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ABSTRACT: COVID-19 and its variants have been the worst pandemic 

the entire world has witnessed. Tens of millions of cases have been 

recorded in over 210 countries and territories as part of the ongoing global 

pandemic that is still going on today. In this paper, we propose a SEI 

mathematical model to investigate the impact of lockdown on the control 

and spreading of infectious disease. COVID-19. The epidemic model 

incorporates constant recruitment, experiencing infectious force in the 

latent period and the infected period. The equilibrium states are 

computed. Under some conditions, results for local asymptotic stability 

and global stability of disease-free and endemic equilibrium are 

established by using the stability theory of ordinary differential equations. 

It is seen that when the basic reproduction number is high, the dynamical 

system is stable and diseases die out of the system, and when the disease 

persists in the dynamical system, when transcritical bifurcation appears. 

The numerical simulations are carried out to validate the analytical 

results. 

KEYWORDS: COVID-19 epidemic; SEI model; lockdown; stability 

analysis; non-linear incidence 

1. Introduction 
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2). The disease was first identified in the city of Wuhan, Hubei 
Province, China, at the end of 2019 and spread globally, resulting in the ongoing 2019–2020 coronavirus 
pandemic. As per WHO situation reports on 4 October 4 2020, COVID-19 has claimed 1,030,738 lives, 
along with 34,804,348 confirmed cases worldwide[1]. On 11 March 2020, the novel COVID-19 outbreak 
was declared a pandemic by the WHO, and the call for countries to take quick action and scale up the 
response to treat, detect, and reduce dynamical transmission to save people’s lives was reiterated. India 
stood at an important turning point in its challenge in opposition to COVID-19. To protect the country 
and control the spread of COVID-19 outbreaks in India, bold and decisive steps were taken on 24 March 
2020, by announcing a 21-day nationwide lockdown. Despite control policies such as finding, isolating, 
testing, treating, and tracing the infected individuals, apart from a complete ban on all ages of people 
from stepping out of their homes, the closure of commercial and private establishments, the suspension 
of all research institutions, training, and educational institutions, the closure of all worship places, the 
suspension of non-essential private and public transport, and the prohibition of all political, social, sports, 
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entertainment, cultural, academic, and religious activities were imposed in various phases. According to 
the interim compliance report for the G20 extraordinary virtual summit, which was released on 14 
September 2020[2], the spread of COVID-19 in India had been slowed considerably by lockdown 
measures. The effectiveness of lockdown[3–5] can be judged by the fact that, keeping in view the second 
wave of coronavirus infections, some countries have reimposed or extended the lockdown[6,7]. This served 
as the motivation for this paper. Several mathematical models based on integer order and fractional order 
differential equations for the epidemic COVID-19 have been proposed and analyzed by various 
mathematicians and researchers since its outbreak in December 2019[8–11]. Over 67,753 research papers 
and 19,789 preprints have been published so far on coronavirus disease from January 2020 to 2 August 
2020. For more recent papers, we refer to the readers[12–16]. 

Since, interventions such as the role of the media, advertisements, lockdown, etc. have a massive 
impact on the course of infectious diseases and hence have been discussed via mathematical models for 
various diseases, for example, a mathematical epidemiological model of COVID-19 cases in Italy[17], 
modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy[18], the 
effect of therapy and awareness campaigns on a SIR model[19], a mathematical model via non-linear 
systems describe the spread of the COVID-19 virus[20], fundamental theory of infectious disease 
transmission using straightforward compartmental models based on ordinary differential equations, such 
as the straightforward Kermack-McKendrick epidemic model[21] and a fresh COVID-19 epidemic model 
with media coverage[22], a nonlinear SEIRS type epidemic model with media impact for transmission 
dynamics of infectious diseases[23], reproduction numbers of infectious disease models[24], and 
reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease 
transmission[25]. In this paper, we demonstrate theoretically how the preventive measure of lockdown 
impacts the dynamical transmission of coronavirus disease by proposing the SEI mathematical epidemic 
model, in which illness is infectious not only in the infected period but in the latent period too. Our model 
is like that proposed by Liu and Cui[26], but there are fundamental differences between the two models. 
The model proposed by Liu and Cui is the classical SIR model, where the disease is infectious in the 
infected period only. 

The paper is organized as follows: In Section 2, an SEI model incorporating the impact of lockdown 
on the spreading of COVID-19 is proposed with the consideration that the disease is infectious in the 
latent period too. In Section 3, the threshold parameter R0 is obtained, and based on this obtained number, 
the feasibility of equilibria has been discussed. Section 4 deals with the discussion and analysis of the 
local and global stability of disease-free equilibrium (DFE) along with the local stability of endemic 
equilibrium (EE) by the Routh-Hurwitz criterion and the construction of a suitable Lyapunov function. 
To illustrate the viability of theoretical analysis, the numerical simulations of the proposed model are 
carried out using MATLAB in Section 5. Section 7 is dedicated to the discussion and conclusion of the 
paper. 

2. An SEI model with lockdown impact 
Coronavirus disease continues to race around the world at a worrisome and fierce pace. 

Governments, organizations, and people are yelling to find out the safeguards to fight back effectively. 
To get these answers, accurate and comprehensive models are needed that are good enough to depict as 
many aspects of the disease as possible. Every mathematical epidemic model emphasizes certain 
components of actual real phenomena and ignores others due to the limitations of relevant mathematical 
theories and the complexities involved therein. Likewise, it is almost impossible to reflect all aspects of 
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genuineness for the disease COVID-19 via a single mathematical model[27]. In this section, we propose a 
mathematical model for infectious coronavirus disease in which an infected person does not become 
infected for some time. Such a person who is infected but not infective is called exposed. The total 
population N is partitioned into three compartments: S(t) is the class of susceptible, E(t) is the class of 
exposed, and I(t) is the class of infectious. In most cases, a host must go through a latent stage after the 
original infection before becoming contagious. To the best of our knowledge, in the SEI models related 
to COVID-19 proposed till now, the disease has not been considered infectious in the latent period. But, 
keeping in view the transmitting feature of COVID-19, here we consider the following SEI model with 
the feature that the disease is infectious in a latent period as well, and our model is depicting the effect of 
lockdown on the dynamical transmission of the disease. 

⎩
⎪
⎨

⎪
⎧

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝛿𝑆 − ൫𝛼 − 𝑔(𝐸)൯

𝑆

𝑁
𝐸 − ൫𝛽 − ℎ(𝐼)൯

𝑆

𝑁
𝐼

𝑑𝐸

𝑑𝑡
= −𝛾𝐸 + ൫𝛼 − 𝑔(𝐸)൯

𝑆

𝑁
𝐸 + ൫𝛽 − ℎ(𝐼)൯

𝑆

𝑁
𝐼 − (𝛿 + 𝜆)𝐸

𝑑𝐼

𝑑𝑡
= 𝛾𝐸 − 𝑘𝐼 − (𝛿 + 𝜇)𝐼

 (1)

𝑆(0) > 0, 𝐸(0) ≥ 0, 𝐼(0) > 0 (one infectious person) so that for all 𝑡 ≥ 0, 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) = 𝑁. 

The Schematic flow chart diagram of the system (1) is given in Figure 1. 

 
Figure 1. The schematic flow chart of system (1). 

The model is grounded on mass action incidence and positive parameters, with the following 
epidemiological interpretations: 

 𝐴 is the constant rate at which the susceptible are recruited in the population. 

 𝛿 is the average natural death rate across all groups. 

 𝛼 is the rate of  efficient contact in the latent period before lockdown.  

 𝛽 is the effective contact rate prior to lockdown during the infected time. 

 𝛾 is the rate of  transmission between infected and exposed people. 

 𝜆 is the rate of  disease-caused deaths in an exposed population. 

 𝜇 is the rate of  disease-caused deaths in an infectious population. 

 𝜅 is the rate of  segregating after disease is constant. 

The control measures implemented by public health officials during a disease outbreak, such as 
lockdowns, restaurant closures, school closures, isolating infected people, postponing conferences, etc., 
can have an impact on the homogeneous incidence rate. The contact per unit of time t is typically 
decreased by these required actions. This causes a high number of infected people but a smaller chance 
of infection per contact, which could cause non-linearity in dynamic transmission rates. In the proposed 

model (1), 𝑔(𝐸) =
ா

ାா
 and ℎ(𝐼) =

ூ

ାூ
 are the rate of contacts reduced as the impact of lockdown in the 
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infected and latent period, respectively, where 𝑎 can be thought of as the rate of implementation of 
lockdown. Here, 𝑚 and n reflect the reactive velocity of lockdown and people in infected and latent 
periods, respectively. Thus 𝛼 − 𝑔(𝐸) and 𝛽 − ℎ(𝐼) are the frequencies of effective contact during the 
latent and infected periods during lockdown. Further, it is assumed that 𝑎 < 𝛿. The functions 𝑔(𝐸) and 
ℎ(𝐼) satisfy the following: 

(i) 𝑔(0) = 0, 𝑔′(𝐸) > 0, 𝑙𝑖𝑚 
ா→ஶ

𝑔(𝐸) = 𝑎 (ii) ℎ(0) = 0, ℎᇱ(𝐼) > 0, 𝑙𝑖𝑚
ூ→ஶ

 ℎ(𝐼) = 𝑎. 

Since lockdown cannot prevent the disease completely, we take 𝛼, 𝛽 > 𝑎 . Note that when the 
reported exposed and infectious numbers arrive at 𝑚  and 𝑛  respectively, then in each case, the 

corresponding reduced value of transmission is equal to 


ଶ
. Here𝑆 + 𝐸 + 𝐼 = 𝑁. Therefore, we have 

ௗே

ௗ௧
=

ௗௌ

ௗ௧
+

ௗா

ௗ௧
+

ௗூ

ௗ௧
≤ 𝐴 − 𝛿𝑁 . Thus,  𝑁(𝑡) ≤  𝑁(0)𝑒ିఋ௧ +



ఋ
൫1 − 𝑒ିఋ௧൯  so that 𝑙𝑖𝑚 

௧→ஶ
𝑆𝑢𝑝(𝑁(𝑡)) =



ఋ
. From a 

biological point of view, we discuss the system (1) in the following feasible region 𝜙 =

ቄ(𝑆, 𝐸, 𝐼) ∈ 𝑅ଷ: 𝑁 = 𝑆 + 𝐸 + 𝐼 ≤


ఋ
ቅ. 

Thus, the total population remains bounded for all future 𝑡 ≥ 0. Here the domain 𝜙 is non- negative 
invariant as no solution paths leave through any boundary. The right-hand side (RHS) of each of the 
equations in the system (1) is smooth and continuously differentiable so that the initial value problems 
have singe solutions that exist on maximal intervals. Since paths can’t leave 𝜙, solutions exist ∀ 𝑡 > 0. 

Thus, the model is epidemiologically and mathematically well posed. 

3. Steady states and reproduction number (𝑹𝟎) 

The system (1) has a DFE 𝐸 = ቀ


ఋ
, 0, 0ቁ. Since the local stability of the DFE of compartmental 

models is governed by 𝑅 of the system, referring to Rafiq et al.[7] and Liu and Cui[26], we compute the 𝑅 
by the next-generation matrix method[28,29]. We have the following two vectors ℱ and 𝒱 to represent the 
new infection terms and remaining transfer terms respectively. 

ℱ = ൬𝛼 −
𝑎𝐸

𝑚 + 𝐸
൰

𝑆

𝑁
𝐸 + ൬𝛽 −

𝑎𝐼

+𝐼
൰

𝑆

𝑁
𝐼

0

൩ , 𝒱 = 
𝛾𝐸 + (𝛿 + 𝜆)𝐸

−𝛾𝐸 + 𝜅𝐼 + (𝛿 + 𝜇)𝐼
൨ 

Thus, 𝐹 =
డ(ிభ,ிమ)

డ(ா,ூ)
= ቈ

ቀ𝛼 −
ா

ାா
−

ா

(ାா)మቁ
ௌ

ே
ቀ𝛽 −

ூ

ାூ
−

ூ

(ାூ)మቁ
ௌ

ே

0 0
 

𝐸 = ቀ


ఋ
, 0,0ቁ, 𝐹 = ቂ

𝛼 𝛽
0 0

ቃ and 𝑉 =
డ(భ,మ)

డ(ா,ூ)
= 

𝛾 + δ + λ 0
−𝛾 𝛿 + 𝜇 + 𝑘

൨ so that  

|𝑉| = (𝛾 + 𝛿 + 𝜆)(𝛿 + 𝜇 + 𝑘) and 𝑉ିଵ =
ଵ

(ఊାఋାఒ)(ఋାఓା)

δ + μ + k 0

𝛾 𝛾 + 𝛿 + 𝜆
൨ 

Thus, the reproduction number 𝑅 = 𝜌(𝐹𝑉ିଵ) = ቂ
ఈ(ఋାఓା)ାఉఊ

(ఊାఋାఒ)(ఋାఓା)
ቃ =

ఈఠାఉఊ

ఎఠ
, where 𝜔 = 𝛿 + 𝜇 + 𝑘 

and 𝜂 = 𝛾 + 𝛿 + 𝜆 (say). 

Also, let us denote 𝜃 =
(ఊାఠ)ఎ

ఊ
. 

Theorem 3.1. For model (1), with 𝑅 and 𝜃 defined as above, 
(i) when 𝑅 > 1 and 𝐴 < 𝜃, there is a unique EE, 
(ii) when 𝑅 = 1, there is no EE. 
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Proof. For EE, set the RHS of system (1) equal to zero. Note that the EE 𝐸ଵ(𝑆, 𝐸, 𝐼) satisfies 𝑆 > 0, 𝐸 ≥

0, 𝐼 > 0, we have 

𝐴 − 𝛿𝑆 − ൬𝛼 − 𝑎
𝐸

𝑚 + 𝐸
൰

𝑆

𝑁
𝐸 − ൬𝛽 − 𝑎

𝐼

𝑛 + 𝐼
൰

𝑆

𝑁
𝐼 = 0 (2)

−𝛾𝐸 + ൬𝛼 − 𝑎
𝐸

𝑚 + 𝐸
൰

𝑆

𝑁
𝐸 + ൬𝛽 − 𝑎

𝐼

𝑛 + 𝐼
൰

𝑆

𝑁
𝐼 − (𝛿 + 𝜆)𝐸 = 0 (3)

𝛾𝐸 − 𝑘𝐼 − (𝛿 + 𝜇)𝐼 = 0 (4)

Adding Equations (2), (3) and (4), we get 
𝐴 − 𝛿𝑁 − 𝜆𝐸 − (𝑘 + 𝜇)𝐼 = 0 (5)

Now, 𝜆(4) + 𝛾(5) gives, [𝜆(𝛿 + 𝜇 + 𝑘) + 𝛾(𝜇 + 𝑘)]𝐼 = 𝛾𝐴 − 𝛾𝛿𝑁 ⇒ 𝐼 =
ఊ(ିఋே)

ఒఠାఊ(ఠିఋ)
=

ఊ(ିఋே)

(ఒାఊ)ఠିఊఋ
=

ఊ(ିఋே)

(ఎିఋ)ఠିఊఋ
. 

Using this, from Equation (5), we get 𝐸 =
(ఋାఓା)

ఊ
𝐼 =

ఠ(ିఋே)

(ఎିఋ)ఠିఊఋ
. For convenience, let us say 𝑃 =

(ିఋே)

(ఎିఋ)ఠିఊఋ
 and hence write 𝐼 = 𝛾𝑃and 𝐸 = 𝜔𝑃. Also 𝑆 = 𝑁 − 𝐸 − 𝐼 gives 

𝑆 = 𝑁 − 𝐸 − 𝐼 =
𝐴 − 𝑃൫𝜂 − 𝛿𝜔 − 𝛾𝛿൯

𝛿
− 𝜔𝑃 − 𝛾𝑃 =

𝐴

𝛿
− 𝑃 ൬

𝑙

𝛿
+ 𝜔 + 𝛾൰ (6) 

where for the sake of convenience in expression, say 𝜂 − 𝛿𝜔 − 𝛾𝛿 = 𝑙. Now from Equation (3), we have  
−𝜂𝜔𝑃(𝐴 − 𝑃𝑙)[𝜔𝛾𝑃ଶ + (𝑚𝛾 + 𝑛𝜔)𝑃 + 𝑚𝑛] + [𝛾(𝛼 − 𝑎)𝜔𝑃ଶ + (𝛼𝑚𝛾 + 𝑛𝛼 − 𝑎)𝜔𝑃 + 𝛼𝑚𝑛][𝐴 − 𝑃 

൫𝑙 + 𝛿𝜔 + 𝛾൯]𝜔𝑃 + ൣ(𝛽 − 𝑎)𝛾𝜔𝑃ଶ + ൫𝛽𝑛𝜔 + 𝛽 − 𝑎൯𝛾𝑚𝑃 + 𝛽𝑚𝑛൧ൣ𝐴 − P൫𝑙 + 𝛿𝜔 + 𝛾൯൧𝛾𝑃 = 0 
(7) 

Since 𝑃 = 0 corresponds to disease free equilibrium, therefore cancelling 𝑃 throughout, and using 

𝑃 =
ூ

ఊ
 the above equation takes the form 

𝐴ᇱ𝐼ଷ + 𝐵ᇱ𝐼ଶ + 𝐶ᇱ𝐼 + 𝐷ᇱ = 0 (8) 

where 
𝐴ᇱ = −𝑙𝛾𝜂𝜔ଶ + (𝛼 − 𝑎)𝛾𝜂𝜔ଷ + (𝛽 − 𝑎)𝜂𝛾ଶ𝜔ଶ,  𝐵ᇱ

= [𝐴𝜔𝛾 − 𝑙(𝑚𝛾 + 𝑛𝜔)]𝛾𝜔𝜂 + [(𝛼𝑚𝛾 + 𝑛𝜔𝛼 − 𝑎)𝜂 − (𝛼 − 𝑎)𝛾𝐴]𝛾𝜔ଶ

+ ൣ൫𝛽𝑛𝜔 + 𝑚𝛾𝛽 − 𝑎൯𝜂 − (𝛽 − 𝑎)𝛾𝐴൧𝛾ଶ𝜔, 𝐶ᇱ

= [𝐴(𝑚𝛾 + 𝑛𝜔) − 𝑙𝑚𝑛]𝜔𝜂𝛾ଶ + [𝛼𝑚𝑛𝜔𝜂 − 𝐴(𝛼𝑚𝛾 + 𝑛𝜔𝛼 − 𝑎)]𝜔𝛾ଶ

+ ൣ𝛽𝑚𝑛𝜔𝜂 − 𝐴൫𝛽𝑛𝜔 + 𝛾𝑚𝛽 − 𝑎൯൧𝛾ଷ, 𝐷ᇱ = −𝐴𝑚𝑛[𝛼𝜔 + 𝛽𝛾 − 𝜔𝜂]𝛾ଷ 

Case (i) When 𝑅 > 1 and 𝐴 < 𝜃, we have 
𝐴ᇱ = [𝜂𝜔(𝑅 − 1) + (𝜔 + 𝛾)(𝛿 − 𝑎)] > 0 

𝐵ᇱ = (𝑅 − 1)𝜔ଶ𝛾𝜂[−𝐴𝛾 + (𝑚𝛾 + 𝑛𝜔)𝜂] + 𝐴(𝑎𝛾ଶ𝜔ଶ + 𝑎ଶ𝛾ଷ𝜔) + 𝑛𝛾𝜔ଷ𝜂(𝛿 − 𝑎) + 𝑚𝛾ଷ𝜔𝜂(𝛿 − 𝑎)
+ 𝑚𝜔ଶ𝛾ଶ𝜂𝛿 + 𝑛𝜔ଶ𝛾ଶ𝜂𝛿 > 0 

and 
𝐷ᇱ = −𝐴𝑚𝑛𝜔𝜂𝛾ଷ(𝑅 − 1) < 0 

Therefore, the product of roots of Equation (8) i.e., −
ᇲ

ᇲ > 0 therfore there are two possibilities: 

either one root is positive or all the three roots are positive. But the sum of roots i.e., −
ᇲ

ᇲ < 0, therefore, 

we cannot have all roots positive. Henece there is only one positive root i.e., unique EE of the system(1) 

which is given by 𝐸ଵ(𝑆∗, 𝐸∗, 𝐼∗) where 𝑆∗ =


ఋ
− 𝑃 ቀ



ఋ
+ 𝜔 + 𝛾ቁ , 𝐸∗ = 𝜔𝑃, 𝐼∗ = 𝛾𝑃, 

(ିఋே)

(ఎିఋ)ఠିఊఋ
= 𝑃. 

Case (ii) When 𝑅 = 1, as above we have, 
𝐴ᇱ = (𝜔 + 𝛾)(𝛿 − 𝑎) > 0 
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𝐵ᇱ = 𝐴(𝑎𝛾ଶ𝜔ଶ + 𝑎ଶ𝛾ଷ𝜔) + (𝛿 − 𝑎)𝛾𝜔𝜂(𝑛𝜔ଶ + 𝑚𝛾ଶ) + 𝑚𝜔ଶ𝛾ଶ𝜂𝛿 + 𝑛𝜔ଶ𝛾ଶ𝜂𝛿 

𝐶ᇱ = 𝐴(𝑎𝑛𝜔ଶ𝛾ଶ + 𝑎𝑚𝛾ସ) + 𝑚𝑛(𝜔𝜂𝛾)ଶ𝛿(𝜔 + 𝛾) > 0 

𝐷ᇱ = 0 

Therefore, Equation (8) becomes 𝐼(𝐴ᇱ𝐼ଶ + 𝐵ᇱ𝐼 + 𝐶ᇱ) = 0. Since 𝐼ᇱ = 0 corresponds to disease free 
equilibrium, therefore  for endemic equilibrium, we consider 𝐴ᇱ𝐼ଶ + 𝐵ᇱ𝐼 + 𝐶ᇱ = 0 which is a quadratic 

equation with sum of roots −
ᇲ

ᇲ < 0 and the product of roots 
ᇲ

ᇲ > 0. Therefore, no positive root of this 

equation exists and hence no EE exists for 𝑅 = 1. □ 

4. Stability analysis 
In this Section we will evaluate the local stability of the model (1). 

Theorem 4.1. The DEF of the model (1) is Locally asymptotically stable (LAS) if 𝑅 < 1, and unstable if 𝑅 >
1. 

Proof. The Jacobian matrix 𝐽 = [𝑗]of the linearization of system (1) at point arbitrary point (𝑆, 𝐸, 𝐼) is 
𝐽(𝑆, 𝐸, 𝐼)

=

⎣
⎢
⎢
⎢
⎢
⎡−𝛿 − ൬𝛼 −

𝑎𝐸

𝑚 + 𝐸
൰

𝐸

𝑁
− ൬𝛽 −

𝑎𝐼

𝑛 + 𝐼
൰

𝐼

𝑁
− 𝛼 −

𝑎𝐸

𝑚 + 𝐸
−

𝑎𝑚𝐸

(𝑚 + 𝐸)ଶ
൨

𝑆

𝑁
− 𝛽 −

𝑎𝐼

𝑛 + 𝐼
−

𝑎𝑛𝐼

(𝑛 + 𝐼)ଶ
൨

𝑆

𝑁

− 𝛽 −
𝑎𝐼

𝑛 + 𝐼
−

𝑎𝑛𝐼

(𝑛 + 𝐼)ଶ
൨

𝑆

𝑁
−(𝛾 + 𝛿 + 𝜆) + 𝛼 −

𝑎𝐸

𝑚 + 𝐸
−

𝑎𝑚𝐸

(𝑚 + 𝐸)ଶ
൨

𝑆

𝑁

𝑆

𝑁
𝛽 −

𝑎𝐼

𝑛 + 𝐼
−

𝑎𝑛𝐼

(𝑛 + 𝐼)ଶ
൨

𝑆

𝑁

0 𝛾 (𝛿 + 𝜇 + 𝑘) ⎦
⎥
⎥
⎥
⎥
⎤

 

Thus, at DFE 𝐸 = ቀ


ఋ
, 0, 0ቁ, we have 𝐽 ቀ



ఋ
, 0, 0ቁ = 

−δ −𝛼 −𝛽
0 −(𝛾 + 𝛿 + 𝜆) +𝛼𝛽
0 𝛾 −(𝛿 + 𝜇 + 𝑘)

  

Its characteristic equation is (𝑥 + 𝛿)(𝑥ଶ + 𝑎ଵ𝑥 + 𝑎ଶ) = 0 (9)

where, 𝑎ଵ = 𝜔 + 𝜂 ቀ1 −
ఈ

ఎ
ቁ > 0 and 𝑎ଶ = −(𝜔𝛼 + 𝛽𝛾 − 𝜔𝜂) = 𝜔𝜂[1 − 𝑅] > 0. □ 

Thus clearly, Equation (9), has one real root 𝑥 = −𝛿  and other two roots negative or complex 

conjugate with negative real parts as 𝑎ଵ > 0and 𝑎ଶ > 0. Therefore, all the eigenvalues of 𝐽 ቀ


ఋ
, 0, 0ቁ i.e., 

𝐽(𝐸) have negative real parts, and by Ruth Hurwitz criteria, 𝐸 is LAS equilibrium point of Equation 
(1). 

Remark 4.1. From Equation (9), we see that if 𝑅 = 1, then one eigenvalue of the Jacobian matrix 𝐽(𝐸)is 

zero with multiplicity one, and the other two values are 𝑥 = −𝛿 and 𝑥 = −𝜔 − 𝜂 + 𝛼 = −
ଵ

ఠ
(𝜔ଶ + 𝜔𝜂 −

𝛼𝜔) = −
ଵ

ఠ
(𝜔ଶ + 𝛽𝛾), which are real and negative. So, 𝐸 is marginally locally stable. More precisely, as 

𝑅 increases through 1, there is an exchange of stability between DFE and the EE (which is biologically 
meaningless if 𝑅 < 1 ). Hence the equilibrium infective and infectious population sizes depend 
continuously on 𝑅 and there is a forward, or transcritical, bifurcation in equilibrium behavior, at 𝑅 =

1. 

Theorem 4.2. The DFE of the model (1) is globally asymptotically stable (GAS) if 𝑅 ≤ 1 and 𝑅 > 1. 

Proof. Since, 𝐿 =
ఈఠାఉ

ఎ
𝐸 − 𝛽𝐼, its derivative along the solutions of the system (1) is 

𝐿ᇱ = (𝛼𝐸 + 𝛽𝐼)𝜔 ቂ𝑅
ௌ

ே
− 1ቃ − ቀ𝑎

ாమ

ାா
+ 𝑎

ூమ

ାூ
ቁ

ௌ

ே
 . 
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Clearly, as 
ௌ

ே
≤ 1 , for 𝑅 ≤ 1, 𝐿ᇱ ≤ 0 . Also 𝐿ᇱ = 0  only if 𝐸 = 𝐼 = 0 . Therefore, the maximum 

invariant set in 𝜙 is the singleton set {E} and hence the global stability of Ewhen 𝑅 ≤ 1 follows from 
LaSalle’s invariance principle.  

In the next theorem, we will prove the asymptotic stability of the EE 𝐸ଵ(𝑆∗, 𝐸∗, 𝐼∗) and for that, the 
following notations have been used. 

𝑃ଵ = −𝛿 − ൬𝛼 −
𝑎𝐸∗

𝑚 + 𝐸∗
൰

𝐸∗

𝑁∗
− ൬𝛽 −

𝑎𝐼∗

𝑛 + 𝐼∗
൰

𝐼∗

𝑁∗
, 𝑃ଶ = − 𝛼 −

𝑎𝐸∗

𝑚 + 𝐸∗
−

𝑎𝑚𝐸∗

(𝑚 + 𝐸∗)ଶ൨
𝑆∗

𝑁∗
, 

𝑃ଷ = − 𝛽 −
𝑎𝐼∗

𝑛 + 𝐼∗
−

𝑎𝑛𝐼∗

(𝑛 + 𝐼∗)ଶ൨
𝑆∗

𝑁∗
, 𝑃ସ = ൬𝛼 −

𝑎𝐸∗

𝑚 + 𝐸∗
൰

𝐸∗

𝑁∗
+ ൬𝛽 −

𝑎𝐼∗

𝑛 + 𝐼∗
൰

𝐼∗

𝑁∗
, 

𝑃ହ = −𝜂 + 𝛼 −
𝑎𝐸∗

𝑚 + 𝐸∗
−

𝑎𝑚𝐸∗

(𝑚 + 𝐸∗)ଶ൨
𝑆∗

𝑁∗
, 𝑃 = 𝛽 −

𝑎𝐼∗

𝑛 + 𝐼∗
−

𝑎𝑛𝐼∗

(𝑛 + 𝐼∗)ଶ൨
𝑆∗

𝑁∗
, 𝑃 = 0, 𝑃 = 𝛾, 𝑃ଽ = −𝜔. 

Theorem 4.3. The EE of the model (1) is LAS if the following conditions hold true: 

𝑘, the rate constant of segregating after disease and hence 𝜔 is chosen satisfying: 

1

(𝛿 + 𝑃ଵ)
൬−𝜂 + 𝑃ଵ + 𝑃ଶ +

𝑃ଷ𝛾

𝜔 − 𝑃ଵ
൰ = 1 +

𝑃ଶ

𝜔 − 𝑃ଵ
+

𝛾

𝑃ଷ
 (10)

𝑃ଷ(𝑃ଵ − 𝜔 − 𝑃ଶ) > 𝛾(𝜔 − 𝑃ଵ) (11)

Let us choose 𝜂 and 𝑎ଷଵ such that 

𝜂 + 𝑃ଶ > 0,
య

ఠିభ
>

ఠ

య
, ቚ

య

ఠିభ
ቚ

ଶ
< 2𝐿, 

where, 

𝐿 = 1 −
1

2 ቀ1 +
మ

ఠିభ
+

ఊ

య
ቁ
 (12)

Proof. Let 𝑥 = 𝑆 − 𝑆∗, 𝑦 = 𝐸 − 𝐸∗, 𝑧 = 𝐼 − 𝐼∗  be small perturbations about the 𝐸ଵ . Using these new 
variables, we linearize the model (1) around the 𝐸ଵ i.e., 

𝑥
.

= 𝑃ଵ𝑥 + 𝑃ଶ𝑦 + 𝑃ଷ𝑧, 𝑦
.

= 𝑃ସ𝑥 + 𝑃ହ𝑦 + 𝑃𝑧, 𝑧
.

= 𝑃𝑥 + 𝑃 𝑦 + 𝑃ଽ𝑧 (13)

𝑉
.

= (𝛻𝑉)்[𝑥
.
𝑦
.
𝑧
.
]்

 
= (𝑎ଵଵ𝑃ଵ + 𝑎ଶଵ𝑃ସ)𝑥ଶ + (𝑎ଵଵ𝑃ଶ + 𝑎ଶଵ𝑃ହ + 𝑎ଷଵγ + 𝑎ଵଶ𝑃ଵ + 𝑎ଶଶ𝑃ସ)xy

+ (𝑎ଵଵ𝑃ଷ + 𝑎ଶଵ𝑃 − 𝑎ଷଵω + 𝑎ଵଷ𝑃ଵ + 𝑎ଶଷ𝑃ସ)zx + (𝑎ଵଶ𝑃ଶ + 𝑎ଶଶ𝑃ହ + 𝑎ଷଶγ)𝑦ଶ

+ (𝑎ଵଶ𝑃ଷ + 𝑎ଶଶ𝑃 − 𝑎ଷଶ𝜔 + 𝑎ଵଷ𝑃ଶ + 𝑎ଶଷ𝑃ହ + 𝑎ଷଷ𝛾)𝑦𝑧 + (𝑎ଷଵ𝑃ଷ + 𝑎ଶଷ𝑃 − 𝑎ଷଷ𝜔)𝑧ଶ

 

Now we will select the 𝑃ᇱ௦ and 𝑎ᇱ௦  such that coefficients of 𝑥𝑦, 𝑦𝑧 and 𝑧𝑥 vanish and those of 

𝑥ଶ, 𝑦ଶand 𝑧ଶ are all negative. Also curl conditions 
డఇభ

డ௬
=

డఇమ

డ௫
, etc. are also satisfied i.e., 𝑎 = 𝑎  ∀1 ≤

𝑖, 𝑗 ≤ 3, 𝑖 ≠ 𝑗 and 

𝑎ଵଵ𝑃ଵ + 𝑎ଶଵ𝑃ସ < 0 (14a)

𝑎ଵଶ𝑃ଶ + 𝑎ଶଶ𝑃ହ + 𝑎ଷଶ𝛾 < 0 (14b)

𝑎ଷଵ𝑃ଷ + 𝑎ଶଷ𝑃 − 𝑎ଷଷ𝜔 < 0 (14c)

𝑎ଵଵ𝑃ଶ + 𝑎ଶଵ𝑃ହ + 𝑎ଷଵ𝛾 + 𝑎ଵଶ𝑃ଵ + 𝑎ଶଶ𝑃ସ = 0 (14d)

𝑎ଵଵ𝑃ଷ + 𝑎ଶଵ𝑃 − 𝑎ଷଵ𝜔 + 𝑎ଵଷ𝑃ଵ + 𝑎ଶଷ𝑃ସ = 0 (14e)

𝑎ଵଶ𝑃ଷ + 𝑎ଶଶ𝑃 − 𝑎ଷଶ𝜔 + 𝑎ଵଷ𝑃ଶ + 𝑎ଶଷ𝑃ହ + 𝑎ଷଷ𝛾 = 0 (14f)

Let us choose 𝑎ଵଵ = 2, 𝑎ଶଵ = 𝑎ଵଶ = 1, 𝑎ଶଷ = 𝑎ଷଶ = 0, 𝑎ଷଷ = 1 
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Note that Equations (i) and (ii) follows by the fact that 𝑃ଵ, 𝑃ଶ, 𝑃ଷ < 0 and hypothesis (12). Also, if we 
select 

𝑎ଷଵ =
𝑃ଷ

𝜔 − 𝑃ଵ
(< 0) (14g)

it can be seen easily that (iii) and (v) are valid. 

From (iv), 2𝑃ଶ + 𝑃ହ + 𝑎ଷଵ𝛾 + 𝑃ଵ + 𝑎ଶଶ𝑃ସ = 0, then using the fact that 
𝑃ଶ + 𝑃ହ = −𝜂 (14h)

𝑎ଶଶ =
1

(𝛿 + 𝑃ଵ)
൬−𝜂 + 𝑃ଵ + 𝑃ଶ +

𝑃ଷ𝛾

𝜔 − 𝑃ଵ
൰ (14i)

From (vi), 𝑃ଷ + 𝑎ଶଶ𝑃 + 𝑎ଵଷ𝑃ଶ + 𝑎ଷଷ𝛾 = 0, then using the fact that 𝑃ଷ + 𝑃 = 0 and (vii), we get 

𝑎ଶଶ = 1 +
𝑃ଶ

𝜔 − 𝑃ଵ
+

𝛾

𝑃ଷ
 (14j)

Clearly assumption in hypothesis (10) validate (viii) & (ix) and hence (iv) and (vi) are valid. Again, 
by hypothesis (12) and (iv), we observe that 

𝑎ଷଵ =
ఎିమିభିమమర

ఊ
>

ఠ

య
, 𝑎ଶଶ >

ଵ

(భାఋ)
ቀ

ఠఊ

య
− 𝜂 + 𝑃ଵ + 𝑃ଶቁ > 0 (since 𝑃ଵ, 𝑃ଶ, 𝑃ଷ < 0) 

Also, from (ix), 𝑎ଶଶ < 1 (last two terms are -ve). Here we note that 0 < 𝑎ଶଶ < 1 and in particular if 
we select 

ଵ

ଶ
< 𝑎ଶଶ < 1.

 

 

Thus, 

𝛻𝑉 = 

𝑎ଵଵ𝑥 + 𝑎ଵଶ𝑦 + 𝑎ଵଷ𝑧
𝑎ଶଵ𝑥 + 𝑎ଶଶ𝑦 + 𝑎ଶଷ𝑧
𝑎ଷଵ𝑥 + 𝑎ଷଶ𝑦 + 𝑎ଷଷ𝑧

൩ = 

2𝑥 + 1𝑦 + 𝑎ଵଷ𝑧
1𝑥 + 𝑎ଶଶ𝑦 + 0𝑧
𝑎ଵଷ𝑥 + 0𝑦 + 1𝑧

൩ 

Therefore, 

𝑉 = ቆ
1

ඥ2𝑎ଶଶ

ቇ

ଶ

𝑥ଶ + 𝑥𝑦 + ቆට
𝑎ଶଶ

2
ቇ

ଶ

𝑦ଶ + 𝐿 ቆ𝑥ଶ +
𝑎ଵଷ

𝐿
𝑥𝑧 +

𝑧ଶ

2𝐿
ቇ

 

= ቆ
1

ඥ2𝑎ଶଶ

𝑥 + ට
𝑎ଶଶ

2
𝑦ቇ

ଶ

+ 𝐿 ቀ𝑥 +
𝑎ଵଷ

2𝐿
𝑧ቁ

ଶ

+ ቆ
2𝐿 − 𝑎ଵଷ

ଶ

4𝐿
ቇ 𝑧ଶ 

where 𝐿 = ቀ1 −
ଵ

ଶమమ
ቁ > 0.  Here first two terms, being perfect squares and the last term above via 

assumption in hypothesis (12) are positive. Therefore, 𝑉 > 0 and hence the theorem follows. □
 

5. Numerical simulations and discussions 
In this Section, we present computer simulation results for model Equation (1) by using MATLAB 

16.0. 

5.1. Existence of DFE for 𝑹𝟎 ≤ 𝟏 and EE for 𝑹𝟎 > 𝟏 

The following set of values of parameters satisfying the conditions of theorem 3.1 ensuring the 
existence of DFE and EE are chosen: For Equation (1), using parameters in Table 1 and Figure 2 along 
with a = 0.015, when α=0.15, by computing, we get R0 = 0.8 < 1 and the Equation (1) has a DFE when 
α = 0.19, by computing, we get R0 = 1 and the Equation (1) has a DFE. When α = 0.7 and λ = 0.4 so that 
η = 0.5 by computing, we get R0 = 1.42 and θ = 190 satisfying the condition A (=80) < θ and Equation 
(1) has endemic equilibrium (3476.048, 20.95808, 2.994012). 
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Table 1. Parameters for the simulation. 

S.N. Param. 𝒎 𝒏 𝜶 𝜷 𝜹 𝝁 𝜿 𝝎 𝜸 𝝀 𝜼 𝑹𝟎 𝑨 𝑵 

1 𝑅 < 1 100 40 0.15 0.07 0.02 0.3 0.24 0.56 0.08 0.1 0.2 0.8 80 4000 

2 𝑅 = 1 100 40 0.19 0.07 0.02 0.3 0.24 0.56 0.08 0.1 0.2 1 80 4000 

3 𝑅 > 1 100 40 0.7 0.07 0.02 0.3 0.24 0.56 0.08 0.4 0.5 1.42 80 4000 

 
Figure 2. Plots of Infectious, Exposed and Susceptible population v/s time for S. N. 1 of Table 1. 

5.2. Impact of Implementation of Lockdown in case of EE i.e., 𝑹𝟎 > 𝟏 

Different values of the parameter are reflecting the rate of implementation of lockdown are taken, 
as 𝑎 = 0, 0.1,0.2, 0.3, . . . , 0.9 with i.c.’s (𝑆, 𝐸, 𝐼) are (39999, 0, 1) and 𝑁∗ = 38000. The EE point for the 
values of S. N. 1 of Table 2 exists as 𝐸ଵ(𝑆∗, 𝐸∗, 𝐼∗)=𝐸ଵ (315201.1, 917.758, 5562.17). 

For the same values of parameter 𝑎, i.c.’s and 𝑁∗as used for S.N.1 of Table 2, we see that the 
endemic equilibrium point for the set of values of S. N. 2 of Table 2 and Figure 3 exists as 𝐸ଵ(𝑆∗, 𝐸∗, 𝐼∗) =

𝐸ଵ (36630.24, 82.08925, 1287.675). 

Table 2. Parameters for the simulation. 

S. N. 𝒎 𝒏 𝜶 𝜷 𝜹 𝝁 𝜿 𝝎 𝜸 𝝀 𝜼 𝜽 𝑹𝟎 𝑨 𝑵 

1 1000 800 0.9 0.2 0.002 0.03 0.1 0.132 0.8 0.001 0.803 909 2.63 800 400000 

2 1000 800 0.2 0.9 0.02 0.03 0.001 0.051 0.8 0.001 0.821 862.87 17.4 800 40000 
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Figure 3. Plots of Infectious, Exposed and Susceptible population v/s time for S. N. 2 of Table 2. 

5.3. Global asymptotic stability of DEF 

Using the parameters in Table 1, S. N. 1 along with different i.c’s: (1800, 1400, 800), (200, 1500, 
500), (2000, 1300, 700), (2000, 1000, 1000), (2000, 1100, 900), (2500, 500, 1000), (2200, 1000, 800), (2500, 
1000, 500), (1500, 1400, 1100). Jacobian curves of 𝑆, 𝐸 and 𝐼 with 𝑡 in the Figure 4, validating theorem 
4.2 shows the dynamics of Equation (1) when 𝑅 < 1. 

 
Figure 4. GAS of DFE for 𝑅 = 0.8 < 1, when 𝑎 = 0.015 and 𝛼 = 0.15. 

Using the parameters in Table 1, S. N. 2 along with the i.c.’s stated above in this subsection, 
variational curves of 𝑆, 𝐸 and 𝐼 with 𝑡 in the Figure 5 validate the results of theorem 4.2 when 𝑅 = 1. 
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Figure 5. GAS of DFE for 𝑅 = 1, 𝑤ℎ𝑒𝑛 𝑎 = 0.0015 and 𝛼 =  0.19. 

6. Discussion and conclusion 
In this manuscript, we have formulated an SEI mathematical epidemic model combined with the 

impact of lockdown on COVID-19, taking into consideration the fact that the disease is infectious in a 
latent period too. For this model, we have found 𝑅 and shown that if this parameter is less than 1, then 
DFE is GAS. Under certain restrictions, the existence of an EE for 𝑅 > 1, followed by conditions 
ensuring the local asymptotic stability of EE is presented. By means of the results of the work and the 
numerical simulation done in Section 5, it has been verified that the lockdown significantly decreases the 
transmission rate of the disease. Since 𝑅 is independent of 𝑎, 𝑚 and 𝑛, it can be said that the lockdown 
does not change the reproduction number. 
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