Applications of intuitionistic fuzzy sets to assessment, decision making and to topological spaces

Michael Gr. Voskoglou

School of Engineering, University of Peloponnese, 26334 Patras, Greece; voskoglou@teiwest.gr

ABSTRACT: The intuitionistic fuzzy sets, in which the elements of the universe have their membership and non-membership degrees in [0, 1], is a generalization of Zadeh’s fuzzy set. In this paper intuitionistic fuzzy sets are used as tools for assessment and decision making. This is useful in cases where one is not sure about the suitability of the linguistic characterizations assigned to each element of the universal set. Further, it is described how the notions of convergence, continuity, compactness, and of Hausdorff topological space are extended to intuitionistic fuzzy topological spaces. Applications illustrating our results are also presented.

KEYWORDS: fuzzy set; intuitionistic FS; soft set; fuzzy assessment; decision making in fuzzy environment; intuitionistic fuzzy topological space

AMS CLASSIFICATION: 03E72

1. Introduction

Assessment is a very important process connected to all human and machine activities, because it helps to improve the performance by avoiding mistakes or weak behaviors of the past. In many cases the assessment is performed using qualitative grades (linguistic expressions) instead of numerical scores. This happens either because the existing data are not exact, or for reasons of elasticity (e.g. from teacher to students). Obviously, in such cases the mean performance of a group cannot be assessed by calculating the mean value of the individual scores of its members. For tackling this problem, we have used in earlier works either triangular fuzzy numbers (see Remark 1 iii of Section 2) or grey numbers (closed real intervals) and we have shown that these two methods are equivalent[1].

Decision making on the other hand, which is a fundamental activity of human cognition, can be defined as the process of choosing a solution among two or more alternatives, with the help of suitable criteria, aiming to obtain the best possible outcome for a given problem. The recent technological progress and the rapid changes happening to human society increased the complexity of the decision making problems. Thus from the 1950’s a systematic approach has been started for decision making, known as Statistical Decision Theory, which is based on a synthesis of principles of several scientific fields, including Probability Theory, Statistics, Economics, Psychology[2].

Frequently in everyday life situations, however, the decision making process takes place under conditions of uncertainty, which makes the application of the traditional DM methods for the solution of the corresponding problems impossible. Several decision making methodologies have been proposed for such cases, based on principles of the theory of fuzzy sets[3] and of their extensions[4–7].

Atanassov’s theory of intuitionistic fuzzy sets, introduced in 1986[8], is a generalization of Zadeh’s fuzzy sets. In fact, in an intuitionistic fuzzy set all the elements of the universal set of the discourse are
characterized, apart from Zadeh’s membership degree, by the degree of non-membership too, both of which are taking values in [0, 1].

Intuitionistic fuzzy sets have found important applications to practical everyday life problems in which the use of FSs has not been proved to be too effective for obtaining the required solutions. These applications include career determination\(^9\), weather broadcasting\(^10\), artificial intelligence\(^11\), decision making\(^12,13\), medicine\(^14-17\), logic\(^18,19\), choice of discipline of studies\(^20\), etc.

The target of this work is to present applications of intuitionistic fuzzy sets to assessment and to decision making in situations where one is not sure about the accuracy of the linguistic characterizations (parameters) assigned to each element of the universal set. Further, it is described how fundamental concepts of the classical Topology can be extended to intuitionistic fuzzy topological spaces. More explicitly, Section 2 of this work includes the information about fuzzy sets, intuitionistic fuzzy sets and Molodtsov’s soft sets\(^21\), needed for the understanding of the paper. The application of intuitionistic fuzzy sets to assessment processes is developed in section 3, whereas section 4 introduces their application to decision making. In section 5 it is described how fundamental notions of the classical Topology are extended to intuitionistic fuzzy topological spaces. The last Section 6 includes the general conclusions and a short discussion for further research.

2. Background information

2.1. Fuzzy sets

Zadeh introduced in 1965 the notion of fuzzy set for tackling mathematically the partial truths and the definitions having no clear boundaries in the following way\(^3\):

Definition 1. A fuzzy set \(A\) in the universe \(U\) is of the form

\[
A = \{(x, m(x)) : x \in U\}
\]

In Equation (1) \(m: U \rightarrow [0, 1]\) is the membership function of \(A\), while the number \(m(x)\) is called the membership degree of \(x\) in \(A\). The closer \(m(x)\) to 1, the better \(x\) satisfies the property of \(A\). An ordinary set is obviously a fuzzy set with membership function its characteristic function.

The definition of the membership function is not unique, depending on each observer’s subjective criteria. Defining, for example, the FS of the good students of a class, one may consider all students with grades greater than 16 (in a scale from 0 to 20) as good and another one all those with grades greater than 17. As a result, the first observer will attach membership degree 1 to all students with grades between 16 and 17, whereas the second one will attach to them membership degrees <1. The only restriction for the membership function is to follow common sense, so that the corresponding fuzzy set is compatible with reality. This does not happen, for instance, if in the previous example students with grades <10 have membership degrees ≥0.5.

Later, when membership degrees were reinterpreted as possibility distributions, fuzzy sets were also used for tackling the existing in everyday life uncertainty, which is caused by the shortage of knowledge about the corresponding situation. Until then, the unique tool for dealing mathematically with uncertainty was probability theory. Probability, however, is effective for tackling only the uncertainty which is due to randomness, like it happens with the games of chance. Possibility is an alternative mathematical theory for dealing with uncertainty. Zadeh determined the difference between possibility and probability stating that whatever is probable must be primarily possible\(^22\). Fuzzy sets are suitable in particular for tackling the uncertainty due to vagueness, where one has difficulty distinguishing between two properties, like a mediocre and a good student.
As a general reference for fuzzy sets and the related to them uncertainty we propose\(^{[23]}\).

2.2. Intuitionistic fuzzy sets

Following the introduction of fuzzy sets, a series of extensions and related theories have been proposed for tackling more effectively the existing in each particular case uncertainty\(^{[24]}\).

Atanassov extended in 1986 the concept of fuzzy set to that of intuitionistic fuzzy set in the following way\(^{[8]}\):

Definition 2. An intuitionistic fuzzy set \(A \) in the universal set \(U \) is of the form

\[
A = \{ (x, m(x), n(x)) : x \in U, m(x), n(x) \in [0, 1], 0 \leq m(x) + n(x) \leq 1 \} \tag{2}
\]

In Equation (2) \(m: U \rightarrow [0, 1] \) is the membership function and \(n: U \rightarrow [0, 1] \) is the non-membership function of \(A \) and \(m(x), n(x) \) are the degrees of membership and non-membership respectively for each \(x \) in \(A \). Further, \(h(x) = 1 - m(x) - n(x) \), is said to be the degree of hesitation of \(x \) in \(A \). If \(h(x) = 0 \), then \(A \) is a fuzzy set.

The term intuitionistic fuzzy set is due to Atanassov’s collaborator Gargov in analogy to the idea of intuitionism introduced by Brouwer at the beginning of the last century. It is recalled that intuitionism rejects Aristotle’s law of the excluded middle by stating that a proposition is either true, or not true, or we do not know if it is true or not true. The first part of this statement corresponds to Zadeh’s membership degree, the second to Atanassov’s non-membership and the third to the degree of hesitation.

Example 1. Let \(U \) be the set of all the players of a football team, let \(A \) be the IFS of the good players of the team, and let \((x, 0.6, 0.3, 0.1) \) be in \(A \). Then, there is a 60% belief that \(x \) is a good player, but also a 30% belief that he is not a good player and a 10% hesitation to characterize him as a good player or not.

A fuzzy set with membership function \(y = m(x) \) is obviously an intuitionistic fuzzy set with non-membership function \(n(x) = 1 - m(x) \) and hesitation degree \(h(x) = 0 \), for all \(x \) in \(U \). Intuitionistic fuzzy sets can be used everywhere the ordinary fuzzy sets can be applied, but this is not always necessary. Suppose, for example, that one is interested in the degree of support that the governments of several countries have in their parliaments. For this, he calculates the quotient of the number of the ruling party’s members of the parliament to the total number of its members. Here, therefore, the use of intuitionistic fuzzy sets is not needed. In the case of an election, on the contrary, a candidate can have voted for (membership), voted against (non-membership) and undecided (hesitancy) by the electoral vote. This is an example where the use of intuitionistic fuzzy sets is necessary.

Atanassov\(^{[25]}\) proposed the geometrical representation of an intuitionistic fuzzy set shown in **Figure 1**, where \(E \) denotes the universe, \(\mu_A(x) \) the membership and \(\nu_A(x) \) the non-membership degree of the element \(x \) of \(E \).

![Figure 1. Geometrical representation of an IFS.](image-url)
The intuitionistic fuzzy sets are suitable for tackling the uncertainty due to imprecision, which appears frequently in human reasoning and they have found various applications to many sectors of human activity[11]. An interesting special issue on intuitionistic fuzzy sets and their applications consisting of 14 in total papers has been published in volumes 8 (2020) and 9(2021) of the journal Mathematics[26].

Here, for simplicity, we denote an intuitionistic fuzzy set A by $A = [m, n]$ and the elements of A in the form of intuitionistic fuzzy pairs (m, n), with m, n in $[0, 1]$ and $0 \leq m + n \leq 1$. Considering the elements of an intuitionistic fuzzy set A as ordered pairs we define addition and scalar multiplication in the usual way, i.e. as follows:

Definition 3. Let $(m_1, n_1), (m_2, n_2)$ be in the IFS A and let r be a positive number. Then we define:

\[
\text{The sum (} m_1, n_1 \text{) + (} m_2, n_2 \text{) = (} m_1 + m_2, n_1 + n_2 \text{)} \quad (3)
\]

\[
\text{The scalar product r(} m_1, n_1 \text{) = (rm}_1, \text{rn}_1 \text{)} \quad (4)
\]

The sum and the scalar product of the elements of an intuitionistic fuzzy set A with respect to Definition 3 need not be elements of A, since it could happen that $(m_1 + n_2) + (m_1 + n_1) > 1$ or $rm_1 + rns_1 > 1$. The mean value of a finite number of elements of A, however, defined below, is always in A.

Definition 4. Let A be an intuitionistic fuzzy set and let $(m_1, n_1), (m_2, n_2), \ldots, (m_n, n_n)$ be a finite number of elements of A. Then the mean value of these elements is the element of A:

\[
(m, n) = \frac{1}{n} [(m_1, n_1) + (m_2, n_2) + \ldots + (m_n, n_n)] \quad (5)
\]

For general facts on intuitionistic fuzzy sets we refer to the study by Atanassov[11].

Extensions of the concept of intuitionistic fuzzy set include[28]:

1. Interval-valued intuitionistic fuzzy set (Gargov and Atanassov);
2. u Intuitionistic L-fuzzy sets (Stoeva and Atanassov);
3. u intuitionistic fuzzy sets over different universes (Atanassov);
4. u intuitionistic fuzzy sets of type 2 and type n (Rangasamy, Vassilev and Atanassov);
5. u Temporal intuitionistic fuzzy sets (Atanassov);
6. u Intuitionistic fuzzy multidimensional sets (Szmidt, Kacprzyk and Atanassov), etc.

Remark 1. i) Smarandache, inspired by the various neutralities of the everyday life, like win – draw - defeat, friend – neutral – enemy, etc., extended further the concept of intuitionistic fuzzy set in 1995 to that of neutrosophic set by introducing the degree of indeterminacy or neutrality in addition to those of membership and non-membership[29]. The information that we have for an element x of the universe U is said to be complete, if $m(x) + i(x) + n(x) = 1$, incomplete, if $m(x) + i(x) + n(x) < 1$, and inconsistent, if $m(x) + i(x) + n(x) > 1$, where $m(x)$, $i(x)$, $n(x)$ denote membership, indeterminacy and non-membership respectively. A neutrosophic set can contain simultaneously elements leaving room to all the previous forms of information. In an intuitionistic fuzzy set the indeterminacy coincides with the hesitation, whereas in a fuzzy set is $n(x) = 1 - m(x)$ and $i(x) = 0$.

ii) Zadeh in 1975 extended fuzzy set, which is now called type-1 fuzzy set, to the concept of type-2 fuzzy set[28] for handling more uncertainty connected to the membership function. The membership function of a type-2 fuzzy set is three-dimensional, its third dimension being the value of the membership function at each point of its two-dimensional domain, which is called footprint of uncertainty. The footprint of uncertainty is determined by its two bounding functions, a lower membership function and an upper membership function, both of which are type-1 FSS. When no uncertainty exists about the membership function, then a type-2 fuzzy set reduces to a type-1 fuzzy set. Zadeh in the same paper generalized the type-2 fuzzy set to the type-n fuzzy set[28], $n = 1, 2, 3, \ldots$ In the late 1990 s Prof. Jerry Mendel and his group cultivated further the theory of type-n fuzzy set[29]. Since then, more and more papers are written about type-n fuzzy sets, e.g., Mohammadzadeh et al.[30], a recent very interesting work about Fourier-based,
type-2 fuzzy neural networks effective for high dimensional problems. Also, some remarkable papers have been written about type-3 fuzzy sets with important applications to renewable energy modelling prediction[31], to fractional learning algorithms[32], etc. (Remark 1 (ii) was transferred here from the last section)

iii) A fuzzy number is a fuzzy set in the set \(R \) of real numbers with a piece-wise continuous membership function \(y = m(x) \), which is normal (i.e. there exists \(x \) in \(R \) such that \(m(x) = 1 \)) and convex (i.e. all its a-cuts \(\{ x \in R : m(x) \geq a \} \), \(a \in [0, 1] \), are closed real intervals). The simplest form of fuzzy numbers are the triangular fuzzy numbers. A triangular fuzzy number \((a, b, c)\), with \(a, b, c \) in \(R \), \(a < b < c \), represents mathematically the linguistic statement “the value of \(b \) lies in the interval \([a, c]\)” and its membership function is defined by

\[
y = m(x) = \begin{cases}
\frac{x-a}{b-a}, & x \in [a, b] \\
\frac{c-x}{c-b}, & x \in [b, c] \\
0, & x \leq a \text{ or } x \geq c
\end{cases}
\]

For general facts on triangular fuzzy numbers we refer to the study by Kaufmann et al.[33].

2.3. Soft sets and parametric decision making

The difficulty of defining the membership function of a fuzzy set, which was described in Section 2.1, holds also for all their extensions involving membership functions, like intuitionistic fuzzy sets, neutrosophic sets, etc. Several solutions have been proposed for tackling this problem like:

1) The interval-valued fuzzy sets[34], in which the membership degrees are replaced by subintervals of \([0, 1]\);
2) The rough sets[35], in which instead of a membership function one introduces a pair of sets as the lower and upper bound of the original set;
3) The grey numbers (closed intervals of real numbers)[36], where the definition of a membership function is not necessary;
4) The soft sets[21], tackling the uncertainty in a parametric manner, etc.

Molodtov, introduced in 1999 the notion of soft set in the following way[21]:

Definition 5. Let \(E \) be a set of parameters and let \(f \) be a map from \(E \) into the power set \(P(U) \) of the universal set \(U \). Then the soft set \((f, E)\) in \(U \) is defined as a parametrized family of subsets of \(U \) by

\[
(f, E) = \{(e, f(e)) : e \in A\}
\]

The term “soft” was introduced because the form of \((f, E)\) depends on the parameters of \(E \). A fuzzy set in \(U \) with membership function \(y = m(x) \) is a SS in \(U \) of the form \((f, [0, 1])\), where \(f(a) = \{ x \in : m(x) > a \} \) is the a-cut of the fuzzy set, \(\forall a \in [0, 1] \).

Maji et al.[37] introduced the *tabular representation* of a SS for storing it easily in a computer’s memory and they used it for parametric DM[38]. The following example illustrates their DM methodology.

Example 2. A company wants to employ a person among the six candidates \(A_1, A_2, A_3, A_4, A_5, A_6 \). The ideal qualifications for the new employee are to have satisfactory previous experience, to hold a university degree, to have a driving license and to be young. Assume that \(A_1, A_2, A_3 \) are the candidates with satisfactory previous experience, \(A_3, A_4, A_5, A_6 \) are holders of a university degree, \(A_3, A_4 \) are holders of a driving license and \(A_4 \) is the only young candidate. Find the best decision for the company.

Solution: Set \(U = \{ A_1, A_2, A_3, A_4, A_5, A_6 \} \) and let \(F = \{ p_1, p_2, p_3, p_4 \} \) be the set of the parameters \(p_1 \)=well experienced, \(p_2 \)=holder of a university degree, \(p_3 \)=holder of a driving license and \(p_4 \)=young.
Consider the map \(f: F \to P(U) \) defined by \(f(p_1) = \{A_1, A_2, A_6\}, \ f(p_2) = \{A_2, A_3, A_5, A_6\}, \ f(p_3) = \{A_3, A_5\}, \ f(p_4) = \{C_4\} \). Then the soft set defined with respect to \(F \) and \(f \) is equal to
\[
(f, F) = \{(p_1, \{A_1, A_2, A_6\}), (p_2, \{A_2, A_3, A_5, A_6\}), (p_3, \{A_3, A_5\}), (p_4, \{A_4\})\}
\] (7)

The tabular representation of the soft set \((f, F)\), shown in Table 1, is formed by assigning to each candidate the binary element 1, if he/she satisfies the qualification addressed by the corresponding parameter, or the binary element 0 otherwise. Then, the choice value of each candidate is determined by adding the entries of the row of the tabular representation of \((f, F)\) where it belongs. Thus, the candidates \(A_1\) and \(A_4\) have choice value 1 and all the others 2. The company, therefore, must employ one of the candidates \(A_2, A_3, A_5\) or \(A_6\).

<table>
<thead>
<tr>
<th></th>
<th>(p_1)</th>
<th>(p_2)</th>
<th>(p_3)</th>
<th>(p_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(A_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(A_3)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(A_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(A_5)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(A_6)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3. Intuitionistic fuzzy assessment

When the assessment is performed with qualitative grades, cases appear in which one is not sure about the accuracy of the qualitative grades assigned to the objects under assessment. In such cases, the use of IFSs as tools provides a potential way for evaluating a group’s overall performance. This new methodology is applied in the next example.

Example 3. The new coach of a football team is not sure yet about the quality of his players. He characterized, therefore, the good players as follows: \(p_1 \) and \(p_2 \) by \((1, 0)\), \(p_3, p_4 \) and \(p_5 \) by \((0.8, 0.1)\), \(p_6 \) and \(p_7 \) by \((0.7, 0.2)\), \(p_8, p_9 \) and \(p_{10} \) by \((0.6, 0.2)\), \(p_{11} \) by \((0.5, 0.1)\), \(p_{12} \) and \(p_{13} \) by \((0.5, 0.2)\), \(p_{14} \) by \((0.3, 0.6)\), \(p_{15} \) and \(p_{16} \) by \((0.2, 0.6)\), \(p_{17} \) by \((0.1, 0.7)\), and the remaining three players by \((0, 1)\). In other words, the coach believes that \(p_1 \) and \(p_2 \) are good players, he is 80% sure that \(p_3, p_4 \) and \(p_5 \) are good players too, but simultaneously he has a 10% belief that they may not be good players and a 10% hesitation to decide about it, and so on. For the last three players the coach is absolutely sure that they are not good players. Estimate the overall quality of the team according to the opinion of the coach about the individual quality of his players.

Solution: The overall quality of the football team can be estimated by calculating the mean value, say \(M = (m, n) \), of the elements of the intuitionistic fuzzy set of the good players of the team. For this, according to the given data, Equation (5) gives that

\[
M = (m, n) = \frac{1}{20} [2 (1, 0) + 3 (0.8, 0.1) + 2 (0.7, 0.2) + 3 (0.6, 0.2) + (0.5, 0.1) + 2 (0.5, 0.2) \\
+ (0.3, 0.6) + 2 (0.2, 0.6) + (0.1, 0.7) + 3 (0, 1)]
\] (8)

Therefore, Equations (3) and (4) give that

\[
(m, n) = \frac{1}{20} (9.9., 7.3) = (0.495, 0.365)
\] (9)

Consequently, a random player of the team is a good player by 49.5%, but simultaneously there is a 36.5% chance to be not a good player and a 14% hesitation for deciding whether he is a good player or not. These outcomes give a quite good idea about the overall quality of the football team.
Remark 2. i) As a consequence of the fact that there is no general rule for defining the membership and non-membership functions of an IFS, there is also no general rule for the assessment of the individual performance of the members of a group using IFSs. The individual assessment of the players’ in Example 3, therefore, was performed on the basis of the coach’s personal criteria.

 ii) The assessment method applied in Example 3 for estimating the overall quality of the football team is of general character. This means that it can be applied to all the cases of evaluating a group’s overall performance when the qualitative grades assigned to its members are uncertain, provided that the evaluator is in position to assess the individual performance of the group’s members using IFSs (see Remark 2 (i)). These cases may include, for example, students’ or teachers’ performance, mean level of athletes’ assessment, chess or bridge players’ skills and even computer programs’ effectiveness, industrial machines’ or artificial intelligence’s devices proficiency, race cars’ competitions, etc.

 iii) In an earlier work[39] we introduced a similar assessment method by using neutrosophic sets as tools instead of intuitionistic fuzzy sets. The use of intuitionistic fuzzy sets however, involves less calculations and provides equally reliable results. The advantage of using neutrosophic sets, on the other hand, is that they enable one to handle data providing incomplete or inconsistent assessment information; for example 40% belief that a player is good, 30% doubt about it, and at the same time 20% (40% respectively) belief that he is not a good player.

4. Intuitionistic fuzzy decision making

 The decision making method by Maji et al.[38] does not help very much the company of Example 2, since it excludes only two among the six candidates for employment. This is due to the fact that in the tabular matrix of the corresponding SS the characterizations of the candidates by the corresponding parameters are replaced with the binary elements (truth values) 0, 1. In other words, although the method Maji et al.[38] starts from a fuzzy basis using soft sets, then it uses bivalent logic for making the required decision, e.g. young or not young in the example. This could lead to inadequate decisions, if some of the parameters have a fuzzy texture; like the parameter “young” in Example 2. For tackling this problem, we have used grey numbers in the tabular representation of the corresponding soft set instead of the binary elements 0, 1[34] (Section 5.3). Decision making cases appear frequently in everyday life, however, in which the decision maker is not sure of the accuracy of the qualitative (fuzzy) parameters assigned to certain elements of the universe. For this, we have used neutrosophic sets as tools for DM in these cases instead of grey numbers[7]. The use of intuitionistic fuzzy sets instead of neutrosophic sets, however, provides equally good results too, requiring less calculations. This new decision making method is developed in Example 4.

Example 4. Revisiting Example 2, assume that the company has doubts about the accuracy of the binary characterizations 0, 1 assigned to each of the six candidates with respect to the parameters p₁ and p₅. It was decided, therefore, to replace the binary elements of the tabular representation of the corresponding soft set by intuitionistic fuzzy pairs. In this case the tabular representation of the decision making procedure takes the form shown in Table 2. Which will be the optimal decision in this case?
Solution: The four last columns of \textit{Table 2} contain the elements of the intuitionistic fuzzy sets of the candidates who are well experienced, holders of a university degree, holders of a driving license and young respectively.

By Equations (3)–(5), the choice value of \(A_1 \) is equal to
\[
\frac{1}{4} \left[(1, 0) + 2 (0, 1) + (0.6, 0.1) \right] = \frac{1}{4} (1.6, 2.1) = (0.4, 0.525)
\]

In the same way one finds that the choice values of \(A_2, A_3, A_4, A_5 \) and \(A_6 \) are equal to \((0.55, 0.4), (0.775, 0.075), (0.375, 0.575), (0.775, 0.125) \) and \((0.6, 0.3)\) respectively.

The company, therefore, may choose either the candidate with the greatest membership degree, or the candidate with the lower non-membership degree, i.e. either one of the candidates \(A_3 \) and \(A_5 \), or the candidate \(A_3 \). A combination of the two criteria leads to the final choice of the candidate \(A_3 \). Observe, however, that, since the hesitation degree of \(A_3 \) is 0.15 and of \(A_5 \) is 0.1, the choice of \(A_3 \) is connected with a slightly greater risk. In final analysis, therefore, all the intuitionistic degrees assigned to each candidate give useful information about his suitability.

\textbf{Remark 3.} i) Our DM algorithm applied in Example 4, which is an extension of the DM method of Maji et al.\cite{38}, provides better decisions than it in cases where the decision maker is not sure for the accuracy of the parameters. This algorithm can be also used in all the analogous cases of parametric multi-criteria DM involving fuzzy parameters. Examples that have been already presented in earlier author’s works (using GNs and NSs instead of IFSs) are related with decisions for buying a house\cite{39}, or a car\cite{40} and for choosing a new player for a football team\cite{7}.

ii) Weighted DM: In multiple DM processes the decision-maker’s goals are not always equally important. In such cases, weight coefficients are assigned to each parameter, whose sum is equal to 1. Assume, for instance, that the weight coefficients 0.4, 0.3, 0.2 and 0.1 have been assigned to the parameters \(p_1, p_2, p_3 \) and \(p_4 \) respectively of Example 4. Then the weighted choice value of the candidate \(A_1 \) is equal to
\[
\frac{1}{4} \left[0.4 (1, 0) + 0.3 (0, 1) + 0.2 (0, 1) + 0.1 (0.6, 0.1) \right] = \frac{1}{4} (0.46, 0.51) = (0.115, 0.1275)
\]

In the same way one finds that the choice values of the candidates \(A_2, A_3, A_4, A_5 \) and \(A_6 \) are \((0.18, 0.065), (0.19, 0.015), (0.075, 0.115), (0.19, 0.0425) \) and \((0.185, 0.055)\) respectively. The combination of the two criteria, therefore, shows again that the best decision for the company is to employ the candidate \(A_3 \).

\textbf{5. Intuitionistic fuzzy topological spaces}

The basic concepts and properties of the ordinary sets are generalized for fuzzy sets and their extensions, including the intuitionistic fuzzy sets\cite{11,29}. Fuzzy sets and their extensions, apart from their various and interesting applications to everyday life situations, have found also important connections with areas of classical mathematics, like Algebra, Analysis, Geometry, Topology etc.
The notion of topological space, for example, has been generalized to fuzzy sets, to intuitionistic fuzzy sets, to neutrosophic sets, to soft sets, etc. It is recalled that a topology on a set is a collection of subsets of such that and belong to and the intersection of any two elements of and the union of any number of elements of belong also to. The elements of a topology are called open subsets of and their complements are called closed subsets of. The pair is called a topological space on. Topological spaces is the most general category of mathematical spaces, in which fundamental mathematical concepts can be defined.

In this section we describe how one can generalize the concepts of convergence, continuity, compactness and of Hausdorff topological space of the classical Topology to intuitionistic fuzzy topological spaces. For introducing the concept of intuitionistic fuzzy topological space, one needs first the following two definitions:

Definition 6. Let and be two intuitionistic fuzzy sets in . Then:
1) The complement is the intuitionistic fuzzy set in .
2) is said to be an intuitionistic fuzzy subset of if, and only if, for all in . If and , then and are equal intuitionistic fuzzy sets.
3) The union is the intuitionistic fuzzy set in .
4) The intersection is the intuitionistic fuzzy set in .

It is straightforward to check that if and are crisp sets (fuzzy sets) then the previous definitions are reduced to the corresponding definitions of crisp sets (fuzzy sets).

Definition 7. The empty intuitionistic fuzzy set in the universe is defined to be the intuitionistic fuzzy set , with , for all in , whereas the universal intuitionistic fuzzy set in is defined to be the intuitionistic fuzzy set , with , for all in .

Obviously, we have that and for all IFSs A in .

Example 5. Let be the universal set and let , , , be two intuitionistic fuzzy sets in . Then:
- is not .
- and .
- and .
- and .

Definition 8. An intuitionistic fuzzy topology on a non-empty set is defined to be a collection of intuitionistic fuzzy sets in such that:
- and belong to ;
- The intersection of any two elements of and the union of any number of elements of belong to .

Trivial examples are the discrete intuitionistic fuzzy topology of all intuitionistic fuzzy sets in and the non-discrete intuitionistic fuzzy topology .

The elements of an intuitionistic fuzzy topology on are called open intuitionistic fuzzy sets in and their complements are called closed intuitionistic fuzzy sets in. The pair is called an intuitionistic fuzzy topological space on.
Example 6. Set $U = \{x\}$ and let $A = \{(x, 0.5, 0.4)\}$, $B = \{(x, 0.4, 0.8)\}$, $C = \{(x, 0.5, 0.4)\}$, $D = \{(x, 0.4, 0.8)\}$ be IFSs in U. Then it is easy to show that the collection $T = \{\varnothing, U, A, B, C, D\}$ is an intuitionistic fuzzy topology on U.

The concept of convergence is extended to intuitionistic fuzzy topological spaces as follows:

Definition 9. Given two IFSs A and B of the IFTS (U, T), B is said to be a neighborhood of A, if there exists an open intuitionistic fuzzy set K such that $A \subseteq K \subseteq B$. We say then, that a sequence $\{A_n\}$ of intuitionistic fuzzy sets of (U, T) converges to the intuitionistic fuzzy set A of (U, T), if there exists a positive integer m such that, for each integer $n \geq m$ and each neighborhood B of A we have that $A_n \subseteq B$.

According to Zadeh’s extension principle, if U and V are crisp sets, U, $V \neq \varnothing$, then f can extended to a function F mapping fuzzy sets in U to fuzzy sets in V. It is straightforward to check that the same principle holds for intuitionistic fuzzy sets too.

Definition 10. Let (U, T) and (V, S) be two intuitionistic fuzzy sets and let f be a function $f: U \rightarrow V$. According to the extension principle, f can be extended to a function F which maps intuitionistic fuzzy sets of U to intuitionistic fuzzy sets of V. We say then that f is an intuitionistic fuzzy-continuous function, if, and only if, the inverse image of each open intuitionistic fuzzy set of V through F is an open intuitionistic fuzzy set of U.

Definition 11. A family $A = \{A_i, i \in I\}$ of intuitionistic fuzzy sets of an intuitionistic fuzzy topological space (U, T) is called a cover of U, if $U = \bigcup_{i \in I} A_i$. If the elements of A are open intuitionistic fuzzy sets, then A is called an open cover of U. Also, each intuitionistic fuzzy subset of A which is also a cover of U is called a sub-cover of A. The intuitionistic fuzzy topological space (U, T) is said to be compact, if every open cover of U contains a sub-cover with finitely many elements.

Definition 12. An intuitionistic fuzzy topological space (U, T) is said to be a T_1-intuitionistic fuzzy topological space if, and only if, for each pair of elements x_1, x_2 of U with $x_1 \neq x_2$, there exist at least two open intuitionistic fuzzy sets K_1 and K_2 such that $x_1 \in K_1$, $x_2 \notin K_1$ and $x_2 \in K_2$, $x_1 \notin K_2$. Further, (U, T) is said to be a T_2-intuitionistic fuzzy topological space, if, and only if, for each pair of elements x_1, x_2 of U, with $x_1 \neq x_2$, there exist at least two open intuitionistic fuzzy sets K_1 and K_2 such that $x_1 \in K_1$, $x_2 \in K_2$ and $K_1 \cap K_2 = \varnothing$.

A T_2-intuitionistic fuzzy topological space is also called a Hausdorff or a separable intuitionistic fuzzy topological space. Obviously a T_2-intuitionistic fuzzy topological space is always a T_1-intuitionistic fuzzy topological space.

6. Conclusions and future problems

In this paper intuitionistic fuzzy sets were used as tools in assessment and decision making processes. This is a very useful when one is not sure about the accuracy of the qualitative grades/parameters assigned to the elements of the universal set. At the end of the paper we described how fundamental concepts of topological spaces can be extended to intuitionistic fuzzy topological spaces.

In general, the advantage of using intuitionistic fuzzy sets as tools for assessment is that they enable one to estimate the overall performance of a group with respect to a certain activity when the qualitative grades assigned to its members are uncertain. Also, in decision making the advantage of using intuitionistic fuzzy sets in the tabular matrix is that they help the decision maker to make the right decision, when some of the parameters involved are of fuzzy texture.

Probability, fuzzy sets and the related theories are not able to tackle each one alone effectively all the types of the existing in everyday life and science uncertainty. Each of them is more suitable for
managing some special types of uncertainty, e.g. probability for randomness, fuzzy sets for vagueness, intuitionistic fuzzy sets for imprecision in human thinking, neutrosophic sets for ambiguity and inconsistency, etc. All these theories together, however, provide an adequate framework for dealing with the uncertainty. In particular, suitable combinations of two or more of these theories give more effective ways for obtaining better results. For example, the type-2 and type-3 fuzzy sets have been combined with intuitionistic fuzzy sets and interval valued fuzzy sets to produce the concepts of type-2\cite{40} and type-3 intuitionistic fuzzy sets and interval valued fuzzy sets\cite{47,48} respectively. This is, therefore, an interesting area for further research.

Conflict of interest

The author declares no conflict of interest.

References