
side have finite value. As a result, it can be said 
that the term 𝐾 𝜔  goes to zero as time goes 
infinity, and the tracking error 𝜔  will be con-
vergence as long as 𝐾  always has a rank of 3. 

 

−𝜃(0) = �̇� 𝑑𝑡 = − 𝐾 𝜔 𝑑𝑡 − 𝑅𝜃 𝑑𝑡 

(15) 
The conclusion on the Lyapunov candidate 

is still based on the fact that the matrix of known 
has to be full rank, due to equation (13). Provided 
a full rank matrix of known, the candidate func-
tion will be driven to zero from any positive val-
ue. When the candidate function is zero, the 
tracking error and unknown vector estimation 
error will have to be zero as well. 

Table 3. Symbols used in section 2.4 
Variable Physical meaning Variable Physical meaning 𝑖 Error of inertia matrix 𝐶 A term for simplifying equation (9) 𝜔  Error of angular velocity 𝐾 A term for simplifying equation (9) 𝑄 Learning matrix for angular velocity error 𝑅 Learning matrix for parameter estimation error 

    

2.5 Simulation 

The trajectory tracking of the rotation rate 
controller will be simulated. In the simulation, 
the trajectory is generated using arbitrary test 
torque, as shown in equation (16). The controller 
does not possess the test torque value, but instead 
receives a stream of desired rotation rate and the 
time derivative of the rotation rate. The idea is 

that if the deterministic artificial intelligence can 
track the test trajectory, it should also be able to 
track any trajectory generated by another trajec-
tory planner. 𝐼�̇� + 𝜔 × 𝐼𝜔 = 𝜏  

(16) 
Two types of performance matrices are con-

sidered: norm ratio of the state error, and the 



Journal of  AppliedMath 2023; 1(1): 42. 

8 

norm ratio of the parameter error, in equation 
(17). The result is plotted in section 3. 𝑆𝑡𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑛𝑜𝑟𝑚 𝑟𝑎𝑡𝑖𝑜 = ||𝜔′||||𝜔 ||  

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑟𝑟𝑜𝑟 𝑛𝑜𝑟𝑚 𝑟𝑎𝑡𝑖𝑜 = 𝑙𝑛(||𝜃′||||𝛩|| ) 

(17) 

3. Results 
In this section, simulation results of the rota-

tion rate problem (section 2.1) under different 
conditions are presented, and the performance of 
both types of modification (general version in 
section 2.3 and specific version in 2.4) is com-
pared with the original deterministic artificial 
intelligence (section 2.2) learning approach. 

3.1 Performance comparison without the 
product of inertia 

This case aims at testing the learning meth-
od when there is no product of inertia value in 
both the system’s true parameter and the initial 
estimation of the unknown vector, which can be 
seen as an indication of control design vulnera-
bility to coupling effects in governing equation. If 
the products of inertia have to be zero, then in 
equation (1), the size of the matrix of known will 
be reduced from 3 × 6 to 3 × 3, and the size of 
the vector of unknown will become 3 × 1. Intui-
tively speaking, we can have 3 equations and 3 
unknowns in this case, making the unknown 
solvable using only the current information, as 
long as the matrix of known is full rank. The ini-
tial condition and the system parameters are 
listed in Table 4. The norm ratio of the state error 
and parameter error is shown in Figure 3. Also, 
the G in equation (7) and the R in equation (10) 
will be a scaler “r” multiplied by a 3 × 3 identity 
matrix, and this form of G and R will be used in 
all the cases presented in this manuscript. 

Table 4. Initial condition for the simulation in section 3.1 
Variable Value Variable Value Variable Value 𝐼  1 𝐼  2 𝐼  3 𝐼  0.2 𝐼  0.3 𝐼  0.4 𝜔 ,  0.02 𝜔 ,  0.03 𝜔 ,  0.01 𝜏 ,  5 𝜏 ,  2 𝜏 ,  –2 

r (specific) 3 r (general) 15 a 3 
 

(a) (b) 
Figure 3. The convergence of the parameter error and state error. (a) Parameter error norm ratio on the ordinant versus time in 
seconds on the abscissa. (b) State error norm ratio on the ordinant versus time in seconds on the abscissa. 

Table 5. Performance of inertia estimation and tracking errors 
Figure of merit Original method (prequels) Proposed version general Proposed version specific 

Parameter error mean 0.0029 0.0058 0.0059 
Parameter error deviation 0.0020 0.0038 0.0036 

Mean tracking error 0.1709 0.0390 0.0076 
Tracking error deviation 0.0862 0.0186 0.0083 
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3.2 Performance comparison with the 
product of inertia 

This case is similar to section 3.1, but the 
product of inertia values in both the system’s true 
parameter and the initial estimation of the un-

known vector is not zero. The initial condition 
and the system parameters are listed in Table 6. 
The norm ratio of the state error and parameter 
error is shown in Figure 4. 

Table 6. Initial condition for the simulation in section 3.2 
Variable Value Variable Value Variable Value 𝐼  1 𝐼  2 𝐼  1 𝐼  0.2 𝐼  0.3 𝐼  0.4 𝐼 ,  1.06 𝐼 ,  1.90 𝐼 ,  1.15 𝐼 ,  0.21 𝐼 ,  0.31 𝐼 ,  0.41 𝜔 ,  0.02 𝜔 ,  0.03 𝜔 ,  0.01 𝜏 ,  5 𝜏 ,  2 𝜏 ,  –2 

r 3     
      

  
(a) (b) 

Figure 4. The convergence of the parameter error and state error. (a) Parameter error norm ratio on the ordinant versus time in 
seconds on the abscissa. (b) State error norm ratio on the ordinant versus time in seconds on the abscissa. 

3.3 Performance comparison with different 
r value 

This case shows for the modified learning 
method (Specific Version) how the r value, which 
can be seen as the “magnitude” of the G in equa-

tion (7) and the R in equation (10), affects the final 
result. The initial condition and parameters used 
in this case are identical to case 3.2 and can be 
checked in Table 6, except for the r value. 

(a) (b) 
Figure 5. The convergence of the parameter error and state error. Original deterministic artificial intelligence is displayed by a 
thick, solid green line, dashed purple line displays 𝑟 = 0.5, thin solid black line displays 𝑟 = 1, dotted blue line displays 𝑟 = 2, 
dot-dashed red line displays 𝑟 = 4. (a) Parameter error norm ratio on the ordinant versus time in seconds on the abscissa. (b) 
State error norm ratio on the ordinant versus time in seconds on the abscissa. 
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Table 7. Convergence of inertia estimation and tracking errors 
Figure of merit Original method 

(prequels) 
Modified with  𝒓 = 𝟎. 𝟓 

Modified with 𝒓 = 𝟏 
Modified with 𝒓 = 𝟐 

Modified with 𝒓 = 𝟒 

Parameter error mean 0.0247 0.0351 0.0348 0.0345 0.0341 
Parameter error deviation 0.0124 0.0306 0.0272 0.0239 0.0217 

Mean tracking error –0.0401 –0.0033 –0.0033 –0.0033 –0.0034 
Tracking error deviation 0.1761 0.0296 0.0246 0.0189 0.0143 

      

4. Discussion 
In sections 3.1 and 3.2, the modified learning 

method yields better state error convergence than 
the original method. For the specific version of 
the modified method, the final state error norm 
ratio is about 2 magnitudes smaller (rough order ×  𝑒–  compared with ×  𝑒– ) than the original 
learning method, due to the data shown in both 
Figures 3 and 4. 

 In section 3.1, all the learning methods are 
able to make the parameter error converge to zero. 
This fits the expectation because in section 3.1 
there is only 3 unknowns instead of 6. However, 
when the moment of inertia matric contains the 
nonzero product of inertia, as has been done in 
section 3.2, the left part of Figure 4 shows that the 
modified methods are not better than the original 
method. 

Table 8. Percent performance enhancement: Convergence of inertia estimation and tracking errors 
Figure of merit Original method (prequels) Proposed version general Proposed version specific 

Parameter error mean 0% 42% 53% 
Parameter error deviation 0% 16% 100% 

Mean tracking error 0% –77% –99% 
Tracking error deviation 0% –91% –96% 

    

In section 3.3, Figure 5 shows that when the 
magnitude of R in equation (10) goes bigger, the 
convergence rate also increases. Because equation 
(12) states that the convergence rate of the Lya-

punov function (equation (11)) is only determined 
by the size of R and 𝜃, the result in section 3.3 is 
reasonable. 

Table 9. Percent performance enhancement: Convergence of inertia estimation and tracking errors 
Figure of merit Original method 

(prequels) 
Modified  

with 𝒓 = 𝟎. 𝟓 
Modified  

with 𝒓 = 𝟏 
Modified  

with 𝒓 = 𝟐 
Modified  

with 𝒓 = 𝟒 
Parameter error mean 0.00% –42.11% –40.89% –39.68% –38.06% 

Parameter error deviation 0.00% –146.77% –119.35% –92.74% –75.00% 
Mean tracking error 0.00% 91.77% 91.77% 91.77% 91.52% 

Tracking error deviation 0.00% 83.19% 86.03% 89.27% 91.88% 
      

From the convergence condition of errors in 
Figures 3 and 4, it can be concluded that the 
convergence trajectories of the specific version of 
the modified learning method are “bumpier” and 
contains more jitters and oscillations. This phe-
nomenon may result from the way of 𝜃  value 
determination provided in equation (13), which 
only consider the data in the current time stamp, 
and the indeterminate nature of equation (13), 
when the matrix of known is not full rank, makes 
the estimation of 𝜃 very unstable. 

It can be concluded that the specific version 
of the modified learning method can achieve the 
convergence of both parameter error and state 
error in the simulation done in this manuscript, 
especially when the matrix of known is full rank, 
which can increase the robustness of the rotation 
rate controller. 

4.1 Recommended future work 

From the parameter error data of the specific 
version of the modified method in Figures 4 and 5, 
the increasing jitters can be observed. The reason 
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for such instability after the convergence is un-
clear. It could result from the numerical instability 
of the chosen ODE solver and the options given to 
it, or the indeterminate way used for determining 𝜃 value in equation (13). 

Moreover, the property of the “general ver-
sion of modified learning method” hasn’t been 
explored carefully because it is not suitable in this 
case by nature. Also, a better way of estimating 𝜃 
may improve the result of the modified learning 
method as well. Finally, a better way of choosing 
the G in equation (7) and the R in equation (10) is 
also an interesting topic. 
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Appendix A 
The MATLAB® code used in this manuscript is pasted below. The program utilizes the ode45 solver 

to simulate the response of the overall system combining the controller and the controlled system. 
 

clc; clear; close all 
%% DAI Matrix Derivation 
% =================== 
% Derive the matrix of  known w.r.t. vector of  nuknown using symbolic 
toolbox, 
% and turn it into a matlab function. 
% P is the matrix of  known. 
% th := [Ixx Ixy Ixz Iyy Iyz Izz]' is the vector of  unknown. 
% =================== 
syms fwx(t) fwy(t) fwz(t) 
syms Ixx Ixy Ixz Iyy Iyz Izz real 
syms wx wy wz dwx dwy dwz ddwx ddwy ddwz real 
w = [fwx;fwy;fwz]; 
wT = [fwx fwy fwz]; 
dw = diff(w,t); 
ddw = diff(dw,t); 
I = [Ixx Ixy Ixz; Ixy Iyy Iyz; Ixz Iyz Izz]; 
PhTh = I*dw + cross(w,I*w); 
Peq = PhTh == 0; 
[P, ~] = equationsToMatrix(Peq, [Ixx Ixy Ixz Iyy Iyz Izz]); 
dP = diff(P,t); 
sP = subs(P, [diff(diff(wT,t),t) diff(wT,t) fwx fwy fwz], [ddwx ddwy ddwz dwx 
dwy dwz wx wy wz]); 
sdP = subs(dP, [diff(diff(wT,t),t) diff(wT,t) fwx fwy fwz], [ddwx ddwy ddwz 
dwx dwy dwz wx wy wz]); 
sfP = symfun(sP, [wx wy wz dwx dwy dwz ddwx ddwy ddwz]); 
sfdP = symfun(sdP, [wx wy wz dwx dwy dwz ddwx ddwy ddwz]); 
 
%% Derive matrix K for the modified learning --- specific 
% =================== 
% Derive the K matrix, mentioned in equation 9, used in specific learning, 
% and turn it into a matlab function. 
% i is the unknown vector error, i := I_real - I_estimate. 
% w is the state error, w := w_desired - w_real. 
% =================== 
syms wdx wdy wdz dwdx dwdy dwdz real 
syms ixx ixy ixz iyy iyz izz real 
w = [wx;wy;wz]; 
wd = [wdx;wdy;wdz]; 
dwd = [dwdx dwdy dwdz]'; 
i = [ixx ixy ixz; ixy iyy iyz; ixz iyz izz]; 
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Ki = i'*dwd + cross(wd,i*wd) - cross(wd,i*w); 
Keq = Ki == [0;0;0]; 
[K, sbz] = equationsToMatrix(Keq, [ixx ixy ixz iyy iyz izz]); 
fK = symfun(K, [wx wy wz wdx wdy wdz dwdx dwdy dwdz]); 
 
%% Simulation: ODE45 
% =================== 
% Define simulation parameters and simulate 
% =================== 
%  
% ===== <Parameter definition> ===== 
p.J = [1 0.2 0.3; 0.2 2 0.4; 0.3 0.4 1]; % Example in section 3_2 
p.dwd = [1 1 1]'; 
p.P = matlabFunction(sfP); 
p.dP = matlabFunction(sfdP); 
p.K = matlabFunction(fK); 
p.G = 3*eye(6); 
p.pinvTol = 1e-3; 
Jt = [p.J(1,1);p.J(1,2);p.J(1,3);p.J(2,2);p.J(2,3);p.J(3,3)]; 
%  
% ===== <Simulation time> ===== 
deltat = 0.01; 
tfinal = 3; 
t = 0:deltat:tfinal;% for evaluating solution 
%  
% ===== <Simulation: ODE45> ===== 
z0 = [1 0 0 0 0 0 0 0.02 0.03 0.01 1.06 0.21 0.31 1.90 0.41 1.15]'; % 3_2 0.08 
0.08 004 
options = odeset('absTol',1e-10,'relTol',1e-10); 
% The simulation for the general version of  modified learning method 
[t_dai, z_dai] = ode45(@(t,z)DAI_modified_general(t,z,p), t, z0, options); 
% The simulation for the specific version of  modified learning method 
[t_dmd, z_dmd] = ode45(@(t,z)DAI_modified_specific(t,z,p), t, z0, options); 
% The simulation for the original version of  learning method 
[t_dor, z_dor] = ode45(@(t,z)DAI_original(t,z,p), t, z0, options); 
 
%% Plot parameter estimations and state trajectories 
figure() 
plot(t_dai, z_dai(:,11),t_dai, z_dai(:,14),t_dai, z_dai(:,16)) 
legend('Ixx', 'Iyy', 'Izz'); 
title('Vector of  unknown Estimation of  DAI Modification General Version'); 
figure() 
plot(t_dmd, z_dmd(:,11),t_dmd, z_dmd(:,14),t_dmd, z_dmd(:,16)) 
legend('Ixx', 'Iyy', 'Izz'); 
title('Vector of  unknown Estimation of  DAI Modification Specific Version'); 
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figure() 
plot(t_dor, z_dor(:,11),t_dor, z_dor(:,14),t_dor, z_dor(:,16)) 
legend('Ixx', 'Iyy', 'Izz'); 
title('Vector of  unknown Estimation of  Original DAI'); 
figure() 
plot(t_dai, z_dai(:,7),t_dor, z_dor(:,7),t_dmd, z_dmd(:,7),t_dai, z_dai(:,10)) 
legend('Modified 1', 'Original', 'Modified 2', 'Desired'); 
title('Angular Velocity Tracking of  DAI Modification General Version'); 
figure() 
plot(t_dai, z_dai(:,6),t_dor, z_dor(:,6),t_dmd, z_dmd(:,6),t_dai, z_dai(:,9)) 
legend('Modified 1', 'Original', 'Modified 2', 'Desired'); 
title('Angular Velocity Tracking of  DAI Modification Specific Version'); 
figure() 
plot(t_dai, z_dai(:,5),t_dor, z_dor(:,5),t_dmd, z_dmd(:,5),t_dai, z_dai(:,8)) 
legend('Modified 1', 'Original', 'Modified 2', 'Desired'); 
title('Angular Velocity Tracking of  Original DAI'); 
 
%% Analysis the norm rates 
% inertia norm ratio: Equation 15 
J_dai = z_dai(:,11:16); 
J_dmd = z_dmd(:,11:16); 
J_dor = z_dor(:,11:16); 
n = length(t_dai); 
nJ_dai = vecnorm(J_dai'-Jt*ones(1,n))/norm(Jt); 
nJ_dmd = vecnorm(J_dmd'-Jt*ones(1,n))/norm(Jt); 
nJ_dor = vecnorm(J_dor'-Jt*ones(1,n))/norm(Jt); 
figure() 
plot(t_dai, nJ_dai, t_dmd, nJ_dmd, t_dor, nJ_dor); 
legend('DAI modified General Version', 'DAI modified Specific Version', 'DAI 
original'); 
title('Convergence of  the parameter error norm ratio'); 
xlabel('time (s)'); 
ylabel('Parameter error norm ratio'); 
% state error norm ratio: Equation 15 
dw_dai = z_dai(:,5:7)-z_dai(:,8:10); 
nw_dai = vecnorm(dw_dai')./vecnorm(z_dai(:,8:10)'); 
dw_dmd = z_dmd(:,5:7)-z_dmd(:,8:10); 
nw_dmd = vecnorm(dw_dmd')./vecnorm(z_dmd(:,8:10)'); 
dw_dor = z_dor(:,5:7)-z_dor(:,8:10); 
nw_dor = vecnorm(dw_dor')./vecnorm(z_dor(:,8:10)'); 
figure() 
plot(t_dai, log(nw_dai), t_dmd, log(nw_dmd), t_dor, log(nw_dor)); 
legend('DAI modified General Version', 'DAI modified Specific Version', 'DAI 
original'); 
title('Convergence of  the state error norm ratio'); 
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xlabel('time (s)'); 
ylabel('State error norm ratio'); 
 
%% mean and deviation: Table 4 
clc 
% DAI modified General Version 
ParamErrorMeanGeneral = mean(mean(J_dai-(Jt*ones(1,length(J_dai)))')) 
ParamErrorStdrGeneral = mean(std(J_dai-(Jt*ones(1,length(J_dai)))')) 
StateErrorMeanGeneral = mean(mean(dw_dai)) 
StateErrorStdrGeneral = mean(std(dw_dai)) 
% DAI modified Specific Version 
ParamErrorMeanSpecific = mean(mean(J_dmd-(Jt*ones(1,length(J_dmd)))')) 
ParamErrorStdrSpecific = mean(std(J_dmd-(Jt*ones(1,length(J_dmd)))')) 
StateErrorMeanSpecific = mean(mean(dw_dmd)) 
StateErrorStdrSpecific = mean(std(dw_dmd)) 
% DAI Original 
ParamErrorMeanOriginal = mean(mean(J_dor-(Jt*ones(1,length(J_dor)))')) 
ParamErrorStdrOriginal = mean(std(J_dor-(Jt*ones(1,length(J_dor)))')) 
StateErrorMeanOriginal = mean(mean(dw_dor)) 
StateErrorStdrOriginal = mean(std(dw_dor)) 
 
%% Test the performance of  Specific Version Modified DAI in different G 
% G = 0.5 
p.G = 0.5*eye(6); 
[t_dmd_h, z_dmd_h] = ode45(@(t,z)DAI_modified_specific(t,z,p), t, z0, op-
tions); 
n = length(t_dmd_h); 
J_dmd_h = z_dmd_h(:,11:16); 
nJ_dmd_h = vecnorm(J_dmd_h'-Jt*ones(1,n))/norm(Jt); 
dw_dmd_h = z_dmd_h(:,5:7)-z_dmd_h(:,8:10); 
nw_dmd_h = vecnorm(dw_dmd_h')./vecnorm(z_dmd_h(:,8:10)'); 
% G = 1 
p.G = 1*eye(6); 
[t_dmd_1, z_dmd_1] = ode45(@(t,z)DAI_modified_specific(t,z,p), t, z0, op-
tions); 
J_dmd_1 = z_dmd_1(:,11:16); 
nJ_dmd_1 = vecnorm(J_dmd_1'-Jt*ones(1,n))/norm(Jt); 
dw_dmd_1 = z_dmd_1(:,5:7)-z_dmd_1(:,8:10); 
nw_dmd_1 = vecnorm(dw_dmd_1')./vecnorm(z_dmd_1(:,8:10)'); 
% G = 2 
p.G = 2*eye(6); 
[t_dmd_2, z_dmd_2] = ode45(@(t,z)DAI_modified_specific(t,z,p), t, z0, op-
tions); 
J_dmd_2 = z_dmd_2(:,11:16); 
nJ_dmd_2 = vecnorm(J_dmd_2'-Jt*ones(1,n))/norm(Jt); 
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dw_dmd_2 = z_dmd_2(:,5:7)-z_dmd_2(:,8:10); 
nw_dmd_2 = vecnorm(dw_dmd_2')./vecnorm(z_dmd_2(:,8:10)'); 
% G = 4 
p.G = 4*eye(6); 
[t_dmd_4, z_dmd_4] = ode45(@(t,z)DAI_modified_specific(t,z,p), t, z0, op-
tions); 
J_dmd_4 = z_dmd_4(:,11:16); 
nJ_dmd_4 = vecnorm(J_dmd_4'-Jt*ones(1,n))/norm(Jt); 
dw_dmd_4 = z_dmd_4(:,5:7)-z_dmd_4(:,8:10); 
nw_dmd_4 = vecnorm(dw_dmd_4')./vecnorm(z_dmd_4(:,8:10)'); 
% Original 
[t_dor, z_dor] = ode45(@(t,z)DAI_original(t,z,p), t, z0, options); 
J_dor = z_dor(:,11:16); 
nJ_dor = vecnorm(J_dor'-Jt*ones(1,n))/norm(Jt); 
dw_dor = z_dor(:,5:7)-z_dor(:,8:10); 
nw_dor = vecnorm(dw_dor')./vecnorm(z_dor(:,8:10)'); 
% 
% Plot the result 
rnge = 200; 
figure(); 
plot(t_dmd_h(1:rnge), nJ_dmd_h(1:rnge),... 
     t_dmd_1(1:rnge), nJ_dmd_1(1:rnge),... 
     t_dmd_2(1:rnge), nJ_dmd_2(1:rnge),... 
     t_dmd_4(1:rnge), nJ_dmd_4(1:rnge),... 
     t_dor(1:rnge), nJ_dor(1:rnge)); 
legend('DAI modified r = 0.5',... 
       'DAI modified r = 1',... 
       'DAI modified r = 2',... 
       'DAI modified r = 4',... 
       'DAI original'); 
title('Convergence of  the parameter error norm ratio'); 
xlabel('time (s)'); 
ylabel('Parameter error norm ratio'); 
figure(); 
plot(t_dmd_h(1:rnge), log(nw_dmd_h(1:rnge)), ... 
     t_dmd_1(1:rnge), log(nw_dmd_1(1:rnge)), ... 
     t_dmd_2(1:rnge), log(nw_dmd_2(1:rnge)), ... 
     t_dmd_4(1:rnge), log(nw_dmd_4(1:rnge)), ... 
     t_dor(1:rnge), log(nw_dor(1:rnge))); 
legend('DAI modified r = 0.5',... 
       'DAI modified r = 1',... 
       'DAI modified r = 2',... 
       'DAI modified r = 4',... 
       'DAI original'); 
title('Convergence of  the state error norm ratio'); 
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xlabel('time (s)'); 
ylabel('State error norm ratio'); 
 
%% mean and deviation: Table 6 
% G = 0.5 
ParamErrorMeanGHlf  = mean(mean(J_dmd_h(1:rnge,:)-(Jt*ones(1,rnge))')) 
ParamErrorStdrGHlf  = mean(std(J_dmd_h(1:rnge,:)-(Jt*ones(1,rnge))')) 
StateErrorMeanGHlf  = mean(mean(dw_dmd_h(1:rnge,:))) 
StateErrorStdrGHlf  = mean(std(dw_dmd_h(1:rnge,:))) 
% G = 1 
ParamErrorMeanGOne = mean(mean(J_dmd_1(1:rnge,:)-(Jt*ones(1,rnge))')) 
ParamErrorStdrGOne = mean(std(J_dmd_1(1:rnge,:)-(Jt*ones(1,rnge))')) 
StateErrorMeanGOne = mean(mean(dw_dmd_1(1:rnge,:))) 
StateErrorStdrGOne = mean(std(dw_dmd_1(1:rnge,:))) 
% G = 2 
ParamErrorMeanGTwo = mean(mean(J_dmd_2(1:rnge,:)-(Jt*ones(1,rnge))')) 
ParamErrorStdrGTwo = mean(std(J_dmd_2(1:rnge,:)-(Jt*ones(1,rnge))')) 
StateErrorMeanGTwo = mean(mean(dw_dmd_2(1:rnge,:))) 
StateErrorStdrGTwo = mean(std(dw_dmd_2(1:rnge,:))) 
% G = 4 
ParamErrorMeanGFor = mean(mean(J_dmd_4(1:rnge,:)-(Jt*ones(1,rnge))')) 
ParamErrorStdrGFor = mean(std(J_dmd_4(1:rnge,:)-(Jt*ones(1,rnge))')) 
StateErrorMeanGFor = mean(mean(dw_dmd_4(1:rnge,:))) 
StateErrorStdrGFor = mean(std(dw_dmd_4(1:rnge,:))) 
% Original DAI 
ParamErrorMeanOrig = mean(mean(J_dor(1:rnge,:)-(Jt*ones(1,rnge))')) 
ParamErrorStdrOrig = mean(std(J_dor(1:rnge,:)-(Jt*ones(1,rnge))')) 
StateErrorMeanOrig = mean(mean(dw_dor(1:rnge,:))) 
StateErrorStdrOrig = mean(std(dw_dor(1:rnge,:))) 
 
%% Function 
function zdot = DAI_modified_general(t, z, p) 
    % Orientation of  the rigid body as quaternion 
    q = z(1:4); 
    % Angular velocity 
    w = z(5:7); 
    % Desired velocity 
    wd = z(8:10); 
    % Vector of  unknown: Inertia 
    th = z(11:16); % theta hat 
    Jh = [th(1) th(2) th(3); th(2) th(4) th(5); th(3) th(5) th(6)]; 
    % Generate trajectory to be followed 
    [sdwd,sddwd] = traj_gen(t,wd,p); 
    % Generate feed forward control torque 
    tau = Jh*sdwd + cross(wd', Jh*wd)'; 
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    % Update the dynamic of  the system 
    dw = p.J\(tau-cross(w', p.J*w)'); 
    dq = 0.5*quatmultiply([0 w'],q'); 
    % Update the parameter estimation 
    ddw = [0;0;0]; 
    % Matrix of  known w.r.t. desired angular velocity 
    Pd = 
p.P(wd(1),wd(2),wd(3),sdwd(1),sdwd(2),sdwd(3),sddwd(1),sddwd(2),sddwd(3)); 
    % Matrix of  known w.r.t. actual angular velocity 
    P = p.P(w(1),w(2),w(3),dw(1),dw(2),dw(3),0,0,0); 
    % Time derivative of  the Matrix of  known w.r.t. actual angular velocity 
    dP = p.dP(w(1),w(2),w(3),dw(1),dw(2),dw(3),ddw(1),ddw(2),ddw(3)); 
    % Equation 6: General version of  modified learning in DAI 
    ph = Pd-P; 
    A = dP*pinv(P,p.pinvTol)*pinv(P' + pinv(P,p.pinvTol),p.pinvTol); 
    B = (P' + pinv(P,p.pinvTol))'*p.G; 
    dth = (th'*ph'*(A+B))'; 
    % Print simulation time every 1 second 
    if  abs(t-round(t)) < 0.001 
        disp(t) 
    end 
    zdot = [dq';dw;sdwd;dth]; 
end 
 
function zdot = DAI_modified_specific(t, z, p) 
    % Orientation of  the rigid body as quaternion 
    q = z(1:4); 
    % Angular velocity 
    w = z(5:7); 
    % Desired velocity 
    wd = z(8:10); 
    % Vector of  unknown: Inertia 
    th = z(11:16); % theta hat 
    Jh = [th(1) th(2) th(3); th(2) th(4) th(5); th(3) th(5) th(6)]; 
    % Generate trajectory to be followed 
    [sdwd,~] = traj_gen(t,wd,p); 
    % Generate feed forward control torque: Equation 8 
    tau = Jh*sdwd + cross(wd', Jh*w)'; 
    % Update the dynamic of  the system 
    dw = p.J\(tau-cross(w', p.J*w)'); 
    dq = 0.5*quatmultiply([0 w'],q'); 
    % Update the parameter estimation 
    P = p.P(w(1),w(2),w(3),dw(1),dw(2),dw(3),0,0,0); 
    % Equation 9/12: Specific version of  modified learning in DAI 
    ew = wd-w; 
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    K = p.K(ew(1),ew(2),ew(3),wd(1),wd(2),wd(3),sdwd(1),sdwd(2),sdwd(3)); 
    Dth = pinv(P,p.pinvTol)*(tau-P*th); 
    dth = K'*ew+p.G*Dth; 
    % Monitor the Lyapunov Candidate function to see if  it is decreasing 
    % TDth = [p.J(1,1);p.J(1,2);p.J(1,3);p.J(2,2);p.J(2,3);p.J(3,3)]-th; 
    % V = ew'*p.J*ew+TDth'*TDth 
    zdot = [dq';dw;sdwd;dth]; 
end 
 
function zdot = DAI_original(t, z, p) 
    % Orientation of  the rigid body as quaternion 
    q = z(1:4); 
    % Angular velocity 
    w = z(5:7); 
    % Desired velocity 
    wd = z(8:10); 
    % Vector of  unknown: Inertia 
    th = z(11:16); % theta hat 
    Jh = [th(1) th(2) th(3); th(2) th(4) th(5); th(3) th(5) th(6)]; 
    % Generate trajectory to be followed 
    [sdwd,~] = traj_gen(t,wd,p); 
    % Generate feed forward control torque 
    tau = Jh*sdwd + cross(wd', Jh*wd)'; 
    % Update the dynamic of  the system 
    dw = p.J\(tau-cross(w', p.J*w)'); 
    dq = 0.5*quatmultiply([0 w'],q'); 
    % Update the parameter estimation: Equation 3-a, 3-b 
    P = p.P(w(1),w(2),w(3),dw(1),dw(2),dw(3),0,0,0); 
    dth = 1.5*pinv(P,p.pinvTol)*(tau-P*th); 
    zdot = [dq';dw;sdwd;dth]; 
end 
 
function [dwd,ddwd] = traj_gen(t,wd,p) 
    tau = [5;2;-2]; 
    if  t>7 
        tau = [0;0;0]; 
    end 
    dwd = p.J\(tau-cross(wd', p.J*wd)'); 
    ddwd = [0;0;0]; 
end 
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ABSTRACT: Rabindra Sangeet or Tagore songs encompass a wide variety 

of  human emotions. Most of  these songs are based on Hindustani ragas. 

Kafi is a joyful raga and therefore could be helpful to combat stress. We 

are motivated to analyse a popular Tagore song, namely, Momo Chitte, 

which is based on this raga. Statistical analysis compares two phases of  30 

s each of  a vocal recording of  this song. Several statistical features are con-

sidered including note duration, inter onset interval, rate of  change of  

pitch, statistical parameterization of  melody and rhythm in addition to 

analysis of  spectrogram and pitch profile. The experimental results are en-

couraging.  

KEYWORDS: note duration; inter onset interval; rate of  change of  pitch; 

statistical parameterization of  melody and rhythm; spectrogram 

1. Introduction
Rabindra Sangeet or Tagore songs are songs

written and composed by the great laureate of lit-
erature, poet Gurudev Rabindranath Tagore. He 
was the first Nobel laureate from the Asian origin 
who received the Nobel prize in literature in 1913. 
While the lyrics of all these songs are credited to 
Tagore, there are a few exceptions in which the 
tunes are composed by someone else, e.g., Pankaj 
Mallick composed the tune of the Tagore song 
Diner Sheshe Ghumer Deshe and the tune was highly 
appreciated by Tagore. 

Indian classical music has two forms—Hin-
dustani and Carnatic (or North Indian and South 
Indian classical music respectively). In either form, 
the central focus is the raga which is a melodic 
structure with fixed notes and a set of rules that 
characterises a particular mood which is conveyed 
by performance. 

Rabindra Sangeet has a great impact on human 
emotion. Kafi, being a joyful raga, motivated us to 
study the statistical properties of a Rabindra Sang-
eet, namely, Momo Chitte based on this raga. This 
song would be used in subsequent studies in music 
intervention for therapeutic purpose to combat 

stress. Statistical analysis compares two phases of 
30 s each of a vocal recording of this song. Several 
statistical features are considered including note 
duration, inter onset interval, rate of change of 
pitch, statistical parameterization of melody and 
rhythm in addition to analysis of spectrogram and 
pitch profile. 

2. State of the art
Rabindranath Tagore received his initial

training in music from Jyotirindranath, his elder 
brother. Jyotirindranath was an accomplished 
classical musician specializing in dhrupad, 
dhamar and khayal. Since the days of initial train-
ing, Tagore started composing verses and at-
tempted to place them in the melodic framework 
of the Ragas. That was how Rabindra Sangeet or 
Tagore Songs germinated[1]. 

Musical composition and background history 
of the song: 

Parjaay: Bichitro (6) 
Taal: Kashmiri Khemta 
Raag: Kafi 
Written on: 1910 
Collection: Arupratan, Raja, Shrabon-gatha 
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Swarabitan: 42 (Arupratan) 
Notation by: Surendranath Bandopadhyay 
Lyrics: 

Mamo chitte niti nritye ke je naache 
Taata thoi thoi, taata thoi thoi, taata thoi thoi, 

Taari sange ki mridange sada baaje 
Taata thoi thoi, taata thoi thoi, taata thoi thoi. 

Haasi kaanna hira paanna dole bhaale, 
Knaape chhande bhaalomondo taale taale, 

Naache janmo naache mrityu paachhe paachhe, 
Taata thoi thoi, taata thoi thoi, taata thoi thoi. 

Ki anondo, ki anondo, ki anondo 
Dibaraatri naache mukti naache bandho 

Se taronge chhuti range paachhe paachhe 
Taata thoi thoi, taata thoi thoi, taata thoi thoi. 

Further literature on the song lyrics of Momo 
Chitte and its background information can be 
found from the website[2]. An English translation 
of this song by Anjan Ganguly is given in the Ap-
pendix. 

Music researchers have been using statistics 
for studying the musical patterns. Beran’s book[3] 
gives an account of the applications of statistics in 
Western Art Music (WAM) while the book by 
Chakraborty et al.[4] provides the same in Hindu-
stani music. The book by Jairazbhoy[5] may be 
consulted for further literature on Hindustani ra-
gas. See also the book of Bor et al.[6]. 

3. Methodology 

3.1 Notes duration 

The length of time for which a note is played 
in any music is called the note duration. It can be 
understood more precisely by saying that it is the 
difference between the time of departure and time 
of arrival of a note. Note duration analysis is im-
portant to depict the restfulness or restlessness in 
the concerned regions in the musical piece where 
there is greater stay or lesser stay respectively on 
the notes. 

3.2 Inter onset interval (IOI) 

IOI is the difference in arrival times of two 
successive notes. IOI analysis is necessary to de-
pict rhythm. Equal peaks in the IOI graph indicate 

that the notes are coming periodically and hence 
are in rhythm. If the mean IOI is less, it implies 
that notes have arrived more rapidly in the record-
ing. If the standard deviation of IOI is less, it im-
plies there is more rhythm in the notes. 

3.3 Pitch velocity 

Pitch velocity is the rate of change of pitch 
with respect to time obtained by dividing the ab-
solute value of pitch difference of two successive 
notes by the corresponding inter onset interval 
(IOI). 

3.4 Statistical parameterization 

The structural attributes of a musical phrase 
can be efficiently described by using the designed 
statistical parameterization approach[7]. The 
method is mathematically valid and it gives pre-
cise results. In what follows, P1, P2 and P3 measure 
melody while P4 and P5 measure rhythm. Let P1 
be the difference between weighted average note 
pitch and the pitch of the lowest note of a musical 
phrase and can be defined as: 

P1 = 
∑∑ − Min(𝑝 ) 

where pi denotes the pitch (at the onset) of the i-th 
note and di denotes the duration of the i-th note 
(departure time of the i-th note-onset time of the i-
th note), N denotes the number of notes in a mu-
sical phrase. 

Let P2 be the difference between the pitch of 
the highest and the lowest note of a musical phrase 
and can be defined as: 

P2 = Max(𝑝 ) − Min(𝑝 ) 
Let P3 be the average absolute difference of 

the pitches of subsequent notes and can be defined 
as: 

P3 = ∑ |𝑝 − 𝑝 | 
Let P4 be the duration of the longest note of a 

musical phrase and can be defined as: 
P4 = Max(𝑑 ) 

Let P5 be the average note duration and can 
be defined as: 

P5 = ∑ 𝑑  
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3.5 Spectrogram 

A spectrogram is a visual representation of 
voice (in our case) graphically in which a two-di-
mensional spectrogram shows frequency on one 
axis with respect to time on the other axis and in 
3-D spectrogram depicts one of the axis represent-
ing amplitude of sound. By the use of spectrogram, 
it is easy to analyse the intensity of different 
sounds like music, sonar, radar, speech processing, 
and linguistics, by varying the colour or brightness 
in the image. 

3.6 Pitch profile 

Pitch is the perceived fundamental frequency 
which determines the shrillness or hoarseness of 
sound. Musical notes are characterised by their 
pitch and pitch class. The pitch profile provides 
the pattern in the note progression in the musical 
piece.  

4. Experimental results 

Figures 1 and 2 give the note duration in sec-

onds for the first 30 s and the next 30 s respectively 

of the recording. 

 
Figure 1. Note duration graph for the first 30 s. 

Mean note duration = 0.157029703 s, SD (standard devia-
tion) note duration = 0.118106262 s. 

 
Figure 2. Note duration graph for the next 30 s. 

Mean note duration = 0.240789474 s, SD (standard devia-
tion) Note duration = 0.202239219 s. 

Figures 3 and 4 give the IOI for the first 30 s 
and the next 30 s respectively. 

 
Figure 3. IOI graph for the first 30 s. 

Mean IOI = 0.289705882 s, SD (standard deviation) IOI = 
0.175245796 s. 

 
Figure 4. IOI graph for the next 30 s. 

Mean IOI = 0.395333333 s, SD (standard deviation) = 
0.257814795 s. 

Figures 5 and 6 give the pitch velocity for the 
first 30 s and the next 30 s respectively. 

 
Figure 5. Graph showing pitch velocity for the first 30 s. 

Mean of pitch velocity = 234.0169307 Hz/s, SD (standard 
deviation) of pitch velocity = 331.5644264 Hz/s. 

 
Figure 6. Graph showing pitch velocity for the next 30 s. 

Mean of pitch velocity = 150.4494667 Hz/s, SD (standard 
deviation) of pitch velocity = 152.4132939 Hz/s. 
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Table 1 gives the values of statistical parame-
ters P1, P2, P3, P4 and P5 for the first 30 s and next 
30 s of the recording. 

Table 1. Comparison of statistical parameters P1, P2, P3, P4 
and P5 for the first and next 30 s. 

 P1 P2 P3 P4 P5 

First 30 s 56.797 233.94 48.003 0.79 0.157 

Next 30 s  55.668 230.06 150.449 1 0.241 

Spectrogram analysis: The spectrogram for 
the first 30 s and the second 30 s are given in Fig-
ures 7 and 8, respectively. 

 
Figure 7. Spectrogram of Tagore song Momo Chitte for first 
30 s. 

 
Figure 8. Spectrogram of Tagore song Momo Chitte for 
next 30 s. 

Pitch profile: The pitch profile for the first 30 
s and the second 30 s are given in Figures 9 and 
10, respectively. 

 
Figure 9. Pitch profile of Tagore song Momo Chitte for first 
30 s. 

 
Figure 10. Pitch profile of Tagore song Momo Chitte for 
second 30 s. 

5. Discussion 

From Figures 1 and 2, it is clear that the 
peaks of note duration are greater and higher in 
the second 30 s of the recording implying more 
restfulness or stay on the notes in the second 30 s 
as compared to the first 30 s. The mean note dura-
tion is more in the second 30 s. However, the 
standard deviation is less in the first 30 s implying 
less variation in the duration times of the notes in 
the first 30 s. 

From Figures 3 and 4, it is evident that notes 
are coming more rapidly and also have more 
rhythm in the first 30 s as compared to the second 
30 s of the recording which is also numerically en-
dorsed by the fact that both the mean and standard 
deviation of IOI is less in the first 30 s. 

From Figures 5 and 6, the rate of change of 
pitch is less in the second 30 s of the recording as 
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compared to the first 30 s. Both the mean and 
standard deviation of the pitch velocity is lesser in 
the second 30 s. 

From Table 1, the parameters P1 and P2 are 
close in the first 30 s and second 30 s, but the pa-
rameter P3 is more in the second 30 s. It is interest-
ing to observe that, while the rate of change of 
pitch is less in the second 30 s, the average pitch 
difference between successive notes is more. Also, 
the parameters P4 and P5 are more in the second 
30 s depicting that both the maximum and the av-
erage note duration are more in the second 30 s.  

From Figures 7 and 8, it is evident that the 
intensity is more in the first 30 s. Also, there is var-
ying intensity in the first 30 s as compared to the 
second 30 s. 

From Figures 9 and 10, we notice the con-
trasting pitch profile in the first 30 s showing an 
upward trend as compared to that of the second 
30 s showing a downward trend of note progres-
sion. 

6. Conclusion 
We conclude that: 
1) There is more restfulness or stay on the 

notes in the second 30 s but less variation in the 
duration times of the notes in the first 30 s. 

2) Notes are coming more rapidly and also 
have more rhythm in the first 30 s as compared to 
the second 30 s. 

3) The rate of change of pitch is less in the 
second 30 s of the recording with lesser standard 
deviation as compared to the first 30 s. 

4) The parameters P1 and P2 are close in the 
first 30 s and second 30 s, but the parameter P3 is 
more in the second 30 s. It is interesting to observe 
that, while the rate of change of pitch is less in the 
second 30 s, the average pitch difference between 
successive notes is more. Also, the parameters P4 
and P5 are more in the second 30 s depicting that 
both the maximum and the average note duration 
are more in the second 30 s. 

5) The intensity is more in the first 30 s. 
Also, there is varying intensity in the first 30 s as 
compared to the second 30 s. 

6) The pitch profile in the first 30 s shows 
an upward trend as compared to that of the second 
30 s showing a downward trend of note progres-
sion. 
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Appendix 
English translation of the song Momo Chitte[8] 

by Anjan Ganguly: 
I wonder, who is that dances in my mind 

The eternal dance, rhythmically. 
I wonder, how well my soul and body respond 

To the meter of the ‘MRIDANGA’, 
The eternal dance, rhythmically. 

Swings smile and tears upon the temple jewel-like 
Good and the evil pulsate with the rhythm 

Keenly follow life and death, dancing along 
The eternal dance, rhythmically. 
O, what a delight, what a delight, 

Confinement and liberation dance alongside day and 
night, 

I follow the wave closely, enjoy running behind it 
The eternal dance, rhythmically.
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ABSTRACT: Artificial intelligence is flourishing, and its research achieve-

ments are being extensively applied across various industries. In the field 

of  predicting coal and gas outbursts, methods such as machine learning 

and deep learning have been widely explored, resulting in accurate predic-

tion accuracy and excellent predictive effects. This has significantly im-

proved the safety of  coal mine underground operations. 

KEYWORDS: machine learning; coal and gas outburst prediction; deep 

learning; artificial intelligence; application 

 
 
 

 
1. Introduction and observation 

During the stage of  establishing an indicator 
system for predicting coal and gas outburst, Wu et 
al.[1] have employed machine learning methods 
such as decision trees and random forests to iden-
tify and select the influencing factors of  coal and 
gas outbursts. They evaluate the importance of  
each factor and choose more effective predictive 
indicators based on their importance, using these 
scientific algorithms from the beginning to move 
towards accurate predictions. 

Furthermore, in the process of  handling the 
collected raw data for coal and gas outburst indi-
cators, scientific machine learning methods are 
also applied. Methods such as Seasonal and Trend 
decomposition using Loess (STL) and wavelet de-
noising are utilized for regularity processing of  
time series data and noise reduction, achieving 
preprocessing and in-depth processing of  the data. 
For example, Zhang et al.[2] use wavelet denoising 
to denoise the collected coal mine gas raw data. 
Such processing enables researchers to observe po-
tential hazards through the regularity exhibited by 
the data, thereby preparing for further prediction 
work. 

 

On this basis, some machine learning models 
that are consistent with the prediction needs of  
coal and gas outbursts are gradually being ex-
plored in coal and gas outburst prediction re-
search[3], such as Back Propagation neural net-
work (BP), Support Vector Machine algorithm 
(SVM), Long Short-Term Memory network 
(LSTM), Bi-directional Long Short-Term 
Memory network (Bi-LSTM), and Artificial Im-
mune Algorithm (AIA)[4], etc. At the same 
time, based on the practical needs of  coal and gas 
outburst prediction, these methods have been op-
timized accordingly, such as Xue et al.[5] using a 
genetic algorithm to optimize support vector ma-
chine, and Peng et al.[6] using particle swarm opti-
mization algorithm to optimize the immune algo-
rithm. Two or more models have complementary 
performance, forming some combination models, 
which significantly improve prediction accuracy 
and prediction effectiveness[7]. 

Through active exploration of  the application 
of  machine learning methods in coal and gas out-
burst prediction, coal mine safety technology has 
also been developed and iterated in the prevention 
and control of  coal and gas outburst[8,9]. It has 
demonstrated beneficial effects and improved the 
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level of  coal mine safety. With the current trend of  
mining automation and intelligence, more ma-
chine learning-based coal and gas outburst predic-
tion methods with better performance can be ex-
plored. 

Acknowledgments 
This work is financially supported by the Na-

tional Natural Science Foundation of  China (Nos. 
51974120 and 52274196). The author thanks the 
mentor Professor Shiliang Shi for his careful guid-
ance and critical reviews. 

Conflict of interest 
The authors declare no conflict of  interest. 

References 
1. Wu F, Huo Y, Gao J. Coal mine gas emission 

prediction method based on forest regression. In-
dustry and Mine Automation 2021; 47(8): 102–
106. doi: 10.13272/j.issn.1671-251x.2021010024. 

2. Zhang X, Liu F, Li X. Coal mine gas concentra-
tion prediction based on wavelet denoising and 
recurrent neural network. Coal Technology 2020; 
39(9): 145–148. doi: 
10.13301/j.cnki.ct.2020.09.041. 

3. Zheng X, Lai W, Zhang L, Xue S. Quantitative 
evaluation of  the indexes contribution to coal 
and gas outburst prediction based on machine 

learning. Fuel 2023; 338: 127389. doi: 
10.1016/j.fuel.2023.127389. 

4. Ji P, Shi S. Hazard prediction of  coal and gas 
outburst based on the hamming distance artificial 
intelligence algorithm (HDAIA). Journal of  
Safety Science and Resilience 2023; 4: 151–158. 
doi: 10.1016/j.jnlssr.2022.12.001. 

5. Xue F, Li X, Xu E. Application of  GA-SVM cou-
pling model in prediction coal and gas outburst. 
Mineral Engineering Research 2022; 37(3): 40–
44. doi: 10.13582/j.cnki.1674-5876.2022.03.007. 

6. Ji P, Shi S, Lu Y, Li H. Research on risk identifi-
cation of  coal and gas outburst based on PSO-
CSA. Mathematical Problem in Engineering 
2023; 2023: e5299986. doi: 
10.1155/2023/5299986. 

7. Lin H, Zhou J, Jin H, et al. Cooperative predic-
tion method of  coal and gas outburst risk 
grade based on feature selection and machine 
learning algorithm. Journal of  Mining & Safety 
Engineering 2023; 40(2): 361–370. doi: 
10.13545/j.cnki.jmse.2022.0010. 

8. Fu H, Zhao J, Liu H, et al. Signal identification 
of  fracture in gas bearing coal based on dual 
strategy coupling optimization. China Safety Sci-
ence Journal 2022; 32(10): 40–47. doi: 
10.16265/j.cnki.issn1003-3033.2022.10.1868. 

9. Li B. Research on early warning method of  coal 
and gas outburst based on deep learning and 
multi-source information fusion [PhD thesis]. 
Beijing: China University of  Mining and Tech-
nology; 2021.

 



Journal of AppliedMath 2023; 1(1): 68. 

Original Research Article 

30 

Towards a solution to the problem of safety management of structur-
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ABSTRACT: The non-isolation of modern, structurally complex, multi-

purpose systems implies not only their interaction with the external envi-

ronment, but also the impact of this environment on the systems them-

selves. The ability to predict and assess the consequences of these impacts, 

which are characterised by great uncertainty about the time, place and 

method of implementation, as well as the choice of a particular object of 

influence, is a task of extreme urgency in today’s globalised world. If the 

stability of functioning of any structurally complex system is understood 

as the achievement by it of the purpose of its functioning with acceptable 

deviations on the volumes and times of implementation of private tasks, 

the safety management in this system is reduced, in fact, to minimisation 

of unplanned losses at the occurrence of abnormal situations of various 

kinds and to carrying out of measures for their prevention. The success of 

such tactics depends largely on the effectiveness of the risk management 

system, on the ability of decision-makers to foresee the possibility of 

poorly formalised threats turning into significant risks, i.e., on having 

methods and tools for ranking threats and significant risk factors. Inevita-

bly, there is the task of setting protection priorities, ranking objectives (usu-

ally of different types), problems and threats, and reallocating available 

(usually limited) resources. The article considers the issues involved in 

building an integral security model that takes into account the risks to the 

assets being protected. 

KEYWORDS: structurally complex system; objects of protection; security 

threat; risk; system significance; integral assessment 

1. Introduction

Ensuring the security of any object implies

a certain set of measures to counter threats to 

that object, i.e., the concept of threat is funda-

mental because the security system is based on it. 

The resolution of the uncertainty associated with 

the implementation of threats is achieved by 

building a security system based on the so-called 

principle of equal protection. This principle un-

derlies, for example, the development of require-

ments to ensure the security of critical transport 

infrastructure. The concepts considered in con-

nection with the definition of threats allow to 

build the basic scheme of their interaction in the 

form of a model of threats to a separate object, 

group or class of homogeneous objects. For ex-

ample, compressor stations of gas transportation 

systems can be recognised as homogeneous ob-

jects with respect to the spectrum of threats to 

critical elements of their infrastructure, since all 

types of these objects have the same infrastruc-

ture according to the intrasectoral classification 

and differ from each other only by the scale of 
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production activities and the characteristics of 

individual critical elements. 

Both domestic and foreign researchers have 

paid attention to the problems of safety and sta-

bility studies of structurally complex technical 

systems. The reliability of technical systems and 

methods of their risk assessment were developed 

by Kumamoto and Henley[1]. Vemuri[2] consid-

ered typical characteristics of complex technical 

systems widely spread in the national economy, 

indicators of their efficiency, reliability, quality 

of management. In his works a lot of attention 

was paid to methods of modelling the most im-

portant classes of complex systems (mass service 

systems, discrete and continuous production 

processes). Interesting are the later studies of 

Rainshke and Ushakov[3,4], in which they applied 

traditional models and approaches of reliability 

theory to solve problems of rational allocation of 

resources for protection of critical infrastructure 

objects. The logical and probabilistic approach 

to the analysis of reliability and safety of struc-

turally complex systems was developed by 

Ryabinin[5], Solozhentsev[6], and Mozhaev et al.[7]. 

Glushkov et al.[8] introduced a new class of dy-

namical models based on nonlinear integro-dif-

ferential equations with prehistory. They devel-

oped approaches to modelling so-called evolving 

systems, proved theorems on the existence and 

uniqueness of solutions describing their systems 

of equations. 

In their papers, Ushakov[9–11] and Levitin[12] 

presented innovative approaches to the problem 

of protecting large numbers of critical facilities. 

The work of these and many other authors 

has allowed us to view safety as a control prob-

lem. Since in most cases, the causes of an abnor-

mal situation are combined; only part of the un-

certainty that can be explained separately by ex-

ternal or separately by internal causes can be sta-

tistically eliminated. This problem can be solved 

by applying principles known from simulation 

and similarity theory. 

Risk analysis is the only way to investigate 

those safety issues that cannot be answered by 

statistics, such as accidents with low probability 

of occurrence but high potential consequences. 

Of course, risk analysis is not the solution to all 

safety problems, but it is the only way to com-

pare risks from different hazards, highlight the 

most important ones, choose the most efficient 

and cost-effective systems to improve safety, de-

velop measures to reduce the consequences of 

accidents, etc. It is important to remember that 

risk analysis issues cannot be considered sepa-

rately from game formulation. Today, however, 

the main formulas used in risk analysis have 

been greatly simplified and their affiliation to 

game theory has almost been forgotten. Risk, as 

a dynamic property depending on time, means 

and information, has been reduced to “two-di-

mensional estimates” of probability and damage. 
It is possible to say that in modern risk analysis 

the theories of durability and reliability are “left”, 
but research on the theory of survivability, the 

theory of homeostasis, adaptive theories, includ-

ing the theory of choice of decisions, the theory 

of perspective activity, the theory of reflexes, the 

theory of self-organising systems and others is 

curtailed. 

2. General formulation of the 

safety management problem 

The non-isolation of a complex system im-

plies its interaction with the external environ-

ment and the impact of that environment on it. 

This impact can be interpreted in a very broad 

sense: it can be natural disasters (e.g., earth-

quakes leading to the destruction of dams and 

other structures), large-scale accidents (e.g., an 

explosion in a nuclear power plant leading to the 

disruption of electricity supply to the entire re-

gion), as well as illegal actions, where the range 

of impact is the widest. Such malicious external 

influences are characterised by great uncertainty 

about the time, place and method of execution, 

as well as the choice of a specific object for the 

action. 
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The importance of the object to the initiator 

of such an “active action” coincides with the im-

portance of that object to the owner of the system. 

More important objects require a higher level of 

protection because actions against them lead to 

more serious losses. It follows that the assess-

ment of the systemic importance of the objects of 

a complex open-ended dynamic system should 

be carried out using the mathematical apparatus 

of game theory and, more generally, the theory 

of conflicting systems. 

The first work formulating the principles of 

scientific analysis of actions in conflict situations, 

a book by Morgenstern and von Neumann[13], 

was published in 1944. It unleashed a flood of 

mathematical research on games and solutions, 

which contributed significantly to the develop-

ment of rules of optimal behaviour for a wide 

class of conflict situations, i.e., the development 

of optimal management strategies. Game theory, 

as it has developed to the present day, is inevita-

bly normative in nature: the player applying it 

learns what he must do, what strategy he must 

choose, in order to secure a favourable outcome. 

But like many abstract mathematical models, the 

game-theoretic model of conflict is limited[14]. It 

cannot reveal the nature of conflict, the hidden 

sources of human activity in a conflict situation. 

It is possible to put oneself in the position of 

one of the parties and to seek actions aimed at 

achieving a certain goal. In doing so, we must 

take into account the opposition of the opponent, 

whose goal is the opposite of ours. If, in this sit-

uation, we choose one of the possible strategies 

of behaviour, it is necessary to have a justifica-

tion that this strategy is the best. We encounter 

this type of scheme when solving problems in op-

erations research[15]. Since we rarely have all the 

necessary information about the “opponent” 
(about his goals, resources and strategies), we 

have to make decisions under conditions charac-

terised by this or that degree of uncertainty, i.e., 

by the degree of ignorance of the party making 

the decision (i.e., the decision-maker (DM)) 

about these conditions. According to the infor-

mation available about the “enemy” in the study 
of operations, the choice of strategy is usually 

based on the principle of a guaranteed result: 

whatever decision the “enemy” makes, the “de-
fending” party must be guaranteed some gain. 
The conflict situation, although included in the 

model of an operation planned by one of the par-

ties, is not the subject of independent research. 

In the specific tasks of operations research, the 

activity of the conflicting parties is not consid-

ered as a special type of human activity, and the 

conflict as such serves only as a background 

against which the actions of the parties are pro-

jected. 

In mathematical game theory, the problem 

is much the same. Whether it is a real opponent 

or nature, the object of study is the choice of 

strategy, the choice of behaviour. The principle 

of a guaranteed outcome in game theory is con-

cretised in the criteria for choosing a solution. 

The difference may be that “game theorists” 
work with game models from the position of ob-

jective research (both sides act in the model as 

equal partners), while researchers of operations 

necessarily take the position of one of the sides. 

3. Model of the impact of on ob-

jects 

We can assume that the importance of the 

object to the system and to the intruder is in most 

cases the same, which means that the required 

level of object protection must be determined by 

considering the nature of possible attacks. Three 

sources, or combinations thereof, can be consid-

ered as such attacks. 

Firstly, the most common “local crime” 
and related offences that affect the economic ac-

tivity of facilities is usually theft. It also includes 

hooliganism (vandalism) and protest actions. 

The level of such crime is likely to correlate with 

the level of general crime in the region where the 

facility is located. The latent (hidden) part of this 

type of crime can be measured quite adequately 

by indicators such as the unemployment rate, the 
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proportion of migrants and the educational level 

of the population. 

Second, there is the migration of domestic 

criminal and terrorist activity. Zones of active 

terrorist activity tend to grow: along with the mi-

gration of able-bodied people from “hot spots”, 
criminal groups “squeezed out” by law enforce-
ment also migrate. The most telling indicator of 

this profile is the distance of the facility from ar-

eas of increased terrorist activity. 

Third, these are specially trained terrorist 

and subversive groups, sent in whole or in part 

in the form of instructors from abroad. The ac-

tions they carry out are characterized by well-

thought-out, preparedness and non-randomness 

(the planned nature of the activity and the 

weighted measurement of the feasibility of one 

or another action to inflict damage). 

To solve the problem, the following ap-

proach is proposed by Bochkov[16,17]. Violators 

are classified according to their level of prepar-

edness 𝑗 (𝑗 = 0,1,… , 𝐽). Zero level (𝑗 = 0) corre-

sponds to the lowest level of preparedness. A 

maximum level (𝑗 = 𝐽) corresponds to a super-

prepared subversive group. Let us assume that 

an attack by an attacker of j-th level will require 𝑍𝑗 units of resources. It is natural to assume that 

the higher level j is, the more resources are 

needed 𝑍𝑗  (a more serious attack requires from 

intruders fundamentally more resources for its 

preparation: time, qualified personnel, studying 

functioning of objects and their security systems, 

etc.). It is also natural to suppose that the total 

resources of criminal world are limited (fighters, 

equipment, weapons), and hence the model of 

integral profile of intruders will be a tuple of 

number (intensity) of attacks of appropriate level 

of preparedness �⃗⃗� = {𝑁0, 𝑁1, … , 𝑁𝐽}  taking into 

account the above-mentioned limitations: 

{ 
 𝑁𝑗 ≤ 𝑁𝑗,max (𝑗 = 0,1, … , 𝐽),∑(𝑁𝑗 × 𝑍𝑗) ≤ 𝑍𝐽

𝑗=0 ,  

(1) 

where 𝑍 is the total amount of money allocated 

by crime to prepare and execute attacks on facil-

ities. 

The system of restrictions Equation (1) al-

lows us in the problem under discussion to dis-

card “extreme” variants, namely: the conditions 
of a terrorist or subversive “war”, when the value 𝑍 is large, as well as the conditions of a mass up-

surge of low-preparedness crime (large 𝑁0,max , 

i.e., in other words, the system under study is not 

like a supermarket in terms of consumer value, 

so that the population rushes to “disperse valua-
bles” available at its facilities). Dangerous indus-
trial facilities, due to their fire and explosion haz-

ard, are also remote enough from populated ar-

eas that they could be affected by a surge of van-

dalism. 

Thus, in solving the problem of determining 

the systemic importance of targets, the criminal 

underworld is seen as a source of a variety of ex-

ternal attacks on targets, but a source that still 

has limited resources. High and medium level at-

tacks pose the greatest threat. It is reasonable to 

assume that the criminal underworld will use the 

full range of its capabilities, i.e., we should ex-

pect both major attacks, which would “econom-
ically bankrupt” the owner, forcing him to spend 
excessive resources on reinforcing the physical 

protection of his facilities, and medium-prepared 

attacks, since over-prepared attacks are not fea-

sible if the owner does not have the resources to 

protect all his facilities. For example, the level of 

protection of nuclear facilities for a system con-

sisting of thousands of facilities is, in principle, 

unattainable. 

In addition, crime is an active player: the 

choice of a target for an attack and a suitable way 

of carrying it out is an inherent advantage. At the 

same time, crime has an incomplete and inaccu-

rate understanding of the current state of protec-

tion of the targets to be attacked, as well as the 

amount of damage it will cause if the attack is 

successful. These two nuances will be taken into 

account in further reasoning when formulating 
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an optimisation problem that matches the at-

tacker model with the target model. 

4. Protection profile model 

So, consider some (𝑘-th) object. As a result 

of the supposed attack of intruders of this or that 

level of preparation to this object, through its 

complete (or partial) loss of serviceability, a cer-

tain damage will be caused. Let us denote it by 𝑋. Given that not every attack a priori leads to 

the success of the attacker, the protection profile 

of the 𝑘-th object can be described by interval 

representations by setting four matrices: 𝑄min[𝑘] (𝑖, 𝑗), 𝑄max[𝑘] (𝑖, 𝑗), 𝑋min[𝑘] (𝑖, 𝑗), 𝑋max[𝑘] (𝑖, 𝑗) 
(2) 

where 𝑖 (𝑖 = 0,1,… , 𝐼[𝑘])  level of protection of 

the 𝑘 -th object (the zero level ( 𝑖 = 0 ) corre-

sponds to the current state of protection). 

The interpretation of the matrix elements is 

as follows: if the specified object 𝑘 with defense 

level i will be attacked by an adversary with pre-

paredness level j, then with probability from 𝑄𝑚𝑖𝑛[𝑘] (𝑖, 𝑗) to 𝑄𝑚𝑎𝑥[𝑘] (𝑖, 𝑗) the whole system will be 

damaged with probability from 𝑋min[𝑘] (𝑖, 𝑗) 
to 𝑋max[𝑘] (𝑖, 𝑗). 

Clearly, the values of Equation (2) will in-

crease as the level of preparedness of the “at-
tacker” j increases and will decrease as the level 

of defense of the object i increases. 

It is obvious that protection at any level re-

quires certain material costs both on the part of 

the owner and the state. Let’s denote the cost of 
creating and maintaining object protection 𝑘 at 

the i-th level as 𝑌[𝑘](𝑖[𝑘]). 
Since the total resource allocated to protect 

all objects is limited, the inequality must be sat-

isfied: ∑𝑌[𝑘](𝑖[𝑘])𝑘 ≤ 𝑌 

(3) 

where 𝑌 is the sum of all costs for the protection 

of objects under the assumption that for each ob-

ject 𝑘 the variant of protection system is chosen 𝑖[𝑘]. 
If criminals did not have the advantage of 

target selection and attack options, that is, if 

criminality were indiscriminate like nature or 

technological failures, then the “optimal” secu-
rity profile of objects could be achieved through 

the sequential execution of the following algo-

rithm: 

Step 1. Estimate the probabilities 𝜆[𝑘](𝑗) of 

each 𝑘-th object being attacked by an adversary 

of j-th level of preparedness; 

Step 2. Calculate the median value of the 

risk of an enemy attack on the 𝑘-th object 𝑗 of 

level of readiness for the 𝑖[𝑘]-th variant of reali-

zation of the defense system of the object: 𝑅[𝑘; 𝑖[𝑘]]=∑{𝜆[𝑘](𝑗) × (𝑄min[𝑘] (𝑖[𝑘], 𝑗) + 𝑄max[𝑘] (𝑖[𝑘], 𝑗)2 )𝐽
𝑗=0× (𝑋min[𝑘] (𝑖[𝑘], 𝑗) + 𝑋max[𝑘] (𝑖[𝑘], 𝑗)2 )}  

(4) 

Step 3. Determine the amount of risk 

averted per unit of funds invested in protection 𝜃[𝑘, 𝑖[𝑘]]: 𝜃[𝑘, 𝑖[𝑘]] = 𝑅[𝑘, 𝑖[𝑘]]𝑌[𝑘](𝑖[𝑘])  

(5) 

Step 4. Select for each 𝑘-th object the max-

imum of the values 𝜃[𝑘, 𝑖[𝑘]]: 𝜃[𝑘, 𝑖∗[𝑘]] = max𝑖[𝑘] {𝜃[𝑘, 𝑖[𝑘]]}  

(6) 

i.e., at the chosen variant 𝑖∗[𝑘] the maximum risk 

reduction per unit of invested funds for the 𝑘-th 
object is observed. 

Step 5. Make a ranked list of objects, plac-

ing them in descending order of the value of the 

indicator 𝜃[𝑘, 𝑖∗[𝑘]] and then count the first �̃� 

objects in the list such that the total cost of their 

protection is invested in the allocated funds 
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𝑌and for the (�̃� + 1)-th object the resources are 

not enough. 

The essence of the above procedure is sim-

ple and straightforward: it makes no sense to 

seek funds for additional protection for those ob-

jects that are not threatened by anything (the 

threat values of attacks are small 𝜆[𝑘](𝑗)). It is in-

expedient to additionally protect those objects 

whose temporary loss of functionality has al-

most no effect on the value of total losses (i.e., 

small 𝑋max[𝑘] (𝑖[𝑘], 𝑗)). And finally, additional pro-

tection is unreasonable for those objects that are 

already so well protected that the reduction of 

losses can be achieved in principle, but by inad-

equately large means (i.e., small values 𝜃[𝑘, 𝑖∗[𝑘]]). 
The key point of the algorithm described 

above is the compilation of a ranked list of ob-

jects by the criterion of minimizing the mathe-

matical expectation of loss per unit of investment 

in their protection (in their sustainable function-

ing). 

The Equation (4) clearly shows the need to 

collect and estimate data on three components: 

on the values of losses caused by the implemen-

tation of attacks 𝑋min[𝑘] (𝑖, 𝑗), 𝑋max[𝑘] (𝑖, 𝑗) and the in-

dicator of “aggressiveness of criminal environ-

ment” 𝜆[𝑘](𝑗) and on the dependence of risks on 

types of objects 𝑘. 

The values of losses 𝑋, due to the fact that 

the objects of a complex system are not autono-

mous, should reflect the system effect (or socio-

economic multi-effect), which increases signifi-

cantly depending on which of the consumers of 

the products of the attacked object will suffer due 

to the reduction of its performance. Conse-

quently, it is necessary to consider not the aver-

age, but the upper limits of damage indicators 

and to introduce an additional fourth compo-

nent—the indicator of the importance of contin-

uous operation of the object in connection with 

the cascade effect of strengthening the conse-

quences of the object performance loss for other 

objects of the system and other objects of other 

systems interacting with it. 

Finally, the model additionally requires the 

introduction of another component, the need for 

which is due to the fact that the adversary imple-

ments an active, targeted choice of attack, while 

having value factors and priorities unknown ei-

ther to security experts or to the competent au-

thorities of the state, which shift values 𝜆[𝑘](𝑗) 
from the “weighted average” (e.g., by industry). 
Sometimes, these “additional” values are spe-
cific: terrorists, for example, are prone to exces-

sive bloodshed and hostage-taking, ritual murder, 

etc. Often, the systemic importance of protection 

of specific facilities temporarily increases during 

the stay there of the first persons of the state, 

ministers, especially during the commissioning 

of politically important production facilities not 

only internationally, but also regionally within 

the country. These circumstances should be 

taken into account and an additional component, 

the correction factor, should help. 𝜇[𝑘], initially 

equal for all objects to unit, and which can be, 

according to LDP or experts, increased so that to 

increase the priority of inclusion of 𝑘-th object in 

the list of objects, equipped with additional pro-

tection measures for the reasons, not considered 

by rules, common for all objects. To some extent, 

the expediency of introducing the indicator 𝜇[𝑘], 
becomes clearer from the following composition 

of the two models considered above. 

5. Integration model 

So let �̃�  an estimate of the total resource 

available to the forces interested in violating the 

security of some objects. If �̃� < 𝑍, then the de-

fending party underestimates the adversary’s ca-

pabilities; if �̃� > 𝑍, on the contrary, there is an 

overestimation of his forces. Further we will as-

sume that at the moment of choosing the attack, 

the intruder has his own ideas about the amount 

of resources allocated by the owner to protect his 

objects, i.e., he also has some ideas about how 
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the “zero option” known to him could have 
changed. 

Intruders have the right to choose targets, 

and they are able to choose the sets of objects 

they will attack. Let their choice be based on 

their own model of expected damage, that is, 

they have four analogous Equation (2) matrices 

at their disposal for each of the objects: �̃�min[𝑘] (𝑖, 𝑗), �̃�max[𝑘] (𝑖, 𝑗),  �̃�min[𝑘] (𝑖, 𝑗),  �̃�max[𝑘] (𝑖, 𝑗)  and 

their own idea of how many resources �̃� is spent 

by the owner to protect all objects in the system. 

Similarly, if �̃� < 𝑌, then the adversary underes-

timates the ability to protect the objects and, if �̃� > 𝑌, then he overestimates them. 

Obviously, the estimates �̃�min[𝑘] (𝑖, 𝑗),  �̃�max[𝑘] (𝑖, 𝑗),  �̃�min[𝑘] (𝑖, 𝑗), �̃�max[𝑘] (𝑖, 𝑗)  can 

also be both overestimated and underestimated 

by intruders; nevertheless, in accordance with 

their right of choice, they choose such a set of 

objects for attack and such options of intruder 

preparedness for each object, at which the maxi-

mum damage is caused. 

Let us denote the characteristic function by 𝛿[𝑘](𝑖, 𝑗), which means that against the 𝑘-th ob-

ject with the expected level of protection 𝑖 (𝑖 =0,1,… , 𝐼[𝑘]), the attack of level 𝑗 (𝑗 = 0,1, … , 𝐽[𝑘]) 
is chosen. If for all 𝑖 (𝑖 = 0,1,… , 𝐼[𝑘]), values of 𝛿[𝑘](𝑖, 𝑗) are equal to zero, then the 𝑘-th object 

will not be subject to an attack level of j. If for all 

j and all I, values of 𝛿[𝑘](𝑖, 𝑗) are equal to zero, 

then the 𝑘-th object under the enemy’s assumed 
targeting variant is completely dropped from the 

target list. 

If for some 𝑖̃ , value 𝛿[𝑘](𝑖,̃ 𝑗(𝑖)̃) = 1,  we 

consider that the object 𝑘 with defense level 0 is 

chosen by the adversary as a target for an attack 

with the preparedness level 𝑗(𝑖̃). 
The listed properties are written down by a 

system of equations: 

{  
  ∀𝑘∀𝑖∀𝑗 𝛿[𝑘](𝑖, 𝑗) × (1 − 𝛿[𝑘](𝑖, 𝑗)) = 0,
∀𝑘 (∑∑𝛿[𝑘](𝑖, 𝑗) − 1𝐽

𝑗=0
𝐼𝑘
𝑖=0 ) × (∑∑𝛿[𝑘](𝑖, 𝑗)𝐽

𝑗=0
𝐼𝑘
𝑖=0 ) = 0  

(7) 

Considering that ∀𝑗∑∑𝛿[𝑘](𝑖, 𝑗) = 𝑁𝑗𝑘
𝐼𝑘
𝑖=0   

(8) 

and supplementing Equations (7) and (8) with a 

system of constraints in Equation (1), then we 

obtain an estimate of the total damage to the ob-

ject: �̃�=∑∑∑{𝛿[𝑘](𝑖, 𝑗)𝐽
𝑗=0

𝐼𝑘
𝑖=0𝑘× (𝑄min [𝑘] (𝑖[𝑘], 𝑗) + 𝑄max [𝑘] (𝑖[𝑘], 𝑗)2 )

× (𝑋min [𝑘] (𝑖[𝑘], 𝑗) + 𝑋max [𝑘] (𝑖[𝑘], 𝑗)2 )} 
 

(9) 

Let us denote �̃� as �̃�(𝑉𝑎𝑟𝐼 , 𝑉𝑎𝑟𝐽), underlin-

ing that �̃� depends on both the variant of defend-

ing objects 𝑉𝑎𝑟𝐼, and on the variant of the attack 𝑉𝑎𝑟𝐽. 
Looking for the maximum �̃� for all variants 

of attacks satisfying the constraints, when con-

sidering all variants of equipping with additional 

protection as parameters: �̃�∗(𝑉𝑎𝑟𝐼) = max𝑉𝑎𝑟𝐽{�̃�(𝑉𝑎𝑟𝐼 , 𝑉𝑎𝑟𝐽)} 
(10) 

Thus, it is postulated that the adversary 

chooses the worst option for the defending party. 

Consequently, the problem of defense comes 

down to limiting the set of choices for the adver-

sary—we look for such a reinforcement of ob-

jects that minimizes �̃�∗(𝑉𝑎𝑟𝐼). That is, the secu-

rity management problem is reduced to find an 

equilibrium value �̃�∗∗: �̃�∗∗ = min𝑉𝑎𝑟𝐼{�̃�∗(𝑉𝑎𝑟𝐼)} 
(11) 

The proposed formulation has the typical 

form of game theory problems. The solution of 

this problem is a Nash equilibrium—saddle 

point (𝑉𝑎𝑟𝐼∗ , 𝑉𝑎𝑟𝐽∗): 
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�̃�∗∗ = �̃�(𝑉𝑎𝑟𝐼∗ , 𝑉𝑎𝑟𝐽∗) 
(12) 

At this point, it is not advantageous for the 

defender to change his equipment strategy 𝑉𝑎𝑟𝐼∗, 
because outside of this strategy, the opponent 

has opportunities for more “sensitive” strikes. 
At the same time, it is not advantageous for 

the attacker to change his plan 𝑉𝑎𝑟𝐽∗(𝑉𝑎𝑟𝐼∗), be-

cause any change leads to a reduction in the total 

damage it seeks to inflict on the individual ob-

jects of the system, and through them the entire 

system and the state as a whole. 

The problem in this formulation theoreti-

cally has a very large dimension, has great com-

binatorial complexity, but is quite solvable due 

to the monotonicity of the criteria used and the 

linearity of the constraint systems. 

The main problems in solving this problem 

are of an information-technological rather than 

a mathematical nature: 

• For each 𝑘-th object, it is necessary to 

have estimates of the consequences of possible 

enemy attacks of different levels of preparedness 

j, which is not yet achievable in practice; 

• For the whole system, it requires con-

sideration of the risks to which objects are ex-

posed, in a set of possible, including poorly for-

malized threats: the more effective optimization 

of protection is the more accurate the assessment 

of the potential capabilities of the enemy (and 

they are heterogeneous in both the technological 

and the regional aspect). 

Within the framework of the considered 

statement, which takes into account the complex 

impact of a potential adversary, radically 

changes the understanding of assessing the effec-

tiveness of defense systems. Thus, due to the lim-

ited resources available to intruders, it is natural 

to expect them to shift their targeting from well-

protected objects (with low expected effective-

ness of attacks) to less protected objects (with 

greater effectiveness, but with less one-time dam-

age). 

Obviously, it is irrational to additionally 

protect facilities that are not attacked. Perhaps 

that is why they are not attacked, because rou-

tine work is being done to reinforce the guards. 

Another key element of the problem under con-

sideration is that the search for effective solu-

tions on both opposing sides lies largely in the 

information plane: 

• The criminal, when preparing to attack 

a target, ideally looks for accomplices to help 

him choose a target that is achievable given his 

level of preparation and equipment; 

• The defense system would have been 

capable of more concentrated counteraction if it 

had known the intentions of crime. 

That is wh,y in the description of the above-

mentioned procedure, it has been repeatedly em-

phasised that we are talking only about assess-

ments on both sides. Because of the irreducible 

uncertainty of the assessments, as a solution of 

the problem of working out the strategy and tac-

tics of strengthening the protection of objects 

against possible illegal actions, including terror-

ist acts and attacks of subversive groups, it is rea-

sonable to “load” the game statement[14]. In this 

coarsening, we should “idealise the enemy’s ca-

pabilities” and toughen the characteristics of 
possible losses, for example, by switching from 

median to maximum risk estimates. 

As noted above, the adversary’s develop-
ment of a plan begins with the procedure for se-

lecting targets, i.e., their ranking. Since the 

meaning for the “attacker” and the “defender” is 
usually the same, let us consider the problem of 

ranking in more detail. 
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6. Model for assessing the level of 

impact of negative factors and 

justification of the scale of meas-

urement of threats to the stability 

of the functioning of facilities, 

taking into account their specifics 

Many current rating systems are based only 

on the results of the evaluation of one of the in-

dicators describing the objects (for example, the 

activities of economic subjects, and their critical-

ity)[19,20]. 

However, in practice, both criticality and 

unconditional vulnerability of objects (in the 

problems of ranking objects by their system sig-

nificance and ensuring safe functioning of these 

objects) are composed of a large number of as-

sessments by private criteria. The importance of 

these criteria is not known in advance and the 

problem of multicriteria ranking[21,22] under con-

ditions of uncertainty[23,24]. This is very important 

for the analysis of systems of with different pur-

poses[25,26]. 

6.1 Selection function language 

Let us define on some set of objects 𝑂 ={𝑜1, … , 𝑜𝐷}  a logical function 𝜋: 𝜋(𝑜) → {0,1} , 

which indicates that the alternative 𝑜 is mapped 

to some subset of 𝜋(𝑜) (𝜋(𝑜) = 1)  or not (𝜋(𝑜) = 0). The function 𝜋(𝑜) will be called the 

selection function. The subset 𝜋(𝑜), in particular, 

can be a subset of the most systemically im-

portant critical infrastructure objects (CIPOs) or 

a subset of objects for which it is potentially nec-

essary to implement additional protection 

measures. In general, the selection functions can 

be arbitrary, but in order for their use to give a 

correct description of the acts of selection, it is 

necessary to 𝜋(𝑜) to impose a number of con-

straints or the so called axioms of choice[27]. 

If the selection problem has a solution, it 

can be used to rank all objects 𝑂 = {𝑜1, … , 𝑜𝐷} 
according to their systemic importance. Here 𝐷 

is the total number of objects. 

With this in mind, let us describe the pro-

posed ranking algorithm. 

Step 1. By applying the function 𝜋(𝑂), we 

find the most systematically important objects 𝜋(𝑂 = 𝑂[1]+) = 𝑂[1] = {𝑜1,1, … , 𝑜1,𝐷1}. Next, by 

“removing” 𝐷1 objects included in the 𝑂[1] from 𝑂, we get an opportunity to make a choice on set 

of remained objects 𝑂[2]+ = 𝑂[1]+Ο[1]. 
Step 2. 𝐷2  objects 𝜋(𝑂[2]+) = 𝑂[2] ={𝑜2,1, … , 𝑜2,𝐷2}  followed by their deletion: 𝑂[3]+ = 𝑂[2]+\Ο[2]. 
Then, the procedure of selection and dele-

tion at step s is repeated 𝑠 = 3,4,…: {𝜋(𝑂[𝑠]+) = 𝑂[𝑠] = {𝑜𝑠,1, … , 𝑜𝑠,𝐷𝑠},𝑂[𝑠+1]+ = 𝑂[𝑠]+\Ο[𝑠]   

(13) 

the algorithm is complete when all objects from 

the set 𝑂 are “disassembled” into sets 𝛰[𝑠]: {𝑂 = 𝑂[1] ∪ 𝑂[2] ∪ …∪ 𝑂[𝑠],𝐷 = 𝐷1 + 𝐷2 +⋯+ 𝐷𝑠   

(14) 

The rule for determining the system signifi-

cance of any object in this constructional solu-

tion is simple: the more significant the object is, 

the earlier 𝑠 it is chosen as an element of the set 𝑂[𝑠]. The objects that happen to be in the same 𝑂[𝑠] are considered to be of equal importance. 

But in the general case of the objects of a 

complex system perform different functions, dif-

ferent assessments of the results of their activities 

(or the consequences of their failure), and, there-

fore, it is important not only to know how much 

(how many times) one type of object is more sig-

nificant than another, but also to be able to com-

pare the estimates of objects of different types. 

This requires the introduction of additional 

axioms specifying classes of selection functions 

among heterogeneous objects, but it should be 

understood that so far the general problem of se-

lecting such axioms for collections of objects 

containing objects of different types has not been 

solved. There are several reasons for this, among 

the most important ones the following should be 

noted: 
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• large dimensionality of the choice prob-

lem; 

• diversity of data; 

• the presence of “missing values”; 

• Noisiness: the presence of fuzzy and 

random indicators; 

• multicriteria. 

For these reasons, it is advisable to solve the 

problem of ranking a large set of objects of dif-

ferent types in several stages. At the first stage for 

objects of each type, it is necessary to construct 

private models of system significance estimation 

of objects of the selected type and to carry out 

the ranking by them. At the second stage, it is 

required to “stitch” the ranked lists of objects 
into a unified list. At the third stage, correction 

of values of estimations where it is necessary to 

take into account special conditions of function-

ing of separate objects is carried out. 

To date, a number of standardized ap-

proaches to describing choice have been devel-

oped. The simplest option is to assume that for 

all alternatives 𝑥 ∈ 𝑋  can be given a function 𝑄(𝑥) which is called a criterion (a quality crite-

rion, a target function, a preference function, a 

utility function, etc.) and has the property that if 

an alternative 𝑥2 is preferable to alternative 𝑥1, 

then 𝑄(𝑥2) > 𝑄(𝑥1). Choice as maximization of 

a criterion is reduced to the search for such a 

value 𝑥∗ ∈ 𝑋, which achieves the maximum of 

function 𝑄(𝑥) on the set of alternatives 𝑋: 𝑥∗ =argmax 𝑄(𝑥). 
Often, however, constructing a utility func-

tion 𝑄(𝑥)  is either very difficult or practically 

impossible, since the options being compared are 

similar to the choices for a person when he is of-

fered either only “to drink” or only “to breathe”. 
At the same time, the ideas of construction of 

utility functions for choice can be useful at the 

initial stages of selection of variants when LDP 

on a limited amount of data tries to interpolate 

some nonlinear scale of utility. 

6.2 On solving multi-criteria problems 

The practice of decision-making in scientific, 

design, management and entrepreneurial activi-

ties shows that in the vast majority of cases there 

are several, and in some situations a very large 

number of criteria according to which it is neces-

sary to optimise the parameters of technical sys-

tems or evaluate management decisions. Multi-

criteria methods are used in problems where it is 

necessary to choose compromise solutions, for 

example between price and quality, expected 

profit and possible risk. 

So, let the evaluation of an alternative 𝑥 

several criteria be used 𝑞𝑖(𝑥) (𝑖 = 1,… , 𝑝). If for 𝑥, there is an alternative 𝑥∗, which is not worse 

than 𝑥  by all criteria 𝑞𝑖(𝑥∗) ≥ 𝑞𝑖(𝑥) (𝑖 =1,… , 𝑝), and there is at least one criterion 𝑞𝑗(𝑥) (𝑗 ∈ {1,… , 𝑝}) such that a strict preference on 

this criterion is satisfied 𝑞𝑗(𝑥∗) > 𝑞𝑗(𝑥), then we 

will say that 𝑥∗ dominates over 𝑥, and the alter-

native 𝑥 with respect to 𝑥∗ is dominant. The re-

lation between the elements of the set of alterna-

tives introduced in this way defines a partial or-

der relation on this set. 

The variant 𝑥 ∈ 𝑋 will be called Pareto-op-

timal if there is no single option 𝑥∗ ∈ 𝑋 dominat-

ing 𝑥. The allocation of the set of Pareto-optimal 

solutions is the first step in the search for optimal 

alternatives. By construction, the elements of 

this set are incomparable with each other, and 

none of the Pareto-optimal solutions cannot be 

improved by any criterion without worsening 

the values of other criteria. 

The Pareto-optimal set of solutions is con-

structed by discarding the dominant options. In-

itially, the Pareto-optimal set contains alterna-

tives with maximum values of partial criteria. 

Figure 1 illustrates the process of construction of 

such set in two-dimensional parameter space. 
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Figure 1. The process of building a Pareto-optimal set on 

many possible solutions. 

For the solution variant, a rectangle is con-

structed, the corner points of which are the 

origin of coordinates and the point correspond-

ing to the solution variant. Figure 1 shows that 

point 1 dominates over points 2 and 3 (points 2 

and 3 are inside the rectangle for point 1), and 

point 4 additionally dominates over points 5, 6, 

and 7. Thus, point 1 and point 4 form a Pareto-

optimal set. The process is repeated for all points 

of the set 𝑋. 

So, let the evaluation of an object 𝑜 several 

criteria be used 𝑞𝑖(𝑥 (𝑜)) (𝑖 = 1,… , 𝑟). If for an 

object 𝑜, there is an alternative 𝑜∗, which is not 

worse than 𝑜  according to all criteria 𝑞𝑖(𝑥 (𝑜∗)) ≥ 𝑞𝑖(𝑥 (𝑜)) (𝑖 = 1,… , 𝑟), and there is 

at least one criterion 𝑞𝑗(𝑥 ) (𝑗 ∈ {1,… , 𝑟})  such 

that a strict preference on this criterion is satis-

fied 𝑞𝑗(𝑥 (𝑜∗)) > 𝑞𝑗(𝑥 (𝑜)), then we will say that 𝑜∗ dominates over 𝑜. Accordingly, the alterna-

tive 𝑜 with respect to 𝑜∗ is dominant. As already 

mentioned, the relation between the elements of 

the set of alternatives introduced in this way de-

fines a partial order relation on this set. 

The variant 𝑜 ∈ 𝑂 will be called Pareto-op-

timal if there is no single option 𝑜∗ ∈ 𝑂 dominat-

ing 𝑜. 

When the dimensionality is large 𝑟 , it is 

likely that the set of Pareto-optimal solutions 

may consist not only of a large number of ele-

ments, but also have a complex multi-connected 

structure. Due to the fact that a limited number 

of objects and a limited number of coordinates in 

which these objects admit a “visual” image are 

available to the LPR, there is a natural task of 

further selection of variants. 

Note that when all criteria are a priori 

equivalent and it is impossible to replace some 

criteria by others, further selection (selection op-

timization) is impossible. In this case, the proce-

dure of search for solutions of a multicriteria 

problem is completed by a list of Pareto-optimal 

solutions. 

In other cases, the simplest variant of choos-

ing the best variant is realized when the criteria 

are fundamentally unequal, namely, when the 

best variant is chosen from the previously se-

lected candidates to the best ones. For this pur-

pose, the so-called lexicographic ordering of the 

set is often used 𝑂: first in 𝑂, the best elements 

(variants of solutions) with the maximal value 

according to the criterion 𝑞1 and all other ele-

ments 𝑂 are discarded. If the remaining subset 

contains more than one element, then the best 

elements by criterion are chosen among these el-

ements 𝑞2. Further, if necessary, it is necessary 

to optimize and discard options, using the crite-

ria 𝑞𝑖 (𝑖 = 3,… , 𝑟) and so on, until there is only 

one element in the set 𝑂, it will be the desired 

solution. 

In addition to lexicographic ordering, 

which gets its name from the arrangement of 

words in the dictionary and which almost imme-

diately establishes a strict order on the set of ob-

jects under study, there are a number of con-

structive methods for solving problems of mul-

ticriteria choice due to the fact that a certain in-

terchangeability of some criteria with others is 

allowed. 

Consider, for example, the linear substitu-

tion method. 

As in the method of lexicographic ordering, 

let the criteria 𝑞𝑖 (𝑖 = 1,… , 𝑟) be ordered in de-

scending order of importance. Let us introduce 

replacement coefficients for the i-th criterion by 

the next (i+1)-th criterion in importance 𝑘𝑖+1,𝑖 (∀𝑖 𝑘𝑖+1,𝑖 > 1 (𝑖 = 1,… , 𝑟 − 1)). Thus we 

take into account that “loss” of a unit of criterion 
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𝑞𝑖 can be “compensated” in principle by increas-
ing of criterion 𝑞𝑖+1, but only if compensation is 

done “with percents” (Figure 2). 

So the option 𝑜2 turns out to be preferable 

than 𝑜1 , because the loss of 𝑞1(𝑜1) − 𝑞1(𝑜2) 
units by the first criterion is “more than compen-
sated” by the gain by the second criterion 𝑞2(𝑜2) − 𝑞2(𝑜1). 

If concessions of any size are admissible, 

the method is reduced to a non-strict ordering of 

Pareto-optimal solutions with the help of the 

generalized criterion 𝑞0(𝑥) as a weighted linear 

convolution of private criteria: 𝑞0(𝑥) = 1 × 𝑞1(𝑥) + (𝑘2,1)−1 × 𝑞2(𝑥) +(𝑘3,2 ∙ 𝑘2,1)−1 × 𝑞3(𝑥) + ⋯ +(𝑘𝑝,𝑝−1 ∙ … ∙ 𝑘2,1)−1 × 𝑞𝑟(𝑥) (15) 

(15) 

If the size of the concessions is limited, then 

locally the optimal option is quickly found, be-

cause the options that require large size conces-

sions are not considered. The method with lim-

ited concessions is reasonable to use in cases 

where the set of possible options 𝑂  can be re-

plenished. 

 
 

Figure 2. Illustration of the linear substitution method. 

It should be noted that optimization using 

additive linear criterion 𝑞0(𝑥) leads to solutions 

on the boundaries of the admissible domain 𝑂 

which relates the problem of finding the optimal 

choice of an option to linear programming prob-

lems. 

When the values of particular criteria 𝑞𝑖 (𝑖 = 2,… , 𝑟)  are considered as coefficients 

that strengthen (weaken) the system significance 

estimated through the previously constructed 

criteria, the equation for the general criterion of 

“hyperbolic” substitution will take the following 
form: log(𝑞0(𝑥)) = 1 × log(𝑞1(𝑥))+ (�̃�2,1)−1 × log(𝑞2(𝑥))+ (�̃�3,2 ∙ �̃�2,1)−1 × log(𝑞3(𝑥))+ ⋯+ (�̃�𝑝,𝑝−1 ∙ … ∙ �̃�2,1)−1× log(𝑞𝑟(𝑥)) 

(16) 

In Equation (16), the coefficients with tilde 

are the coefficients of linear substitution of crite-

ria presented in logarithmic scales. 

Potentiating Equation (15), we obtain an-

other form of the generalized criterion: 𝑞0(𝑥) = (𝑞1(𝑥)) × (𝑞2(𝑥))(�̃�2,1)−1× (𝑞3(𝑥))(�̃�3,2∙�̃�2,1)−1 × …× (𝑞𝑟(𝑥))(�̃�𝑝,𝑝−1∙…∙�̃�2,1)−1 
(17) 

If private criteria are properly scaled during 

construction, the coefficients marked with “tilde” 
will become equal to one, and the index of sys-

tem significance 𝑞0(𝑥)  will be the product of 

basic index 𝑞1(𝑥) by the product of criteria-di-

mensionless “correction” coefficients. Their 
number (𝑟 − 1) is determined by how many will 

be needed to remove contradictions in the exam-

ples of the training sample, i.e., according to the 

scheme similar to the one presented in the previ-

ous section. 

Note that, as a rule, 𝑞0(𝑞1, … , 𝑞𝑝)  is as-

sumed to be a monotonically increasing 

bounded unit positive function of its arguments. 

Hence, every projection of a convolution func-

tion 𝑞0(𝑞1, … , 𝑞𝑝) when some of its arguments 

take fixed values, there will also be a monotonic 

function of the remaining arguments. This al-
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lows us to construct the convolution 𝑞0 or super-

criterion as a monotone superposition of mono-

tone superpositions, etc. 

As such, monotonic convolution functions 

are used additive (Equatation (18)) or multipli-

cative (Equatition (19)) functions. 𝑞0(𝑞1, … , 𝑞𝑝) =∑𝛼𝑖𝑆𝑖 × 𝑞𝑖3
𝑖=1  

(18) 𝑞0(𝑞1, … , 𝑞𝑝) = 1 −∏(1− 𝛽𝑖𝑆𝑖 × 𝑞𝑖)𝑝
𝑖=1   

(19) 

Coefficients 𝛼𝑖  и 𝛽𝑖  in Equation (18) and 

(19) reflect the weight coefficients of the criteria 𝑞𝑖. The coefficients 𝑠𝑖 are chosen so as to make 

dimensionless the numbers 𝑞𝑖 and, if needed, to 

provide their normalization 0 ≤ (𝛽𝑖𝑆𝑖 × 𝑞𝑖) ≤ 1 . 

In practice, the parameters 𝛼𝑖  and 𝛽𝑖  are deter-

mined by training on a finite set of examples. 

A practical application of the risk synthesis 

concept described with a notional calculation ex-

ample is given in other author’s work[28]. 

7. Concluions 

At present, it is more important than ever to 

develop theoretical foundations and to construct 

models and technological tools of information-

analytical work in the field of decision support 

that are adequate to the existing challenges, with 

the aim of ensuring the complex security of 

structurally complex systems. Inevitably, there is 

a need to identify priorities, rank objectives, 

problems and threats, and reallocate available 

(usually limited) resources. 

It is shown that the task of ranking critical 

objects by system importance leads to the prob-

lem of multicriteria ranking under uncertainty, 

which is of great importance for the analysis of 

structurally complex systems with different pur-

poses. Since in the general case, the objects of a 

complex system perform different functions and 

the results of their activity (or the consequences 

of their failure) are estimated differently, it is im-

portant not only to know how much (how often) 

one object of the same type is more important 

than another, but also to be able to compare the 

estimates of objects of different types. For this 

purpose, additional axioms are introduced that 

concretise the classes of functions of a choice 

among heterogeneous objects. A solution to the 

problem, of the Pareto analysis type, is proposed, 

which makes it possible to select the parts (ob-

jects) of the system under study that require pri-

ority attention from the point of view of their 

safety. 

The presented algorithm provides decision 

support in the so-called problem of group selec-

tion of critical infrastructure objects of a structur-

ally complex system that require increased atten-

tion in terms of their protection against the exist-

ing range of threats, taking into account the re-

sources required for this. Such problems arise in 

the analysis and aggregation of heterogeneous 

information about the preferences of compared 

objects into a single “group” preference. 
The algorithm is based on game theory with 

a set of assumptions about the resources of in-

truders attacking the system (negative action fac-

tors) and its “defenders”. The algorithm allows 
to reasonably align scales of system importance 

of objects of different types, i.e., to embed objects 

described by different resource and basic criteria 

in a single scale of comparison. 

The obtained results can be applied in criti-

cal industries—complex process control systems, 

transport, aerospace and military spheres, bank-

ing and financial structures, as well as in central 

and sectoral management bodies for methodo-

logical and technical support of relevant deci-

sion-making. 
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ABSTRACT: In the last fifteen years, extreme events such as the global 

financial and economic crisis of  2007–2008 and the Covid-19 pandemic 

have highlighted the importance of  corporate social responsibility and sus-

tainability in different aspects of  our society. The environmental, social, 

and governance (ESG) disclosures have also gained increasing significance 

for investors due to initiatives undertaken by international bodies. In par-

ticular, with the Action Plan in 2018, the European Commission has as-

signed specific responsibilities to financial intermediaries to drive flows to-

ward sustainable investments, explicitly requiring portfolio managers to 

integrate these non-financial factors into their decision-making processes. 

More and more, asset management firms and insurance companies offer 

tailored products to meet their customers’ sustainable needs and desires. 

This trend implies a growing recognition of  sustainable practices in the 

financial sector, emphasized by the need to integrate ESG considerations 

in investment strategies. 

KEYWORDS: computational finance; sustainable portfolios; ESG ratings; 

investor’s preferences; single- and multi-objective optimization 
 

A gentle introduction 
The traditional mean-risk framework, which 

represents the modern portfolio theory’s milestone, 
was first formulated by Markowitz[1] in the 1950s. 
In this frame, the investors are rational and risk-
averse, meaning they seek to maximize their re-
turns while minimizing risk simultaneously. How-
ever, this model, which focuses solely on financial 
features, is blind to the increasing sensitivity of  po-
litical institutions, portfolio managers, and new 
generations of  investors toward the planet’s sus-
tainable development. Thus, a new paradigm in-
volving the impact of  investment choices on the 
environment and society is needed. 

Several methodologies have been proposed in 
the literature to incorporate ESG scores into the 
portfolio optimization process. In particular, this 
sustainable information has three main uses: the 
ESG criteria are employed as a discriminant in the 
preselection strategies; the ESG ratings are viewed 

as a constraint of  the optimization process; the 
ESG information is handled as an objective func-
tion in the optimization problem. 

The first approach for responsible invest-
ments involves a preselection strategy based on the 
ESG information to exclude assets that are not 
sustainable and ethical enough. For example, Li-
agkouras et al.[2] have adopted a screening proce-
dure to identify a subset of  ESG-compliant stocks 
as constituents of  a Mean-Variance (M-V) portfo-
lio. Kaucic et al.[3] have studied several ESG-based 
preselection techniques in a prospect theory-based 
portfolio model. 

In a second approach, the ESG scores are em-
ployed to define a constraint establishing the min-
imum acceptable sustainable grade of  portfolios. 
Following this approach, De Spiegeleer et al.[4] 
have extended the M-V model. Afterward, Mo-
relli[5], exploiting only the environmental scores, 
has incorporated a constraint on the selected 
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parameter in the Mean-CVaR model. 
Alternatively, instead of  setting a minimum 

threshold for the portfolio ESG score, a third ap-
proach directly includes the sustainable infor-
mation into the objective function of  the optimi-
zation problem. Schmidt[6] has modified the 
single-objective function of  the M-V model so that 
portfolio weights are simultaneously optimized in 
terms of  return, risk, and ESG value. This formu-
lation includes two parameters: the risk-aversion 
parameter, which controls the risk-return trade-off, 
and the so-called ESG-strength parameter, which 
reflects the investors’ sustainable preferences. In 
the multi-objective optimization context, Garcia-
Bernabeu et al.[7] have extended the classical bi-cri-
teria M-V framework by directly including sus-
tainability as a third criterion. They formalized the 
preference relation of  an ESG-aware M-V investor 
and introduced a multi-objective evolutionary al-
gorithm to solve the optimal allocation problem. 
In a similar way, Hilario-Caballero et al.[8] have 
employed a multi-objective approach to include 
the investor’s preferences toward the portfolio’s 
carbon risk exposure into the bi-criteria M-V opti-
mization problem. Pedersen et al.[9] have con-
structed the ESG-efficient frontier, showing the 
highest attainable Sharpe ratio for each ESG level, 
and they have investigated the costs and benefits 
of  responsible investing. Xidonas and Essner[10] 
have proposed a multi-objective minimax-based 
optimization model to build up optimal ESG port-
folios that maximize the risk performance across 
the environmental, social and governance compo-
nents of  the ESG criteria. Cesarone et al.[11] have 

implemented the standard ε-constrained method 
to solve the tri-objective M-V-ESG optimization 
problem. Finally, Lindquist et al.[12] have combined 
ESG scores with financial returns to generate an 
ESG-valued return and applied this measure in a 
general mean-risk optimization framework. 

To sum up, the last twenty years have 
strengthened the importance of  ESG in finance, 
not only from the stakeholder point of  view but 
also from the shareholder perspective. As a conse-
quence, some questions arise naturally: 

 What is the impact of  ESG investing on 
risk premia? 

 What is the impact of  ESG screening on 
portfolio returns? 
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ABSTRACT: This work is a part of our ongoing research project entitled 

Hindustani Raga Analysis Using Statistical Musicology with Therapeutic Appli-

cations for Stress Management. Using the perceived stress scale (PSS), base-

line data were collected on 28 participants, 14 for the control group (non-

music intervention group) and the remaining 14 for the case group (music 

intervention group), the allotment of a participant to one of the groups 

being done using randomized control trial (RCT) to prevent bias in allo-

cation. After 5 music therapy sessions, the follow-up data were collected 

and the scores (0, 1, 2, 3, 4) were filled for the 10 questions in the ques-

tionnaire of the PSS scale. The rating is 0–13 implying low stress, 14–26 

implying moderate stress and 27–40 implying high stress. As per the PSS 

rule, those having stress levels below 13 were dropped from the study. 

Thus, the actual number of participants in both groups would be less than 

those interviewed (sample size n = 7 for each group). Using paired t test, 

it is found that the case group participants have shown considerable im-

provement in comparison to the control group. Thus, the efficacy of music 

intervention in combatting stress is established. 

KEYWORDS: perceived stress scale; paired t test; music therapy; Hindu-

stani raga; music transcriber 

AMS/MSC CLASSIFICATION: 62P99 

1. Introduction 

Scientists through their studies have re-
vealed the healing powers of music in control-
ling blood pressure, negative emotions and stress. 
Statistics and probability have been used to ana-
lyze music successfully both in western and non-
western (including Indian) music. For details, 
please refer to the books by Thaut[1], Beran[2], 
Temperley[3], Tewari and Chakraborty[4] and Pa-
tel[5] and the references cited therein, while the 
paper by Singh et al.[6] provides a brief survey on 
music intervention in both western and non-
western (Indian) music. In an earlier work, Pri-
yadarshini and Chakraborty[7] used statistical 

modeling, inter-onset interval and rate of change 
of pitch (pitch velocity) to distinguish between 
restful and restless ragas in Hindustani classical 
music. In Indian classical music (both Hindu-
stani and Carnatic), a raga may be defined as a 
melodic structure with fixed notes and a set of 
rules that characterize a particular mood con-
veyed by performance[8]. 

2. Literature review 
Aldridge[9] provides a good source of litera-

ture review on music therapy. The main empha-
sis on music therapy intervention is on the sooth-
ing ability of music and the necessity of music as 
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an antidote to an overly technological medical 
approach. Most of these articles are concerned 
with receptive (passive) music therapy and the 
playing of pre-recorded music on patients em-
phasizing the need for healthy pleasures like mu-
sic, fragrance and aesthetic visuals for the reduc-
tion of stress and the enhancement of well-being. 
The overall expectation is that the recreational, 
emotional and physical health of the patients 
would improve[10]. A good account of research 
findings about the neurobiological foundation of 
rhythm and the brain with a thrust on how music 
can affect both musical and non-musical brains 
can be found in Thaut[1] which gives the new 
therapeutic methodology of neurologic music 
therapy dealing extensively with clinical tech-
niques and implementations in rehabilitation. 
Sarkamo and Soto[11] found that listening to 
pleasant music can have a facilitating effect on 
visual awareness in patients with visual neglect, 
which is associated with functional coupling be-
tween the emotional and attentional areas of the 
brain region. Secondly, daily music listening can 
improve auditory and verbal memory, focused 
attention, and mood as well as induce structural 
gray matter changes in the early post-stroke stage. 
Although some information on music therapy in 
the context of Indian music is available (Sai-
ram[12], Rammohan[13], Singh et al.[14]), it is seri-
ously limited. Scientific research in Indian music 
especially from a therapeutic angle is still at the 
beginning stage. Thus, there is a clear gap in mu-
sic therapy research in western music and the In-
dian counterpart and this motivated us to exper-
iment with Hindustani ragas to combat stress. 

3. Our contribution 
A project titled Hindustani Raga Analysis Us-

ing Statistical Musicology with Therapeutic Applica-
tions for Stress Management is currently underway 
in our institute in which the first author is offici-
ating as a principal investigator, the second au-
thor is developing a music therapy app, the third 
author, a certified music therapist, is guiding the 

music therapy interventions and the fourth au-
thor, who has joined this project as a project fel-
low, is working on a music transcriber. 

The objective of the project, novelty and de-
liverables are outlined next. 

 Objective: building a music transcriber 
and a music therapy app to combat stress by an-
alyzing and applying the melodic structure of 
Hindustani ragas using statistical musicology. 
Statistics being the science of exploring and stud-
ying patterns in numerical data will be helpful in 
relating the musical patterns with the corre-
sponding emotional changes in the brain. Musi-
cal data are numerical and hence allow statistical 
analysis. 

 Novelty: building a music transcriber & 
music therapy app to control stress using Hindu-
stani ragas. The transcriber will provide the mu-
sical data in digitized form using the STFT algo-
rithm (Short-time Fourier transform). The 
musical data would provide information on note 
duration, inter-onset interval, pitch velocity & 
pitch movements between notes. The project fel-
low who has joined this project is working on it 
using MATLAB and Python coding. The work-
ing of  the music therapy app is given in Section 
6. 

 Deliverables: music transcriber, music 
therapy app, and research papers/monograph 
on Hindustani ragas. 

4. Methodology: Perceived stress 
scale (PSS); paired t test 

4.1. The perceived stress scale (PSS) 

PSS is a classic stress assessment instrument. 
The tool, while originally developed in 

1983, remains a popular choice for helping us 
understand how different situations affect our 
feelings and our perceived stress. Refer to per-
ceived stress scale[15] for further details on the 
questionnaire and scoring in PSS. 

4.2. Paired t test 

Paired t test is always used on the same 
group of  individuals. Thus, if  xi is the PSS score 
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at baseline and yi is the PSS score after music 
therapy intervention for the i-th individual, i = 1, 
2, …, n for n individuals, we calculate the statis-
tic. 

t = dmean/[sd/{SQRT(n)}] which follows stu-
dent’s t distribution with (n − 1) degrees of free-
dom (d.f.), where di = xi − yi, dmean = Ʃdi/n and sd2 
= [1/(n − 1)]Ʃ(di − dmean)2, where the summation 
extends over i = 1 to n. SQRT implies square root. 

Here our null hypothesis is that the differ-
ence di values are due to sampling fluctuations 
only which would be rejected if the calculated 
value of t exceeds the tabulated t with n − 1 de-
grees of freedom and 5% level of significance. 

5. Summary of the experimental 
results 

Using PSS (perceived stress scale) baseline 
data were collected on 28 participants, 14 for the 
control group (non-music intervention group) 
and the remaining 14 for the case group (music 
intervention group), the allotment of a partici-
pant to one of the groups being done using ran-
domized control trial (RCT) to prevent bias in 
allocation. Each participant is identified by a 
unique (roll) number and is allocated to one of 
the two groups randomly with equal probability 
using RCT. After 5 music therapy sessions cov-
ered in 45 days, the follow-up data have been 
collected. The participants were personally inter-
viewed by a certified music therapist and her as-
sistant and scores (0, 1, 2, 3, 4) were filled for the 
10 questions in the questionnaire of the PSS 
scale. The questions in the PSS scale are such 
that, for some questions, less score is desirable 
while for others, more score is better. To induce 
uniformity, the scores were reversed for the latter 

type of questions so that after reversing, for all 
questions, less score is deemed as better. Now 
the scores from the 10 questions were added and 
this sum is our variable under study. The rating 
is 0–13 implying low stress, 14–26 implying 
moderate stress and 27–40 implying high stress. 
As per the PSS rule, those having stress levels be-
low 13 were dropped from the study. Thus, the 
actual number of participants in both groups 
would be less than those interviewed (sample 
size n = 7 for each group). Using paired t test, it 
is found that the case group participants have 
shown considerable improvement in compari-
son to the control group. Thus the efficacy of 
music intervention in combatting stress is estab-
lished, since the allocation of the participants to 
both the groups was done by RCT. 

Place of study (data collection): Depart-
ment of Mathematics, Birla Institute of Technol-
ogy, Mesra, Ranchi-835215, India. 

Place of music therapy intervention: Music 
Room, Birla Institute of Technology, Mesra, 
Ranchi-835215, India. 

Results of paired t test applied to the control 
group and the case group participants. 

Let μd = E(d) = E(X − Y) for the control 
group: 

H0: μd = 0 (not undergoing music therapy 
does not have any effect on PSS score); 

H1: μd < 0 (not undergoing music therapy 
worsens the PSS score); α: 5%. 

Test statistic: paired t = dmean/[sd/{SQRT(n)}] 
~ t(n−1)d.f. 

Solution: 
The analysis of the PSS scores for the con-

trol group participants is shown in Table 1. 

Table 1. Analysis of PSS score for control group participants 

Participant No. The control group 
i Pre test PSS score (Xi) Post test PSS score (Yi) 𝒅𝒊 = 𝑿𝒊 − 𝒀𝒊 
1 17 23 −6 
2 26 32 −6 
3 22 26 −4 
4 17 21 −4 
5 21 22 −1 
6 24 28 −4 
7 22 18 −4 
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 𝑑 = −29/7 = −4.142857 
variance of  𝑑 = 𝑉𝑎𝑟(𝑑) = Ʃ𝑑 /𝑛 − (𝑑 )= (36 + 36 + 16 + 16 + 1 + 16+ 16)/7 − (4.142857)= 19.571429 − 17.163264= 2.408165 𝑠𝑑 = +𝑆𝑄𝑅𝑇(2.408165) = 1.551826 
where +SQRT implies positive square root is to 
be taken. 𝑡 = (−4.142857)/(1.551826/2.645751)= −7.063273 

Table t0.05 for 7 − 1 = 6 d.f. for one tailed test 
= 1.94 (equivalent to table t at 10% level of sig-
nificance for two tailed test as seen from t table). 

As calculated t < table t, the null hypothesis 
is rejected and we conclude that the PSS score of 

the control group not subjected to music therapy 
worsened possibly due to examination stress, job 
insecurity and other factors. 

For the case group: 
H0: μd = 0 (undergoing music therapy does 

not have any impact on the PSS score); 
H1: μd > 0 (undergoing music therapy signif-

icantly lowers the PSS score; i.e., music therapy 
is able to combat stress); α: 5%. 

Test statistic: paired t = dmean/[sd/{SQRT(n)}] 

~ t(n−1)d.f. 

Solution: 
The analysis of the PSS scores for case 

group participants is shown in Table 2. 

Table 2. Analysis of PSS score for case group participants 

Participant No. The case group 
i Pre test PSS score (Xi) Post test PSS score (Yi) 𝒅𝒊 = 𝑿𝒊 − 𝒀𝒊 
1 19 10 9 
2 21 7 14 
3 24 12 12 
4 21 13 8 
5 28 8 20 
6 24 9 15 
7 22 5 17 𝑑 = 95/7 = 13.571429 
variance of  𝑑 = 𝑉𝑎𝑟(𝑑) = Ʃ𝑑𝑛 − (𝑑 )= (81 + 196 + 144 + 64 + 400+ 225 + 289)/7− (13.571429)= 199.857143 − 184.183685= 15.673458 𝑠𝑑 = +𝑆𝑄𝑅𝑇(15.673458) = 3.958972 𝑡 = (13.571429)/(3.958972/2.645751)= 9.069683 

As before, table t0.05 for 6 d.f. for one tailed 
test = 1.94. 

As calculated t > table t, the null hypothesis 
is rejected and we conclude that the PSS score of 
the case group subjected to music therapy is sig-
nificantly lowered. 

The encouraging results motivated us to 
build a music therapy app called “MusiHeal”. 
The working of this app, developed by the sec-
ond author, is explained next. 

6. Music therapy app “Mu-
siHeal” 

1) About the environment: 
(1) The app is built on android studio (a soft-

ware for building mobile applications) using the 
flutter framework, which targets both the platform 
devices—android and iOS, from a single code-base. 
Flutter uses dart programming language (which is 
C++ based) and hence this mobile app is built on 
dart. 

(2) Database, testing, and analytics will be im-
plemented (if needed in future) using firebase de-
veloped by Google. 
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2) About the app: 
(1) The app starts with a beautiful “Splash 

screen”, followed by an interactive instructions in-
terface, and the user will be directed further only 
after reading all the instructions. 

(2) Now the user will be directed to a filter-
based interface which will contain five filter cate-
gories. 

 Age (0–100 years). 

 Musical background (yes {low, me-
dium, high} & no). 

 Mental health (normal, anxiety disor-
ders, mood disorders). 

 Psychotic disorders (dementia). 

 Physical health (normal, physically 
challenged), and music type (Indian, west-
ern; both having classical and modern sub-
types) 
(3) After selecting the filters, the user will be 

directed to the “home screen” which contains: 

 Real-time refreshing “Did you know?” 
component. 

 An option for going to meditation page. 

 Help and support option. 

 List of symptoms (pain, fever, nau-
sea/vomiting, depression and anxiety, 
sleep disturbance, breathing problem) from 
which the user can choose accordingly. 
(4) After choosing the symptom, the user will 

be directed to the “raga song list screen” which will 
hold a list of raga songs, going from top-to-bottom, 
the raga element will increase in the list. Selecting 
any song from the list will redirect them to a “mu-
sic player screen”. There will also be an option for 
a pure raga songs list, only for those users who 
have good knowledge of music, which will be de-
termined from the initial filters. 

(5) Now, the “music player screen” will con-
tain a music player interface having elements such 
as raga-song name, play/pause, current-time/re-
maining-time, repeat, speaker/headset, favorites, 
and a container showing the next upcoming raga 
song. 

(6) The “help and support screen” will contain 
details about the app and some songs, all the in-
structions, and our team contact details. 

(7) The meditation screen will contain the 
songs list beneficial for meditation, which will be 
categorized based on the frequency suitable for the 
user, which will be determined from the initial fil-
ters. Selecting any meditative track will lead again 
to the “music player screen”. 

(8) The “pure raga screen” will contain the 
pure raga soundtracks, and symptom name fol-
lowed by a filter that will bifurcate the list into in-
strumental or vocal. Selecting any raga track will 
lead again to the “music player screen”. 

7. Discussion 
The study plan of our research consists of 

three phases: 
Phase 1: assessing the impact of music espe-

cially Hindustani ragas in reducing stress. 
Phase 2: assessing the musical properties of 

the Hindustani ragas and raga based songs (e.g. 
Tagore songs), helpful in reducing stress, 
through statistical musicology. 

Phase 3: brain imaging study through EEG 
signals to explore the emotional changes caused 
in the brain by Hindustani ragas and raga based 
songs and how they are actually helping in re-
ducing stress. 

See Chakraborty and Katyayan[16] for fur-
ther details on our ongoing research. 

The work done in this paper refers to phase 
1 of the study. The PSS score of the control 
group not subjected to music therapy worsened 
possibly due to examination stress, job insecurity 
and other factors. On the other hand, the PSS 
score of the case group subjected to music ther-
apy is significantly lowered. In other words, mu-
sic therapy intervention is able to combat stress, 
given that the participants were allocated to the 
control and case groups using randomized con-
trol trial and there was no bias in allocation. We 
propose to extend our research on Hindustani 
ragas to combat migraine episodes, in the pain 
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management in cancer patients, lower the anxi-
ety level in pregnant women, combat stress in 
type 2 diabetes, control hypertension and assess 
the impact of these ragas in psychiatric cases. 

8. Concluding remarks 
The paired t results show that music therapy 

is able to combat stress. The encouraging results 
motivated us to build a music therapy app called 
“MusiHeal”. We do believe this app will be of 
immense value to society in healthcare. The spe-
cific Hindustani ragas, raga based songs and 
other genres of music and songs therein used in 
the study profitably have been noted. The corre-
sponding emotional changes they bring in the 
brain would be studied through EEG signals 
which is reserved as a rewarding future work. 

Remark: what kind of physical stimulus 
leads to what kind of emotional changes in the 
brain is a subject matter of psychophysics which 
is a branch of psychology. The interested reader 
is referred to the book by Roederer[17]. 
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ABSTRACT: In this study, we investigated a set of equations that exhibit com-

pact solutions and nonlinear dispersion. We used the classical lie symmetry 

approach to derive ordinary differential equations (ODEs) that are well 

suited for qualitative study. By examining the dynamic behavior of these 

ODEs, we gained insights into the intricate nature of the underlying system. We 

also used a powerful multiplier approach to establish nontrivial conservation 

laws and exact solutions for these equations. These conservation laws pro-

vide essential information regarding the underlying symmetries and invar-

iants of the system, and shed light on its fundamental properties. 
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Euler-Lagrangian operator; nonlinear dispersion; exact solutions; multipli-

ers approach 

 

1. Introduction 

Nonlinear waves are waves that exhibit 
non-linear behavior, meaning that their ampli-
tude and velocity are not linearly related. Soli-
tons and compactons are two types of nonlinear 
waves. Solitons are stable pulse-like waves that 
can exist in some nonlinear systems. They can 
pass through each other without being destroyed, 
and they can retain their shape even after inter-
acting with other waves. Compactons are a spe-
cial type of soliton that does not have exponen-
tial tails. Solitons and compactons are used as 
building blocks to formulate the complex dynam-
ical behavior of wave systems throughout science. 
They have been studied in a variety of fields, includ-
ing hydrodynamics, nonlinear optics, plasmas, 
shock waves, tornadoes. Solitons have also ac-
quired prominence in the fields of quantum me-
chanics and nanotechnology, particularly in the 
study of nano-hydrodynamics. The solitary wave 
dynamics[1] of the local fractional Bogoyavlensky 

Konopelchenko model is a topic of active research 
in the field of nonlinear wave theory. The local 
fractional Bogoyavlensky Konopelchenko model 
is a partial differential equation (PDE) that de-
scribes the propagation of waves in a nonlinear me-
dium. The model is a generalization of the classical 
Bogoyavlensky Konopelchenko model, and it 
takes into account the effects of fractional diffu-
sion. It is well known that while conventional 
nonlinearity’s influence does not significantly al-
ter with spatial dimension, dispersive processes 
become more effective at disseminating infor-
mation. As a result, a model that is well-bal-
anced in one dimension becomes unbalanced in 
higher dimensions. As a result, strong solitonic 
structures are often far less common in higher 
spatial dimensions. Rosenau and Hyman[2] pre-
sented the compactons, solitons with a compact 
support, almost 20 years ago using the 𝐶(𝑙, 𝑝) 
model equation in its simplest form, 𝐴 + 𝑙𝐴 𝐴 + 𝑝(𝐴 𝐴 ) = 0    𝑙, 𝑝 > 1 

(1) 
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and exact solutions as well as symmetry reduc-
tions were derived in the work of Bruzón and 

Gandarias[3], Bruzón et al.[4], and Anco and Bluman[5]. 
Naz[6] utilized the multiplier technique to con-
struct the conservation laws for the equation. Be-
cause the authors believe that higher order mul-
tipliers determining equations are very compli-
cated and cannot be manually separated, only 
multipliers of the kind 𝑀(𝑦, 𝑧, 𝐴) were consid-
ered in her work of Conservation laws for some 
compacton equations using the multiplier ap-
proach[6]. 

In their work, Rosenau and Oron[7] investi-
gated how several symbolic forms of nonconvex 
convection affected the development of compact 
patterns. To do this, a basic model with cubic 
dispersion and numerous versions on a nonlin-
ear modified dispersion are utilized which is of 
the form. 𝐴 + (𝐴 − 𝐴 ) + [𝐴(𝐴 ) ] = 0 𝐴 + (𝐴 − 𝐴 ) + 2(𝐴𝐴 ) = 0 

(2) 
In contrast to the 𝐶(𝑛, 𝑛) compactons, the 

breadth of the current compactons varies on 
their velocity. In a recent study[8], Gandarias has 
successfully identified and formulated several 
conservation laws that are not simple or obvious. 
Furthermore, we have demonstrated that certain 
equations, which have solutions in the form of 
compactons and exhibit cubic dispersion, pos-
sess a unique property called nonlinear self-ad-
jointness. This discovery is significant as it high-
lights the intricate dynamics and properties of 
these equations, providing valuable insights into 
their behavior and characteristics. 

Conservation laws are widely recognized as 
crucial components in solving equations or sys-
tems of differential equations. While not all con-
servation laws in partial differential equations 
(PDEs) have direct physical interpretations, they 
serve a significant purpose in studying the inte-
grability of PDEs. Understanding and identify-
ing these conservation laws are vital steps in 
comprehending the behavior and properties of 

PDEs and their solutions. 
The Noether theorem[2] is a powerful tool 

for deriving conservation laws in variational 
problems. It can be used to derive conservation 
laws for variational problems, which are prob-
lems that can be formulated in terms of a La-
grangian. However, for nonvariational situa-
tions, alternative methods are needed to con-
struct conservation laws. Anco and Bluman[9] in-
troduced an algorithmic technique that allows 
for the identification of all conservation laws for 
evolution equations. Ibragimov[10] presented a 
unique approach based on adjoint equations for 
nonlinear equations, which eliminates the need 
for function integrals and does not rely on La-
grangians. The concept of strictly self-adjoint 
equations[11–13] has been expanded upon, and 
Ibragimov’s findings have sparked further re-
search on self-adjointness and its relevance to 
partial differential equations (PDEs)[14–23]. This 
approach represents an extension of the previ-
ously described formula in work of direct con-
struction of conservation laws from field equa-
tions[9], providing a broader framework for stud-
ying and applying conservation laws in PDEs. 

In this research, we will solve the Equation 
(2) using the lie classical technique, as well as the 
multipliers approach to derive conservation laws 
for these equations. 

2. Derivation of exact solutions 
from classical lie approach 

In this part, we conduct a lie symmetry 
analysis for a specific system denoted in the 
Equation (2). We focus on exploring a one-pa-
rameter lie group consisting of infinitesimal 
transformations[24–26] in the variables (𝑦, 𝑧, 𝐴) . 
The transformations are expressed in a specific 
form, which we will investigate and analyze fur-
ther. 𝑦∗ = 𝑦 + 𝜀𝜙(𝑦, 𝑧, 𝐴) + 𝜗(𝜀 )𝑧∗ = 𝑧 + 𝜀𝜓(𝑦, 𝑧, 𝐴) + 𝜗(𝜀 )𝐴∗ = 𝐴 + 𝜀𝜂(𝑦, 𝑧, 𝐴) + 𝜗(𝜀 ) 

(3) 
where 𝜀 is the group parameter. To ensure that 
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the transformation preserves the solutions of 
Equation (2), it is necessary to satisfy certain 
conditions. This leads to an overdetermined sys-
tem of linear equations consisting of eleven 
equations involving the infinitesimals 𝜓(𝑦, 𝑧, 𝐴), 𝜙(𝑦, 𝑧, 𝐴), and 𝜂(𝑦, 𝑧, 𝐴). The collection of vec-
tor fields that satisfy these equations form the as-
sociated lie algebra of infinitesimal symmetries. 
These vector fields are expressed in the following 
specific form: 𝐗 = 𝜓 ∂∂𝑧 + 𝜙 ∂∂𝑦 + 𝜂 ∂∂𝐴 

(4) 
where 𝐗 is infinitesimal operator or generator of 
the group. After identifying the infinitesimals, 
the next step is to solving the invariant surface 
condition yields the symmetry variables. This 
condition ensures that the transformed equa-
tions remain invariant under the lie symmetry 
transformations. Υ = 𝜓 ∂𝐴∂𝑧 + 𝜙 ∂𝐴∂𝑦 − 𝜂 = 0 

(5) 
By considering the determining system for 

the first formula of Equation (2), we find that the 
infinitesimals can be expressed as 𝜓 =𝜓(𝑦, 𝑧), 𝜙 = 𝜙(𝑦) , and 𝜂 = 𝜂(𝑦, 𝑧, 𝐴) . These 
functions, namely 𝜓, 𝜙 , and 𝜂 , need to satisfy 
the following system of equations: −3𝐴𝜓 + 𝜙 𝐴 + 2𝜂 = 0,−3𝐴𝜓 + 3𝜂 𝐴 + 4𝜂 = 0,−2𝐴 𝜓 − 3𝐴 𝜓 + 2𝐴𝜓 − 𝜓 + 3𝐴 𝐴 + 6𝜂 𝐴 ,−2𝜙 𝐴 + 8𝜂 𝐴 + 6𝜂𝐴 − 2𝜂 = 0,−12𝐴𝜓 + 3𝜂 𝐴 + 4𝜙 𝐴 + 4𝜂 𝐴 + 4𝜂 = 0,−4𝐴𝜓 + 3𝜂 𝐴 + 8𝜂 𝐴 + 3𝜂 = 0,−3𝜓 + 𝜂 𝐴 + 4𝜂 𝐴 + 𝐴 + 2𝜂 = 0.

 

(6) 
Upon solving the determining equations for 𝜓, 𝜙 , and 𝜂 , we are able to determine the lie 

point symmetry generators that form a two-di-
mensional lie algebra. These generators are ob-
tained as a result of the solutions to the determin-
ing equations, and they characterize the symme-
tries admitted by the Equation (2). 

𝐗𝟏 = ∂∂𝑧𝐗𝟐 = ∂∂𝑦 

(7) 
In this section, we successfully derived the 

reduction of the first equation of the Equation (2) 
to ordinary differential equations (ODEs) using 
the generators 𝛾𝐗𝟏 + 𝜔𝐗𝟐 . This reduction al-
lows us to simplify the equation and express it in 
terms of ODEs, which are typically easier to an-
alyze and solve. Additionally, we obtained the 
similarity variable and similarity solution. 𝜃 = 𝜔𝑧 + 𝛾𝑦 𝐴 = 𝜌(𝜃) 

(8) 
Substituting Equation (8) into Equation (5), 

we obtain: 2𝜔 𝜌 𝜌 + 8𝜔 𝜌𝜌 𝜌 + 2𝜔 (𝜌 )+ 3𝜔𝜌 𝜌 − 2𝜔𝜌𝜌 − 𝛾𝜌 = 0 
(9) 

After performing the integration of the 
equation with respect to 𝜃, we arrive at the fol-
lowing equation, which takes the form: 2𝜔 𝜌 𝜌 + 2𝜔 𝜌(𝜌 ) + 𝜔𝜌 − 𝜔𝜌 − 𝛾𝜌+ 𝜅 = 0 

(10) 
This reduced ordinary differential equation 

(ODE), given by Equation (10), exhibits a group 
corresponding to the generator 𝐇 = ∂ . This 
group corresponds to a symmetry of the equa-
tion, indicating that there is a transformation 
along the 𝜃 direction that leaves the equation in-
variant. 

By considering the invariants of the first 
prolongation and introducing the new variables 
as given in equations, namely: 𝜌 = 𝒵 𝜌 = 𝑣(𝒵) 𝜌 = 𝑣(𝒵) 𝑑𝑣𝑑𝒵 

(11) 
we can further simplify Equation (10). This re-
duction allows us to express Equation (10) as a 
first-order ordinary differential equation (ODE). 
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2𝜔 𝒵 𝑣𝑣𝒵 + 2𝜔 𝒵𝑣 + 𝜔𝒵 − 𝜔𝒵 − 𝛾𝒵 = 0 
(12) 

whose implicit solution is, 12𝜔 𝒵 𝑣 + 3𝜔𝒵 − 4𝜔𝒵 − 6𝛾𝒵 + 12𝜅 𝒵+ 𝜅 = 0 
(13) 

where 𝜅  and 𝜅  are arbitrary constants. Follow-
ing a similar procedure as before, we apply the 
same methodology to the second equation of the 
Equation (2). This leads to the derivation of the 
generators 𝐗  and 𝐗𝟐, as well as the determina-
tion of the similarity variable and similarity so-
lution given by Equation (8). The corresponding 
reduced ordinary differential equation (ODE) is 
then obtained as equation, which takes the form: 2𝜔 𝜌𝜌 + 6𝜔 𝜌 𝜌 + 3𝜔𝜌 𝜌 − 2𝜔𝜌𝜌− 𝛾𝜌 = 0 

(14) 
By integrating Equation (14) once with re-

spect to 𝜃, we arrive at equation: 𝜅 + 2𝜔 𝜌𝜌 + 2𝜔 (𝜌 ) + 𝜔𝜌 − 𝜔𝜌 − 𝛾𝜌= 0 
(15) 

Equation (15) represents the reduced ODE, 
which admits the symmetry generator 𝐇 = ∂ . 
By considering the invariants of its first prolon-
gation and introducing the variables given by 
Equation (11), we can further simplify Equation 
(15) to obtain the first-order ODE. 2𝜔 𝒵𝑣𝑣𝒵 + 2𝜔 𝑣 + 𝑘 + 𝜔𝒵 − 𝜔𝒵 − 𝛾𝒵= 0 

(16) 
whose implicit solution is, 60𝜔 𝒵 𝑣 + 30𝒵 𝜅 + 12𝜔𝒵 − 15𝜔𝒵 − 20𝛾𝒵 + 𝜅= 0  

(17) 

2.1 Qualitative study of ODEs 

Equations (10) and (15), after setting 𝜅 =0, can be written as: 𝜌 + (𝜌 )𝜌 + 𝜌2𝜔 − 12𝜔 − 𝛾2𝜔 𝜌 = 0𝜌 + (𝜌 )𝜌 + 𝜌2𝜔 − 𝜌2𝜔 − 𝛾2𝜔 = 0  

(18) 

By introducing the change of variables 𝑧 =𝜌 and 𝜑 = 𝜌 𝜌, the Equations (18) can be trans-
formed into a system of the form, �̇� = 𝜑𝑧  �̇� = 𝜚(𝑧) 

(19) 
where, 𝜚(𝑧) = − 12𝜔 𝑧 + 12𝜔 𝑧 + 𝛾2𝜔  𝜚(𝑧) = − 12𝜔 𝑧 + 12𝜔 𝑧 + 𝛾2𝜔 𝑧 

(20) 
respectively. 

The phase portrait of the Equation (19) is 
divided into two half-planes that are invariant, 
one for 𝑧 > 0  and the other for 𝑧 < 0 . This 
means that the dynamics of the system in each 
half-plane remains confined within that respec-
tive half-plane. Equation (19) is conservative, 
meaning that there exist conserved quantities as-
sociated with it. These conserved quantities are 
defined by the differentiable functions 𝐏, given 
by 𝐏(𝑧, 𝜑) = 𝜑2 + 𝑧8𝜔 − 𝑧6𝜔 − 𝛾𝑧4𝜔  𝐏(𝑧, 𝜑) = 𝜑2 + 𝑧10𝜔 − 𝑧8𝜔 − 𝛾𝑧6𝜔  

(21) 
These quantities remain constant along the 

trajectories of the system, meaning that 
𝐏 =𝐏 �̇� + 𝐏 �̇� = 0. Therefore, the trajectories lie on 

curves defined by 𝐏(𝑧, 𝜑) is equal to constant, 
and they exhibit symmetry relative to the 𝑧-axis. 
Importantly, 𝐏(𝑧, 𝜑) can be represented as 𝐏(𝑧, 𝜑) = 𝜑2 + ℜ(𝑧) 

(22) 
where ℜ(𝑧) is given by ℜ(𝑧) = −   𝜈𝜚(𝜈)𝑑𝜈 

(23) 
The equilibrium points 𝒫  of the Equation 

(19), if they exist, are located on the 𝑧-axis and 
correspond to the critical points of 𝐏(𝑧, 𝜑). This 
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can be seen by analyzing the partial derivatives 
of 𝐏(𝑧, 𝜑) with respect to 𝑧 and 𝜑. ∂𝐏∂𝑧 = −𝑧𝜚(𝑧) = 0 ⟺ �̇� = 0 ∂𝐏∂𝜑 = 𝜑 = 0 ⟺ �̇� = 0 

(24) 
The equilibrium point 𝒫(𝑧∗, 0)  is a fixed 

point of the Equation (19) if 𝑧∗ is a critical point 
of ℜ(𝑧), i.e., a zero of the polynomial function 𝜚(𝑧) defined in Equation (21). 

3. Multipliers approach 
In their work, Anco and Bluman[5] pre-

sented a general method for deriving conserva-
tion laws for partial differential equations in a 
Cauchy-Kovaleskaya form, specifically for evo-
lution equations of the form, 𝐴 = E(𝑧, 𝐴, 𝐴 , 𝐴 , … , 𝐴 ) 

(25) 
The conservation laws are characterized by 

a multiplier Λ that does not depend on 𝐴  and 

satisfies the following equation F[𝐴] Λ𝐴 − Λ𝐺(𝑧, 𝐴, 𝐴 , 𝐴 , … , 𝐴 ) = 0 

(26) 
where, the Euler-Lagrangian operator F[𝐴]  is 
defined as F[𝐴] = ∂∂𝐴 − 𝐷 ∂∂𝐴 − 𝐷 ∂∂𝐴 + 𝐷 ∂∂𝐴 + ⋯ 

(27) 
where, 𝐷  and 𝐷  are the total derivatives with 

to respect to 𝑦 and 𝑧. The conserved vector is re-
quired to satisfy Λ = F[𝐴]Υ  

(28) 
and the flux Υ  is given by Euler[27]. Υ = −𝐷 (ΛE) − ∂Υ∂𝐴 E + E𝐷 ∂Υ∂𝐴 + ⋯ 

(29) 
The conservation law will be written as 𝐷 (Υ ) + 𝐷 (Υ ) = 0 

(30) 

We get the following multipliers: for first 
equation of Equation (2). Λ = 1 Λ = 𝐴 Λ = 𝐴 𝐴 + 𝐴2 − 𝐴2 + 𝐴𝐴  

(31) 
For second equation of the Equation (2), Λ = 1Λ = 𝐴  

(32) 

we have the equation, which represents the first 
equation of the Equation (2). G ≡ 𝐴 + (𝐴 − 𝐴 ) + [𝐴(𝐴 ) ] = 0 

(33) 
Equation (33) can be considered nonline-

arly self-adjoint if there exists a nontrivial func-
tion 𝜌(𝑦, 𝑧, 𝐴, 𝐴 , … ), such that when we substi-
tute 𝑣 = 𝜌(𝑦, 𝑧, 𝐴, 𝐴 , … ) into the adjoint equa-
tion such that 𝜌(𝑦, 𝑧, 𝐴, 𝐴 , … ) ≠ 0, it becomes 
same as the original Equation (33); that is G∣∗ = 𝛾G 

(34) 
To do so, we consider its adjoint equation 

to Equation (33) is following, where 𝑣 is a new 
dependent variable, G∗ ≡ 𝛿(𝑣G)𝛿𝐴 = 0 

(35) 
where, 𝛿𝛿𝐴 = ∂∂𝐴 − 𝐷 ∂∂𝐴 − 𝐷 ∂∂𝐴 + 𝐷 ∂∂𝐴  

(36) 

Equation (36) defines the variational deriv-
ative, also known as the Euler-Lagrangian oper-
ator. The variational derivative takes into ac-
count the total differentiations with respect to 𝑦 
and 𝑧, denoted by 𝐷  and 𝐷 , respectively. 

Let us select nonlinearly self-adjoint equa-
tions from 
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G∗ − 𝛾 𝐴 + (𝐴 − 𝐴 ) + [𝐴(𝐴 ) ]− 𝜔 𝐴 + (𝐴 − 𝐴 )+ [𝐴(𝐴 ) ]− 𝜖 𝐴 + (𝐴 − 𝐴 )+ [𝐴(𝐴 ) ] = 0 

(37) 
where 𝛾, 𝜔, and 𝜖 are undetermined coefficients. 
Setting 𝑣 = 𝜌(𝑦, 𝑧, 𝐴, 𝐴 , 𝐴 ) , we can analyze 
the coefficients for the different derivatives of 𝐴 
in order to determine the requirements for the 
equation to be nonlinearly self-adjoint. We con-
clude that the following requirements must be 
met 𝛾 = −𝜌  𝜔 = −𝜌  𝜖 = −𝜌  

(38) 
and by resolving the remaining equations, we 
obtain 𝜌 = 𝜅 𝐴 𝐴 + 𝜅 𝐴𝐴 + c(𝐴)𝐴 + d(𝐴) 

(39) 
with c(𝐴) = 𝜅 𝐴  d(𝐴) = 12 (𝜅 𝐴 − 𝜅 𝐴 ) + 𝜅 𝐴 + 𝜅  

(40) 
The following are the outcome. 

 In the given Equation (2), the first equa-
tion is stated to be nonlinearly self-ad-
joint. 𝜌 = 1 𝜌 = 𝐴 𝜌 = 𝐴 𝐴 + 𝐴2 − 𝐴2 + 𝐴𝐴  

(41) 

Using the same method on the second equa-
tion of Equation (2), we get the following con-
clusion. 

 For the second equation of the Equation 
(2) to be nonlinearly self-adjoint, we are 
given the following choices for the func-
tion 𝜌(𝑦, 𝑧, 𝐴, 𝐴 , 𝐴 ), 

𝜌 = 1𝜌 = 𝐴  

(42) 
The functions 𝜌(𝑦, 𝑧, 𝐴, 𝐴 , 𝐴 )  derived 

from the condition of nonlinear self-adjointness 
in the equations correspond to the multipliers 
used in the Anco and Bluman method[5] for the 
direct construction of conservation laws. 

4. Conservation laws 
We obtain the conserved quantities (vectors) 

and fluxes associated with the multipliers from 
Equations (28) and (29). For the first equation of 
Equation (2): 

4.1 First conserved vector Λ = 1 𝜂 = 𝐴 𝜂 = 𝐴(𝐴 + (−1 + 2𝐴 )𝐴 + 2𝐴 ) 

(43) 

4.2 Second conserved vector Λ = 𝐴 𝜂 = 𝐴2  𝜂 = 34 𝐴 − 23 𝐴 + 2𝐴 𝐴 + 𝐴 𝐴  

(44) 

4.3 Third conserved vector Λ = 𝐴 𝐴 + 𝐴2 − 𝐴2 + 𝐴𝐴  

𝜂 = − 12 𝐴 + 18 𝐴 − 16 𝐴  

𝜂 = 14 (𝐴 + (4𝐴 − 2)𝐴 + 4𝐴
+ 4 𝐴 − 12 𝐴+ 14 8 𝐴 − 12 𝐴 𝐴 + 4𝐴+ 4𝐴 𝐴 𝐴  

(45) 
The following multipliers, conserved densi-
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ties and fluxes are obtained for the second equa-
tion of Equation (2): 

4.4 First conserved vector Λ = 1 𝜂 = 𝐴 𝜂 = 2𝐴𝐴 + 2(𝐴 ) − 𝐴 + 𝐴  

(46) 

4.5 Second conserved vector Λ = 𝐴  𝜂 = 𝐴3  

𝜂 = 110 𝐴 (20𝐴 + 6𝐴 − 5𝐴) 

(47) 
Applying the theorem on conservation laws 

derived from the generators 𝐗  and 𝐗  in the 
work of Ibragimov[10] may lead to trivial conser-
vation laws in this case. Trivial conservation 
laws are those that do not provide new infor-
mation about the system and are often associ-
ated with symmetries that are not physically rel-
evant. However, it is worth noting that in the 
Conservation laws of scaling-invariant field 
equations[28], a method is presented specifically 
for deriving conservation laws associated with 
scaling symmetries. This method may provide 
more meaningful conservation laws for the sys-
tem. If scaling symmetries are present in the sys-
tem described by Equation (2), applying the 
method described by Anco[28] could yield non-
trivial conservation laws. 

5. Conclusions 
We used the classical lie approach to solve 

two partial differential equations (PDEs) with 
nonlinear dispersion and compacton solutions. 
Because these equations have symmetries, we 
were able to reduce them further into first-order 
ordinary differential equations (ODEs). This re-
duction gave useful insights into their dynamic 
behaviour and qualified them for qualitative 

analysis. We used infinitesimal operator of the 
group and Euler-lagrangian operator to get sys-
tem of determining equations. The multipliers 
approach helps us to find exact solutions of our 
system of differential equations. We also investi-
gated that Equation (2) is nonlinear selfadjoint-
ness. When studying the translation generators, 
we discovered that the conservation laws gener-
ated using the conservation laws theorem[10], 
which removes the necessity for integrating func-
tions, result in some conservation laws that do 
not give additional information (trivial conserva-
tion laws). Using the multipliers technique, we 
were able to generate nontrivial conservation 
laws using integral formulae, which improved 
our knowledge of the system’s conservation 
properties. 
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