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ABSTRACT: In this study, we investigated a set of equations that exhibit com-

pact solutions and nonlinear dispersion. We used the classical lie symmetry 

approach to derive ordinary differential equations (ODEs) that are well 

suited for qualitative study. By examining the dynamic behavior of these 

ODEs, we gained insights into the intricate nature of the underlying system. We 

also used a powerful multiplier approach to establish nontrivial conservation 

laws and exact solutions for these equations. These conservation laws pro-

vide essential information regarding the underlying symmetries and invar-

iants of the system, and shed light on its fundamental properties. 
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1. Introduction

Nonlinear waves are waves that exhibit
non-linear behavior, meaning that their ampli-
tude and velocity are not linearly related. Soli-
tons and compactons are two types of nonlinear 
waves. Solitons are stable pulse-like waves that 
can exist in some nonlinear systems. They can 
pass through each other without being destroyed, 
and they can retain their shape even after inter-
acting with other waves. Compactons are a spe-
cial type of soliton that does not have exponen-
tial tails. Solitons and compactons are used as 
building blocks to formulate the complex dynam-
ical behavior of wave systems throughout science. 
They have been studied in a variety of fields, includ-
ing hydrodynamics, nonlinear optics, plasmas, 
shock waves, tornadoes. Solitons have also ac-
quired prominence in the fields of quantum me-
chanics and nanotechnology, particularly in the 
study of nano-hydrodynamics. The solitary wave 
dynamics[1] of the local fractional Bogoyavlensky 

Konopelchenko model is a topic of active research 
in the field of nonlinear wave theory. The local 
fractional Bogoyavlensky Konopelchenko model 
is a partial differential equation (PDE) that de-
scribes the propagation of waves in a nonlinear me-
dium. The model is a generalization of the classical 
Bogoyavlensky Konopelchenko model, and it 
takes into account the effects of fractional diffu-
sion. It is well known that while conventional 
nonlinearity’s influence does not significantly al-
ter with spatial dimension, dispersive processes 
become more effective at disseminating infor-
mation. As a result, a model that is well-bal-
anced in one dimension becomes unbalanced in 
higher dimensions. As a result, strong solitonic 
structures are often far less common in higher 
spatial dimensions. Rosenau and Hyman[2] pre-
sented the compactons, solitons with a compact 
support, almost 20 years ago using the 𝐶(𝑙, 𝑝) 
model equation in its simplest form, 

𝐴 + 𝑙𝐴 𝐴 + 𝑝(𝐴 𝐴 ) = 0    𝑙, 𝑝 > 1 

(1) 
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and exact solutions as well as symmetry reduc-
tions were derived in the work of Bruzón and 

Gandarias[3], Bruzón et al.[4], and Anco and Bluman[5]. 
Naz[6] utilized the multiplier technique to con-
struct the conservation laws for the equation. Be-
cause the authors believe that higher order mul-
tipliers determining equations are very compli-
cated and cannot be manually separated, only 
multipliers of the kind 𝑀(𝑦, 𝑧, 𝐴) were consid-
ered in her work of Conservation laws for some 
compacton equations using the multiplier ap-
proach[6]. 

In their work, Rosenau and Oron[7] investi-
gated how several symbolic forms of nonconvex 
convection affected the development of compact 
patterns. To do this, a basic model with cubic 
dispersion and numerous versions on a nonlin-
ear modified dispersion are utilized which is of 
the form. 

𝐴 + (𝐴 − 𝐴 ) + [𝐴(𝐴 ) ] = 0 

𝐴 + (𝐴 − 𝐴 ) + 2(𝐴𝐴 ) = 0 

(2) 
In contrast to the 𝐶(𝑛, 𝑛) compactons, the 

breadth of the current compactons varies on 
their velocity. In a recent study[8], Gandarias has 
successfully identified and formulated several 
conservation laws that are not simple or obvious. 
Furthermore, we have demonstrated that certain 
equations, which have solutions in the form of 
compactons and exhibit cubic dispersion, pos-
sess a unique property called nonlinear self-ad-
jointness. This discovery is significant as it high-
lights the intricate dynamics and properties of 
these equations, providing valuable insights into 
their behavior and characteristics. 

Conservation laws are widely recognized as 
crucial components in solving equations or sys-
tems of differential equations. While not all con-
servation laws in partial differential equations 
(PDEs) have direct physical interpretations, they 
serve a significant purpose in studying the inte-
grability of PDEs. Understanding and identify-
ing these conservation laws are vital steps in 
comprehending the behavior and properties of 

PDEs and their solutions. 
The Noether theorem[2] is a powerful tool 

for deriving conservation laws in variational 
problems. It can be used to derive conservation 
laws for variational problems, which are prob-
lems that can be formulated in terms of a La-
grangian. However, for nonvariational situa-
tions, alternative methods are needed to con-
struct conservation laws. Anco and Bluman[9] in-
troduced an algorithmic technique that allows 
for the identification of all conservation laws for 
evolution equations. Ibragimov[10] presented a 
unique approach based on adjoint equations for 
nonlinear equations, which eliminates the need 
for function integrals and does not rely on La-
grangians. The concept of strictly self-adjoint 
equations[11–13] has been expanded upon, and 
Ibragimov’s findings have sparked further re-
search on self-adjointness and its relevance to 
partial differential equations (PDEs)[14–23]. This 
approach represents an extension of the previ-
ously described formula in work of direct con-
struction of conservation laws from field equa-
tions[9], providing a broader framework for stud-
ying and applying conservation laws in PDEs. 

In this research, we will solve the Equation 
(2) using the lie classical technique, as well as the 
multipliers approach to derive conservation laws 
for these equations. 

2. Derivation of exact solutions 
from classical lie approach 

In this part, we conduct a lie symmetry 
analysis for a specific system denoted in the 
Equation (2). We focus on exploring a one-pa-
rameter lie group consisting of infinitesimal 
transformations[24–26] in the variables (𝑦, 𝑧, 𝐴) . 
The transformations are expressed in a specific 
form, which we will investigate and analyze fur-
ther. 

𝑦∗ = 𝑦 + 𝜀𝜙(𝑦, 𝑧, 𝐴) + 𝜗(𝜀 )

𝑧∗ = 𝑧 + 𝜀𝜓(𝑦, 𝑧, 𝐴) + 𝜗(𝜀 )

𝐴∗ = 𝐴 + 𝜀𝜂(𝑦, 𝑧, 𝐴) + 𝜗(𝜀 )

 

(3) 
where 𝜀 is the group parameter. To ensure that 
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the transformation preserves the solutions of 
Equation (2), it is necessary to satisfy certain 
conditions. This leads to an overdetermined sys-
tem of linear equations consisting of eleven 
equations involving the infinitesimals 𝜓(𝑦, 𝑧, 𝐴), 
𝜙(𝑦, 𝑧, 𝐴), and 𝜂(𝑦, 𝑧, 𝐴). The collection of vec-
tor fields that satisfy these equations form the as-
sociated lie algebra of infinitesimal symmetries. 
These vector fields are expressed in the following 
specific form: 

𝐗 = 𝜓
∂

∂𝑧
+ 𝜙

∂

∂𝑦
+ 𝜂

∂

∂𝐴
 

(4) 
where 𝐗 is infinitesimal operator or generator of 
the group. After identifying the infinitesimals, 
the next step is to solving the invariant surface 
condition yields the symmetry variables. This 
condition ensures that the transformed equa-
tions remain invariant under the lie symmetry 
transformations. 

Υ = 𝜓
∂𝐴

∂𝑧
+ 𝜙

∂𝐴

∂𝑦
− 𝜂 = 0 

(5) 
By considering the determining system for 

the first formula of Equation (2), we find that the 
infinitesimals can be expressed as 𝜓 =

𝜓(𝑦, 𝑧), 𝜙 = 𝜙(𝑦) , and 𝜂 = 𝜂(𝑦, 𝑧, 𝐴) . These 
functions, namely 𝜓, 𝜙 , and 𝜂 , need to satisfy 
the following system of equations: 
−3𝐴𝜓 + 𝜙 𝐴 + 2𝜂 = 0,

−3𝐴𝜓 + 3𝜂 𝐴 + 4𝜂 = 0,

−2𝐴 𝜓 − 3𝐴 𝜓 + 2𝐴𝜓 − 𝜓 + 3𝐴 𝐴 + 6𝜂 𝐴 ,

−2𝜙 𝐴 + 8𝜂 𝐴 + 6𝜂𝐴 − 2𝜂 = 0,

−12𝐴𝜓 + 3𝜂 𝐴 + 4𝜙 𝐴 + 4𝜂 𝐴 + 4𝜂 = 0,

−4𝐴𝜓 + 3𝜂 𝐴 + 8𝜂 𝐴 + 3𝜂 = 0,

−3𝜓 + 𝜂 𝐴 + 4𝜂 𝐴 + 𝐴 + 2𝜂 = 0.

 

(6) 
Upon solving the determining equations for 

𝜓, 𝜙 , and 𝜂 , we are able to determine the lie 
point symmetry generators that form a two-di-
mensional lie algebra. These generators are ob-
tained as a result of the solutions to the determin-
ing equations, and they characterize the symme-
tries admitted by the Equation (2). 

𝐗𝟏 =
∂

∂𝑧

𝐗𝟐 =
∂

∂𝑦

 

(7) 
In this section, we successfully derived the 

reduction of the first equation of the Equation (2) 
to ordinary differential equations (ODEs) using 
the generators 𝛾𝐗𝟏 + 𝜔𝐗𝟐 . This reduction al-
lows us to simplify the equation and express it in 
terms of ODEs, which are typically easier to an-
alyze and solve. Additionally, we obtained the 
similarity variable and similarity solution. 

𝜃 = 𝜔𝑧 + 𝛾𝑦 
𝐴 = 𝜌(𝜃) 

(8) 
Substituting Equation (8) into Equation (5), 

we obtain: 
2𝜔 𝜌 𝜌 + 8𝜔 𝜌𝜌 𝜌 + 2𝜔 (𝜌 )

+ 3𝜔𝜌 𝜌 − 2𝜔𝜌𝜌 − 𝛾𝜌 = 0 
(9) 

After performing the integration of the 
equation with respect to 𝜃, we arrive at the fol-
lowing equation, which takes the form: 

2𝜔 𝜌 𝜌 + 2𝜔 𝜌(𝜌 ) + 𝜔𝜌 − 𝜔𝜌 − 𝛾𝜌

+ 𝜅 = 0 
(10) 

This reduced ordinary differential equation 
(ODE), given by Equation (10), exhibits a group 
corresponding to the generator 𝐇 = ∂ . This 
group corresponds to a symmetry of the equa-
tion, indicating that there is a transformation 
along the 𝜃 direction that leaves the equation in-
variant. 

By considering the invariants of the first 
prolongation and introducing the new variables 
as given in equations, namely: 

𝜌 = 𝒵 
𝜌 = 𝑣(𝒵) 

𝜌 = 𝑣(𝒵)
𝑑𝑣

𝑑𝒵
 

(11) 
we can further simplify Equation (10). This re-
duction allows us to express Equation (10) as a 
first-order ordinary differential equation (ODE). 
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2𝜔 𝒵 𝑣𝑣𝒵 + 2𝜔 𝒵𝑣 + 𝜔𝒵 − 𝜔𝒵 − 𝛾𝒵 = 0 
(12) 

whose implicit solution is, 
12𝜔 𝒵 𝑣 + 3𝜔𝒵 − 4𝜔𝒵 − 6𝛾𝒵 + 12𝜅 𝒵

+ 𝜅 = 0 
(13) 

where 𝜅  and 𝜅  are arbitrary constants. Follow-
ing a similar procedure as before, we apply the 
same methodology to the second equation of the 
Equation (2). This leads to the derivation of the 
generators 𝐗  and 𝐗𝟐, as well as the determina-
tion of the similarity variable and similarity so-
lution given by Equation (8). The corresponding 
reduced ordinary differential equation (ODE) is 
then obtained as equation, which takes the form: 

2𝜔 𝜌𝜌 + 6𝜔 𝜌 𝜌 + 3𝜔𝜌 𝜌 − 2𝜔𝜌𝜌

− 𝛾𝜌 = 0 
(14) 

By integrating Equation (14) once with re-
spect to 𝜃, we arrive at equation: 
𝜅 + 2𝜔 𝜌𝜌 + 2𝜔 (𝜌 ) + 𝜔𝜌 − 𝜔𝜌 − 𝛾𝜌

= 0 
(15) 

Equation (15) represents the reduced ODE, 
which admits the symmetry generator 𝐇 = ∂ . 
By considering the invariants of its first prolon-
gation and introducing the variables given by 
Equation (11), we can further simplify Equation 
(15) to obtain the first-order ODE. 

2𝜔 𝒵𝑣𝑣𝒵 + 2𝜔 𝑣 + 𝑘 + 𝜔𝒵 − 𝜔𝒵 − 𝛾𝒵

= 0 
(16) 

whose implicit solution is, 
60𝜔 𝒵 𝑣 + 30𝒵 𝜅 + 12𝜔𝒵 − 15𝜔𝒵 − 20𝛾𝒵 + 𝜅
= 0

 

(17) 

2.1 Qualitative study of ODEs 

Equations (10) and (15), after setting 𝜅 =

0, can be written as: 

𝜌 +
(𝜌 )

𝜌
+

𝜌

2𝜔
−

1

2𝜔
−

𝛾

2𝜔 𝜌
= 0

𝜌 +
(𝜌 )

𝜌
+

𝜌

2𝜔
−

𝜌

2𝜔
−

𝛾

2𝜔
= 0

 

(18) 

By introducing the change of variables 𝑧 =

𝜌 and 𝜑 = 𝜌 𝜌, the Equations (18) can be trans-
formed into a system of the form, 

�̇� =
𝜑

𝑧
 

�̇� = 𝜚(𝑧) 
(19) 

where, 

𝜚(𝑧) = −
1

2𝜔
𝑧 +

1

2𝜔
𝑧 +

𝛾

2𝜔
 

𝜚(𝑧) = −
1

2𝜔
𝑧 +

1

2𝜔
𝑧 +

𝛾

2𝜔
𝑧 

(20) 
respectively. 

The phase portrait of the Equation (19) is 
divided into two half-planes that are invariant, 
one for 𝑧 > 0  and the other for 𝑧 < 0 . This 
means that the dynamics of the system in each 
half-plane remains confined within that respec-
tive half-plane. Equation (19) is conservative, 
meaning that there exist conserved quantities as-
sociated with it. These conserved quantities are 
defined by the differentiable functions 𝐏, given 
by 

𝐏(𝑧, 𝜑) =
𝜑

2
+

𝑧

8𝜔
−

𝑧

6𝜔
−

𝛾𝑧

4𝜔
 

𝐏(𝑧, 𝜑) =
𝜑

2
+

𝑧

10𝜔
−

𝑧

8𝜔
−

𝛾𝑧

6𝜔
 

(21) 
These quantities remain constant along the 

trajectories of the system, meaning that 
𝐏

=

𝐏 �̇� + 𝐏 �̇� = 0. Therefore, the trajectories lie on 

curves defined by 𝐏(𝑧, 𝜑) is equal to constant, 
and they exhibit symmetry relative to the 𝑧-axis. 
Importantly, 𝐏(𝑧, 𝜑) can be represented as 

𝐏(𝑧, 𝜑) =
𝜑

2
+ ℜ(𝑧) 

(22) 
where ℜ(𝑧) is given by 

ℜ(𝑧) = −   𝜈𝜚(𝜈)𝑑𝜈 

(23) 
The equilibrium points 𝒫  of the Equation 

(19), if they exist, are located on the 𝑧-axis and 
correspond to the critical points of 𝐏(𝑧, 𝜑). This 
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can be seen by analyzing the partial derivatives 
of 𝐏(𝑧, 𝜑) with respect to 𝑧 and 𝜑. 

∂𝐏

∂𝑧
= −𝑧𝜚(𝑧) = 0 

⟺ �̇� = 0 
∂𝐏

∂𝜑
= 𝜑 = 0 

⟺ �̇� = 0 
(24) 

The equilibrium point 𝒫(𝑧∗, 0)  is a fixed 
point of the Equation (19) if 𝑧∗ is a critical point 
of ℜ(𝑧), i.e., a zero of the polynomial function 
𝜚(𝑧) defined in Equation (21). 

3. Multipliers approach 
In their work, Anco and Bluman[5] pre-

sented a general method for deriving conserva-
tion laws for partial differential equations in a 
Cauchy-Kovaleskaya form, specifically for evo-
lution equations of the form, 

𝐴 = E(𝑧, 𝐴, 𝐴 , 𝐴 , … , 𝐴 ) 

(25) 
The conservation laws are characterized by 

a multiplier Λ that does not depend on 𝐴  and 

satisfies the following equation 

F[𝐴] Λ𝐴 − Λ𝐺(𝑧, 𝐴, 𝐴 , 𝐴 , … , 𝐴 ) = 0 

(26) 
where, the Euler-Lagrangian operator F[𝐴]  is 
defined as 

F[𝐴] =
∂

∂𝐴
− 𝐷

∂

∂𝐴
− 𝐷

∂

∂𝐴
+ 𝐷

∂

∂𝐴
+ ⋯ 

(27) 
where, 𝐷  and 𝐷  are the total derivatives with 

to respect to 𝑦 and 𝑧. The conserved vector is re-
quired to satisfy 

Λ = F[𝐴]Υ  
(28) 

and the flux Υ  is given by Euler[27]. 

Υ = −𝐷 (ΛE) −
∂Υ

∂𝐴
E + E𝐷

∂Υ

∂𝐴
+ ⋯ 

(29) 
The conservation law will be written as 

𝐷 (Υ ) + 𝐷 (Υ ) = 0 

(30) 

We get the following multipliers: for first 
equation of Equation (2). 

Λ = 1 
Λ = 𝐴 

Λ = 𝐴 𝐴 +
𝐴

2
−

𝐴

2
+ 𝐴𝐴  

(31) 
For second equation of the Equation (2), 

Λ = 1
Λ = 𝐴

 

(32) 

we have the equation, which represents the first 
equation of the Equation (2). 

G ≡ 𝐴 + (𝐴 − 𝐴 ) + [𝐴(𝐴 ) ] = 0 

(33) 
Equation (33) can be considered nonline-

arly self-adjoint if there exists a nontrivial func-
tion 𝜌(𝑦, 𝑧, 𝐴, 𝐴 , … ), such that when we substi-
tute 𝑣 = 𝜌(𝑦, 𝑧, 𝐴, 𝐴 , … ) into the adjoint equa-
tion such that 𝜌(𝑦, 𝑧, 𝐴, 𝐴 , … ) ≠ 0, it becomes 
same as the original Equation (33); that is 

G∣
∗ = 𝛾G 

(34) 
To do so, we consider its adjoint equation 

to Equation (33) is following, where 𝑣 is a new 
dependent variable, 

G∗ ≡
𝛿(𝑣G)

𝛿𝐴
= 0 

(35) 
where, 

𝛿

𝛿𝐴
=

∂

∂𝐴
− 𝐷

∂

∂𝐴
− 𝐷

∂

∂𝐴
+ 𝐷

∂

∂𝐴
 

(36) 

Equation (36) defines the variational deriv-
ative, also known as the Euler-Lagrangian oper-
ator. The variational derivative takes into ac-
count the total differentiations with respect to 𝑦 
and 𝑧, denoted by 𝐷  and 𝐷 , respectively. 

Let us select nonlinearly self-adjoint equa-
tions from 
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G∗ − 𝛾 𝐴 + (𝐴 − 𝐴 ) + [𝐴(𝐴 ) ]

− 𝜔 𝐴 + (𝐴 − 𝐴 )

+ [𝐴(𝐴 ) ]

− 𝜖 𝐴 + (𝐴 − 𝐴 )

+ [𝐴(𝐴 ) ] = 0 

(37) 
where 𝛾, 𝜔, and 𝜖 are undetermined coefficients. 
Setting 𝑣 = 𝜌(𝑦, 𝑧, 𝐴, 𝐴 , 𝐴 ) , we can analyze 
the coefficients for the different derivatives of 𝐴 
in order to determine the requirements for the 
equation to be nonlinearly self-adjoint. We con-
clude that the following requirements must be 
met 

𝛾 = −𝜌  
𝜔 = −𝜌  

𝜖 = −𝜌  

(38) 
and by resolving the remaining equations, we 
obtain 

𝜌 = 𝜅 𝐴 𝐴 + 𝜅 𝐴𝐴 + c(𝐴)𝐴 + d(𝐴) 
(39) 

with 

c(𝐴) = 𝜅 𝐴  

d(𝐴) =
1

2
(𝜅 𝐴 − 𝜅 𝐴 ) + 𝜅 𝐴 + 𝜅  

(40) 
The following are the outcome. 

 In the given Equation (2), the first equa-
tion is stated to be nonlinearly self-ad-
joint. 

𝜌 = 1 
𝜌 = 𝐴 

𝜌 = 𝐴 𝐴 +
𝐴

2
−

𝐴

2
+ 𝐴𝐴  

(41) 

Using the same method on the second equa-
tion of Equation (2), we get the following con-
clusion. 

 For the second equation of the Equation 
(2) to be nonlinearly self-adjoint, we are 
given the following choices for the func-
tion 𝜌(𝑦, 𝑧, 𝐴, 𝐴 , 𝐴 ), 

𝜌 = 1

𝜌 = 𝐴
 

(42) 
The functions 𝜌(𝑦, 𝑧, 𝐴, 𝐴 , 𝐴 )  derived 

from the condition of nonlinear self-adjointness 
in the equations correspond to the multipliers 
used in the Anco and Bluman method[5] for the 
direct construction of conservation laws. 

4. Conservation laws 
We obtain the conserved quantities (vectors) 

and fluxes associated with the multipliers from 
Equations (28) and (29). For the first equation of 
Equation (2): 

4.1 First conserved vector 

Λ = 1 

𝜂 = 𝐴 

𝜂 = 𝐴(𝐴 + (−1 + 2𝐴 )𝐴 + 2𝐴 ) 

(43) 

4.2 Second conserved vector 

Λ = 𝐴 

𝜂 =
𝐴

2
 

𝜂 =
3

4
𝐴 −

2

3
𝐴 + 2𝐴 𝐴 + 𝐴 𝐴  

(44) 

4.3 Third conserved vector 

Λ = 𝐴 𝐴 +
𝐴

2
−

𝐴

2
+ 𝐴𝐴  

𝜂 = −
1

2
𝐴 +

1

8
𝐴 −

1

6
𝐴  

𝜂 =
1

4
(𝐴 + (4𝐴 − 2)𝐴 + 4𝐴

+ 4 𝐴 −
1

2
𝐴

+
1

4
8 𝐴 −

1

2
𝐴 𝐴 + 4𝐴

+ 4𝐴 𝐴 𝐴  

(45) 
The following multipliers, conserved densi-
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ties and fluxes are obtained for the second equa-
tion of Equation (2): 

4.4 First conserved vector 

Λ = 1 

𝜂 = 𝐴 

𝜂 = 2𝐴𝐴 + 2(𝐴 ) − 𝐴 + 𝐴  

(46) 

4.5 Second conserved vector 

Λ = 𝐴  

𝜂 =
𝐴

3
 

𝜂 =
1

10
𝐴 (20𝐴 + 6𝐴 − 5𝐴) 

(47) 
Applying the theorem on conservation laws 

derived from the generators 𝐗  and 𝐗  in the 
work of Ibragimov[10] may lead to trivial conser-
vation laws in this case. Trivial conservation 
laws are those that do not provide new infor-
mation about the system and are often associ-
ated with symmetries that are not physically rel-
evant. However, it is worth noting that in the 
Conservation laws of scaling-invariant field 
equations[28], a method is presented specifically 
for deriving conservation laws associated with 
scaling symmetries. This method may provide 
more meaningful conservation laws for the sys-
tem. If scaling symmetries are present in the sys-
tem described by Equation (2), applying the 
method described by Anco[28] could yield non-
trivial conservation laws. 

5. Conclusions 
We used the classical lie approach to solve 

two partial differential equations (PDEs) with 
nonlinear dispersion and compacton solutions. 
Because these equations have symmetries, we 
were able to reduce them further into first-order 
ordinary differential equations (ODEs). This re-
duction gave useful insights into their dynamic 
behaviour and qualified them for qualitative 

analysis. We used infinitesimal operator of the 
group and Euler-lagrangian operator to get sys-
tem of determining equations. The multipliers 
approach helps us to find exact solutions of our 
system of differential equations. We also investi-
gated that Equation (2) is nonlinear selfadjoint-
ness. When studying the translation generators, 
we discovered that the conservation laws gener-
ated using the conservation laws theorem[10], 
which removes the necessity for integrating func-
tions, result in some conservation laws that do 
not give additional information (trivial conserva-
tion laws). Using the multipliers technique, we 
were able to generate nontrivial conservation 
laws using integral formulae, which improved 
our knowledge of the system’s conservation 
properties. 
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