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1. Introduction & observation

In the study of Fedotov!!!, a new definition of a variable-order derivative was used to state a
variable-order integro-differential equation and to prove the convergence of the quadrature-difference
method for its solution. In another study by Fedotov®?, the norm of the Hermite-Fejér interpolative
operator with integer-order derivatives is estimated. To develop the theory and practical use of the
defined variable-order derivatives, an estimation of the norm of the Hermite-Fejér interpolative
operator with derivatives of variable order is needed. Here, the results of Fedotov’s®® paper are
generalized to the variable order derivatives defined in another of his paper!!.

2. Definition of the fractional order derivative

For the following, let us denote N the set of positive integers (we write N, if N is supplemented
with the zero), Z the set of all integers, R the set of real numbers. Now let us fix s € R and denote H®
Sobolev space of order s, i.e., the closure of all 2m-periodic complex-valued functions of one variable
with respect to the norm:
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where x(I) = Py f_“nx(r)el (7)dr, |l € Z, are Fourier coefficients of the function x € H® over the system

of functions e;(7) = e'¥, l € Z.
Hereinafter, we will suppose, that s > -, whichP! is sufficient for the embedding H® in the space of
continuous functions and H5*! in the space of functions, which derivatives are continuous.

Let us assume that the function a(t),0 < a(t) < 1,t € [—m, ), belongs to the space H® and define
for the functions of H*! a derivative of order «a,
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x@®@) (1) = (1 — a(t))x(t) + a(t)x' (), x € H*,t € [—m, ).

In case a(t) = 0,t € [-m,m),x(@®)(t) coincides with the function x(t); in case a(t) = 1,t €
[—, ), x(“(t))(t) coincides with the derivative x'(t). So, this definition should be considered as correct
one. In the following we suppose that 0 < a(t) <1, t € [-m, ).

Let us fix n € N, define the grid of equidistant nodes
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and denote P, ,,: HS*? —» HS*1,
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Hermite-Fejér interpolation operator which assigns, to each function x € HS™! the trigonometric
interpolation polynomial P, ,x € HS*! at the Equation (1) of multiplicity a. Here

__ (sin ((2n+1)(t—tg)/2)
(T tic) = ((2n+1)sin ((‘r—tk)/z) (2n+1)2

are normalized Fejér kernels at the Equation (1).

(1 - el(T - tk)))fn(‘[' tk),

(@ +1—[lDe (T = t), k[ < n,

Theorem 1. For alls € R,s > 1/2,andn € N, the following estimate is valid: ||Pa,n|| ystipstt = 24/€ (2s),
where {(t) = Y7L, ] =t is the Riemann zeta function bounded and decreasing for t > 1.

Proof. Let us fix s € R,s > 1/2,and n € N and take a function x € H5t'. We construct the polynomial

x(@) () — (1 — alty))x(ty)
a(ty)

Pen)@ = ) (x(t) +i (1 - eyt = 6)en(E, t)

|k|sn
and replace in it the Fejér kernels and the value of the function x and its derivative x(“(T))(T) at the
Equation (1) by their Fourier series
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Denoting
1121,
sgnz=|z|—|z—1|={_1 zh

we obtain, that Fourier coefficients of the polynomial F, ,,x are equal to
(Pa,nx)(l) = Yuez J?(l +un+ 1))(1 +usgnl), —2n <1 <2n+1.

Now, according to the definition of the norm in H5*1, we have
2
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The function
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is even one, SO
max y()= max y(D).

—2n<l<2n+1 0<l<2n+1

Let us estimate the values of the function y(l), 0 <1< 2n+1,
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Finally, we have

=24(2s),
and it is achieved at | = 2n + 1. Theorem is proven. O
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