(ε)-Kenmotsu manifold admitting Schouten-van Kampen connection

S. Girish Babu¹, R. Rajendra², P. Siva Kota Reddy³⁴, N. Pavani⁴

¹ Department of Mathematics, Siddaganga Institute of Technology, Tumkur 572103, Karnataka, India
² Department of Mathematics, Field Marshal K. M. Cariappa College, Madikeri 571201, Karnataka, India
³ Department of Mathematics, JSS Science and Technology University, Mysuru 570006, Karnataka, India
⁴ Department of Mathematics, Sri Krishna Institute of Technology, Bangalore 560090, Karnataka, India

*Corresponding author: P. Siva Kota Reddy, pskreddy@jssstuniv.in

ABSTRACT: The objective of this paper is to study some properties of quasi-conformal and concircular tensor on (ε)-Kenmotsu manifold admitting the Schouten-van Kampen connection. Expressions of the curvature tensor, Ricci tensor and scalar curvature admitting Schouten-van Kampen connection have been obtained. Locally symmetric (ε)-Kenmotsu manifold admitting Schouten-van Kampen connection and quasicon formally flat as well as quasi-conformally semisymmetric (ε)-Kenmotsu manifolds admitting Schouten-van Kampen connection are studied.

KEYWORDS: (ε)-Kenmotsu manifold; quasi-conformal curvature tensor; concircular curvature tensor; Schouten-van Kampen connection

2010 MSC CLASSIFICATION: 53C15; 53C25

1. Introduction

De and Sarkar¹ introduced the concept of indefinite metrics on Kenmotsu manifold, and are called (ε)-Kenmotsu manifolds. They studied conformally flat, Weyl semisymmetric, ϕ- recurrent (ε)-Kenmotsu manifolds. The Schouten-van Kampen connection has been introduced for studying non-holomorphic manifolds. It preserves, by parallelism, a pair of complementary distributions on a differentiable manifold endowed with an affine connection (See Bejancu and Farran², Ianus³, Schouten and van Kampen⁴). Then, Olszak⁵ studied the Schouten-van Kampen connection to adapt it to an almost contact metric structure. He characterized some classes of almost contact metric manifolds with the Schouten-van Kampen connection and established certain curvature properties with respect to this connection. Recently, Ghosh⁶ and Yildiz⁷ have studied the Schouten-van Kampen connection in Sasakian manifolds and f-Kenmotsu manifolds, respectively. Some related developments can be found in many other works⁸-³³.

This paper is structured as follows: Section 2 gives a brief review of (ε)-Kenmotsu manifolds. In section 3, we obtain the expressions of the curvature tensor, Ricci tensor and scalar curvature admitting Schouten-van Kampen connection. In section 4, we study locally symmetric (ε)-Kenmotsu manifold admitting Schouten-van Kampen connection. In sections 5, we study quasiconformally flat and quasi-conformally semisymmetric (ε)-Kenmotsu manifold admitting Schouten-van Kampen connection. In section 6, we prove (ε) Kenmotsu manifold admitting Schouten-van Kampen connection satisfying \(\bar{Z}(X,Y,\bar{S}(U,W)) = 0 \) is an \(\eta \)-Einstein manifold.

2. Preliminaries

An almost contact structure on a differentiable manifold \(M^n \) is a triple \((ϕ,ξ,η)\), where \(ϕ \) is a tensor
field of type (1,1), \(\eta\) is a 1-form and \(\xi\) is a vector field such that
\[
\phi^2 = X_1 + \eta(X_1)\xi,
\]
\[
\eta(\xi) = 1, \phi\xi = 0, \eta\phi = 0
\]
A differential manifold with an almost contact structure is called an almost contact manifold. An almost contact metric manifold is an almost contact manifold endowed with a compatible metric \(g\). An almost contact metric manifold \(M\) is said to be an \((\epsilon)\)-almost contact metric manifold, if
\[
g(\xi, \xi) = \pm 1 = \epsilon,
\]
\[
\eta(X) = \epsilon g(X, \xi), \text{rank}(\phi) = n - 1,
\]
\[
g(\phi X, \phi Y) = g(X, Y) - \epsilon \eta(X)\eta(Y), \forall X, Y \in \Gamma(TM),
\]
where \(\xi\) is space-like or time-like but it is never a light like vector field. We say that \((\phi, \xi, \eta, g)\) is an \((\epsilon)\)-contact metric structure, if
\[
d\eta(X, Y) = g(X, \phi Y)
\]
In such case, \(M\) is an \((\epsilon)\)-contact metric manifold. An \((\epsilon)\)-contact metric manifold is called an \((\epsilon)\)-Kenmotsu manifold\(^1\), if
\[
\nabla X \phi Y = g(X, \phi Y)\xi - \epsilon \eta(Y)\phi X,
\]
where \(\nabla\) is the Riemannian connection of \(g\). An \((\epsilon)\)-almost contact metric manifold is a \((\epsilon)\)-Kenmotsu manifold if and only if
\[
\nabla X \xi = \epsilon (X - \eta(X)\xi).
\]
The following conditions hold in an \((\epsilon)\)-Kenmotsu manifold\(^1\):
\[
(\nabla_X \eta)(Y) = g(X, Y) - \epsilon \eta(X)\eta(Y),
\]
\[
\eta(R(X, Y, Z)) = \epsilon (g(X, Z)Y - g(Y, Z)X),
\]
\[
R(X, Y)\xi = \eta(X)Y - \eta(Y)X, R(\xi, X)Y = \eta(Y)X - \epsilon g(X, Y)\xi,
\]
\[
S(X, \xi) = -(n - 1)\eta(X), Q\xi = -\epsilon(n - 1)\xi,
\]
\[
S(\phi X, \phi Y) = S(X, Y) + \epsilon(n - 1)\eta(X)\eta(Y).
\]

3. \((\epsilon)\)-Kenmotsu manifolds admitting Schouten-van Kampen connection

The Schouten-van Kampen connection \(\nabla\) associated to the Levi-Civita connection \(\nabla\) is given by
\[
\nabla_X Y = \nabla_X Y - \eta(Y)\nabla_X \xi + (\nabla_X \eta)(Y)\xi
\]
for any vector fields \(X, Y\) on \(M\) (see Olszak\(^5\)). Using equations (8) and (9) in the above equation
\[
\nabla_X Y = \nabla_X Y - \epsilon \eta(Y)X - g(X, Y)\xi + 2\epsilon \eta(X)\eta(Y)\xi
\]
Putting \(Y = \xi\) and using (8) in (15), we obtain
\[
\nabla_X \xi = 0
\]
Let \(R\) and \(\tilde{R}\) denote the curvature tensor \(\nabla\) and \(\nabla\) respectively. Then
\[
\tilde{R}(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[XY]} Z
\]
Using Equation (15) in Equation (17), we obtain
\[
\tilde{R}(X, Y)Z = R(X, Y)Z + \epsilon g(Y, Z)X - \epsilon g(X, Z)Y + (1 - \epsilon)\eta(X)g(Y, Z)\xi - (1 - \epsilon)\eta(Y)g(X, Z)\xi
\]
Putting \(Z = \xi\) and using (11) in (18), we obtain
\[
\tilde{R}(X, Y)\xi = 0
\]
On contracting (18), we obtain the Ricci tensor \(\tilde{S}\) of a \((\epsilon)\)-Kenmotsu manifold admitting Schouten-
Van Kampen connection $\bar{\nabla}$ as
$$\bar{S}(Y, Z) = S(Y, Z) + (en - 2e + 1)g(Y, Z) - \epsilon(1 - \epsilon)\eta(Y)\eta(Z)$$ (20)
This gives
$$\bar{Q}Y = QY + (en - 2e + 1)Y - (1 - \epsilon)\eta(Y)\xi$$ (21)
Contracting with respect to Y and Z in (20), we obtain
$$\bar{\tau} = r + n(en - 2e + 1) - (1 - \epsilon),$$ (22)
where $\bar{\tau}$ and τ are the scalar curvatures admitting Schouten-van Kampen connection $\bar{\nabla}$ and the Levi-Civita connection ∇, respectively. From the above discussions we state the following:

Theorem 1. The curvature tensor \bar{R}, the Ricci tensor \bar{S} and the scalar curvature $\bar{\tau}$ of an (ϵ)-Kenmotsu manifold M with respect to the Schouten-van Kampen connection $\bar{\nabla}$ are given by the Equations (18), (20), (21) and (22) respectively. Further, the curvature tensor \bar{R} of $\bar{\nabla}$ satisfies the following:

(i) $\bar{R}(X, Y)Z = -\bar{R}(Y, X)Z$,
(ii) $\bar{R}(X, Y, Z, W) + \bar{R}(Y, X, Z, W) = 0$,
(iii) $\bar{R}(X, Y, Z, W) + \bar{R}(X, Y, W, Z) = 0$,
(iv) $\bar{R}(X, Y)Z + \bar{R}(Y, Z)X + \bar{R}(Z, X)Y = 0$,
(v) \bar{S} is symmetric.

From Equation (20), the following result is immediate.

Theorem 2. An (ϵ)-Kenmotsu manifold M^n admitting the Schouten-van Kampen connection is Ricci flat admitting Schouten-van Kampen connection if and only if M^n is an η-Einstein manifold with respect to Levi-Civita connection.

Now, if $\bar{R}(X, Y)Z = 0$, then Equation (18) becomes
$$R(X, Y)Z + \epsilon(g(Y, X)Z - g(X, Z)Y) + (1 - \epsilon)(\eta(X)g(Y, Z)\xi - \eta(Y)g(X, Z)\xi) = 0$$ (23)
Thus, we have the following theorem.

Theorem 3. Let M^n be a (ϵ)-Kenmotsu manifold admitting the Schouten-van Kampen connection. The curvature tensor of M admitting Schouten-van Kampen connection vanishes if and only if M with respect to the Levi-Civita connection is isomorphic to the hyperbolic space $H^n(-1)$.

4. Locally symmetric (ϵ)-Kenmotsu manifold admitting Schouten-van Kampen connection

Theorem 4. A locally symmetric (ϵ)-Kenmotsu manifold M^n admitting Schouten-van Kampen connection $\bar{\nabla}$ is an η-Einstein manifold.

Proof. Let M^n be a locally symmetric (ϵ)-Kenmotsu manifold admitting Schouten-van Kampen connection $\bar{\nabla}$. Then $(\bar{\nabla}_X R)(Y, Z)W = 0$. By contraction of the equation, we get
$$(\bar{\nabla}_X \bar{S})(Z, W) = \bar{\nabla}_X \bar{S}(Z, W) - \bar{S}(\bar{\nabla}_X Z, W) - \bar{S}(Z, \bar{\nabla}_X W) = 0$$ (24)
Putting $W = \xi$ in (24), we have
$$\bar{\nabla}_X \bar{S}(Z, \xi) - \bar{S}(\bar{\nabla}_X Z, \xi) - \bar{S}(Z, \bar{\nabla}_X \xi) = 0$$ (25)
Using (15) and (20) in (25), we obtain
$$S(X, Z) = Ag(X, Z) + B\eta(X)\eta(Y)$$ (26)
where $A = -\epsilon(n - 2) + 1$ and $B = -\epsilon(n - 2) + n$. □
5. Quasi-Conformally flat (e)-Kenmotsu manifold admitting Schouten van-Kampen connection

Theorem 5. A quasi-conformally flat (e)-Kenmotsu manifold admitting Schouten van-Kampen connection is an η-Einstein manifold.

Proof. An (e)-Kenmotsu manifold admitting a Schouten van-Kampen connection is said to be quasi-conformally flat if

\[\bar{C}(X, Y)Z = 0 \] \hspace{1cm} (27)

The quasi-conformal curvature tensor \(\bar{C} \) admitting a Schouten van-Kampen connection is (See Yano\[34\]):

\[\bar{C}(X, Y)Z = aR(X, Y)Z + b\bar{S}(Y, Z)X - \bar{S}(X, Z)Y + g(Y, Z)\bar{Q}X \]
\[-g(X, Y)\bar{Q}Y - \frac{a}{n}(2b + \frac{1}{n}) (g(Y, Z)X - g(X, Z)Y). \] \hspace{1cm} (28)

In view of Equations (27) and (28), we have

\[a\bar{R}(X, Y)Z = b\bar{S}(X, Z)Y - \bar{S}(Y, Z)X + g(X, Z)\bar{Q}Y - g(Y, Z)\bar{Q}X + \frac{a}{n}(2b + \frac{1}{n}) (g(Y, Z)X - g(X, Z)Y) \] \hspace{1cm} (29)

Using Equations (18), (20), and (21) and taking inner product with \(\xi \) in Equation (29) we obtain

\[
\begin{align*}
&\alpha(g(R(X, Y)Z, \xi) + \epsilon g(Y, Z)g(X, \xi) - \epsilon g(X, Z)g(Y, \xi) + \\
&\quad (1 - \epsilon)\eta(Y)g(X, Z)g(X, \xi) - (1 - \epsilon)\eta(X)g(Y, Z)g(U, \xi)) \\
&\quad = b((S(X, Z)g(Y, \xi)) + (en - 2e + 1)g(Y, Z)g(Y, \xi)) - \epsilon(1 - \epsilon)\eta(Y)\eta(Z)g(Y, \xi) \\
&\quad - (S(X, Z)g(X, \xi)) + (en - 2e + 1)g(Y, Z)g(X, \xi) + \epsilon(1 - \epsilon)(\eta(Y)\eta(Z)g(X, \xi)) \\
&\quad + g(X, Z)(g(QY, \xi)) + (en - 2e + 1)g(Y, \xi) + (1 - \epsilon)\eta(Y)g(\xi, \xi) \\
&\quad - g(Y, Z)(g(QX, \xi)) + (en - 2e + 1)g(X, \xi) + (1 - \epsilon)\eta(X)g(\xi, \xi) \\
&\quad + \frac{\bar{r}}{n}(\frac{a}{n} + 2b)g(Y, Z)g(X, \xi) - g(X, Z)g(Y, \xi) \hspace{1cm} (30)
\end{align*}
\]

Putting \(X = \xi \) and using Equations (3), (4), (11) in Equation (30) we obtain

\[S(Y, Z) = Cg(Y, Z) + D\eta(Y)\eta(X), \] \hspace{1cm} (31)

where

\[C = \frac{1}{eb} \left((1 - \epsilon)(a + 2b) + \epsilon \frac{\bar{r}}{n}(\frac{a}{b(n - 1)} + 2b) \right) \]

and

\[D = \frac{1}{eb} \left((1 - \epsilon)(a + 2b) - \frac{\bar{r}}{n}(\frac{a}{b(n - 1)} + 2b) \right). \] \hspace{1cm} □

6. Quasi-Conformally semisymmetric (e)-Kenmotsu manifold admitting Schouten van-Kampen connection

Theorem 6. A quasi-Conformally semisymmetric (e)-Kenmotsu manifold admitting Schouten van-Kampen connection is an η-Einstein manifold.

Proof. An (e)-Kenmotsu manifold admitting a Schouten van-Kampen connection is said to be quasi-conformally semisymmetric if

\[\bar{R} \cdot \bar{C}(U, V)W = 0 \] \hspace{1cm} (32)

which implies that

\[\bar{R}(\xi, Y)\bar{C}(U, V)W - \bar{C}(\bar{R}(\xi, Y)U, V)W - \bar{C}(U, \bar{R}(\xi, Y)V)W - \bar{C}(U, V)\bar{R}(\xi, Y)W = 0 \] \hspace{1cm} (33)

In view of Equation (18) in Equation (33), we have
(1 - \varepsilon)g(Y, \tilde{C}(U,V)W)\xi - \varepsilon(1 - \varepsilon)\eta(Y)\eta(\tilde{C}(U,V)W)\xi \\
-(1 - \varepsilon)g(Y, U)\tilde{C}(\xi,V)W + \varepsilon(1 - \varepsilon)\eta(Y)\eta(\tilde{C}(\xi,V)W) \\
-(1 - \varepsilon)g(Y, V)\tilde{C}(U,\xi)W + \varepsilon(1 - \varepsilon)\eta(Y)\eta(\tilde{C}(U,\xi)W) \\
-(1 - \varepsilon)g(Y, W)\tilde{C}(U,V)\xi + \varepsilon(1 - \varepsilon)\eta(Y)\eta(W)\tilde{C}(U,V)\xi = 0 \quad (34)

Replacing Y = U and taking inner product with \xi in (34), we have

\varepsilon g(U, \tilde{C}(U,V)W) - \eta(\tilde{U})\eta(\tilde{C}(U,V)W) - (g(U, U) - \varepsilon\eta(U)\eta(U))\eta(\tilde{C}(\xi,V)W) \\
-(g(U, V) + \varepsilon\eta(U)\eta(V)\tilde{C}(U,\xi)W) - (g(U, W) - \varepsilon\eta(U)\eta(W))\eta(\tilde{C}(U,\xi)W)\xi = 0 \quad (35)

provided (1 - \varepsilon) \neq 0.

Putting U = \xi and using Equations (28), (18), (20) and (21), we obtain

S(V,W) = E g(V,W) + F\eta(V)\eta(W) \quad (36)

where

E = -\frac{1}{b}\left[\alpha(1 - 3\varepsilon) + b(\varepsilon n - 2\varepsilon + 1) + 2\varepsilon(1 - \varepsilon) + \frac{\tilde{r}}{n} \left(\frac{a}{n - 1} + 2b\right)\right]

and

F = -\frac{1}{b}\left[-\varepsilon\alpha(1 - \varepsilon) + b(n - 1) - b\varepsilon(\varepsilon n - 2\varepsilon + 1) - b(1 - \varepsilon) - \frac{\tilde{r}}{n} \left(\frac{a}{n - 1} + 2b\right)\right] \quad \square

7. (\varepsilon)-Kenmotsu manifold admitting Schouten van-Kampen connection satisfying

\tilde{Z}(X,Y \cdot \tilde{S}(U,W)) = 0

Theorem 7. An (\varepsilon)-Kenmotsu manifold admitting Schouten van-Kampen connection satisfying \tilde{Z}(X,Y \cdot \tilde{S}(U,W)) = 0 is an \eta-Einstein manifold.

Proof. An (\varepsilon)-Kenmotsu manifold admitting Schouten van-Kampen connection satisfies

\tilde{Z}(X,Y \cdot \tilde{S}(U,W)) = 0 \quad (37)

which implies that

\tilde{S}(\tilde{Z}(\xi,Y)U,W) + \tilde{S}(U,\tilde{Z}(\xi,Y)W) = 0 \quad (38)

The concircular curvature tensor \tilde{Z} admitting Schouten van-Kampen connection is given by (see Yano\cite{35})

\tilde{Z}(X,Y)Z = \tilde{R}(X,Y)Z - \left(\frac{\tilde{r}}{n(n - 1)}(g(Y,Z)X - g(X,Z)Y)\right) \quad (39)

In view of Equations (3), (4), (18), (38), and (39), we have

\tilde{S}R(\xi,Y)U,W) + \varepsilon g(Y,U)\tilde{S}(\xi,W) - \eta(U)\tilde{S}(Y,W) + (1 - \varepsilon)g(Y,U)\tilde{S}(\xi,W) \\
-\varepsilon(1 - \varepsilon)\eta(Y)\eta(U)\tilde{S}(\xi,W) - \left(\frac{\tilde{r}}{n(n - 1)}\right)g(Y,U)\tilde{S}(\xi,W) + \varepsilon\left(\frac{\tilde{r}}{n(n - 1)}\right)\eta(U)\tilde{S}(Y,W) \\
+\tilde{S}(U,R(\xi,Y)W) + \varepsilon g(Y,W)\tilde{S}(\xi,U) - \eta(W)\tilde{S}(Y,U) + (1 - \varepsilon)g(Y,W)\tilde{S}(\xi,U) \\
-\varepsilon(1 - \varepsilon)\eta(Y)\eta(W)\tilde{S}(\xi,U) - \left(\frac{\tilde{r}}{n(n - 1)}\right)g(Y,W)\tilde{S}(\xi,U) + \varepsilon\left(\frac{\tilde{r}}{n(n - 1)}\right)\eta(W)\tilde{S}(Y,U) = 0. \quad (40)

Using Equation (20) and putting U = \xi in Equation (40), we obtain

S(Y,W) = G g(Y,W) + H\eta(Y)\eta(W), \quad (41)

where

G = -\frac{1}{2}\left[\varepsilon(n - 1) + (1 - \varepsilon) + (\varepsilon n - 2\varepsilon + 1)\left(\frac{\tilde{r}\varepsilon}{n(n - 1)} - 1\right)\right]

and
\[H = -\frac{1}{2} \left(-\epsilon(1 - \epsilon) - \epsilon(1 - \epsilon) \left(\frac{r_{\epsilon}}{n(n-1)} - 1 \right) \right) \]

Author contributions

Conceptualization, SGB, RR, PSKR and NP; methodology, SGB, RR and PSKR; validation, SGB, RR, PSKR and NP; formal analysis, SGB and NP; investigation, SGB, RR, PSKR and NP; resources, SGB, RR and PSKR; data curation, SGB, RR and PSKR; writing—original draft preparation, SGB, RR and PSKR; writing—review and editing, RR and PSKR; visualization, RR and PSKR; supervision, RR and PSKR. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

The authors would like to thank the referees for their invaluable comments and suggestions which led to the improvement of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

References

4. Schouten JA, van Kampen ER. On the embedding and curvature theory of nonholonomic entitie (German) *Mathematische Annalen* 1930; 103: 752–783. doi: 10.1007/BF01455718

