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Abstract: Multi-attribute group decision-making (MAGDM) is a very significant technique 

for selecting an alternative from the provided list. But the major problem is dealing with the 

information fusion during the information. Aczel-Alsina t-norm (AATN) and Aczel-Alsina t-

conorm (AATCN) are the most generalized and flexible t-norm (TN) and t-conorm (TCN), 

which are used for information processing. Moreover, the interval-valued T-spherical fuzzy set 

(IVTSFS) is the latest framework to cover the maximum information from the real-life 

scenarios. Hence, the major contribution of this paper is to deal with the information during 

the MAGDM process by introducing new aggregation operators (AOs). Consequently, the 

interval-valued T-spherical fuzzy (IVTSF), Aczel-Alsina weighted averaging (IVTSFAAWA), 

IVTSF Aczel-Alsina (IVTSFAA) ordered weighted averaging (IVTSFAAOWA), IVTSFAA 

weighted geometric (IVTSFAAWG), IVTSFAA ordered weighted geometric 

(IVTSFAAOWG), and IVTSFAA hybrid weighted geometric (IVTSFAAHWG) operators are 

developed. It is shown that the proposed operators are valid and the results obtained are reliable 

by discussing some basic properties. To justify the developed AOs, an example of the 

MAGDM is discussed. The sensitivity of these AOs is observed keeping in view of the variable 

parameter. To show the importance of the newly developed theory, a comparison of the 

proposed AOs is established with already existing operators. 

Keywords: T-spherical fuzzy set; interval-valued T-spherical fuzzy set; Aczel-Alsina t-norm; 

decision making 

1. Introduction 

Improbability and incompleteness are constant problems when interpreting 
information. For instance, the concept of crisp sets holds that an object either belongs 
to or is not part of a specific scenario. However, many things in the true world could 
not be described in such detail. Zadeh [1] referred to this concept as FS and defined 

the membership of an element by membership degree (MD) in the range [0, 1]. By 
applying the FS, the ambiguity and the uncertainty reduce while describing any 
uncertain situation in a mathematical model. However, FS is limited due to the 
description of an object with the help of only MD. To describe the object with the help 
of MD as well as non-MD (NMD), Atanassov [2] introduced the intuitionistic FS 
(IFS). In IFS, the sum of the MD and NMD should be in the unit interval. IFS can give 
a better description of an object as compared to the FS. But it was still limited because 
the sum of MD and NMD exceeded 1 in some cases. To extend the range of the IFS, 
Yager [3] established the idea of Pythagorean FS (PyFS) by imposing lenient criterion 

by adding the square of the MD 𝑐 and NMD 𝑣 such that 𝑐ଶ + 𝑣ଶ ∈  [0, 1]. As a result 
of the flexible condition for objects, PyFS can reduce information loss and cover more 

information from the real-life scenarios. Though, some items with, 𝑐, 𝑣 ∈  [0, 1] could 
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not yet be described by PyFS. Yager [4] proposed the concept of q-rung orthopair FS 

(qROFS) utilizing any positive real number raised by MD and NMD, i.e., 𝑐 + 𝑣 ∈

 [0, 1], in order to get around PyFS’s flaw. 
The developed methods in prior studies [1–4] handled the information with the 

help of only two degrees, i.e., MD and NMD. But there are various types of real-life 
scenarios that could be described with the help of only MD and NMD. For example, 
to describe the scenario of voting, Cuong [5] introduced the picture FS (PFS) with an 
additional degree called abstinence degree (AD). He imposed the condition that the 
sum of the MD, AD, and NMD should be in unit interval. PFS can describe an object 
to the part of the real-life scenarios with more certainty as compared to the previous 
frameworks. But sometimes, the sum of the MD, AD, and NMD did not part of the 
unit interval. After noticing these restrictions, Mahmood et al. [6] enlarged the idea of 
PFS to spherical FS (SFS), and then to T-spherical FS (TSFS), to relax the decision-
makers to assign these MD, AD, and NMD from the unit interval as their individual 
preferences. To cover more information than the TSFS. Ullah et al. [7] introduced the 
IVTSFS by describing the information as the intervals of MD, AD, and NMD. Hence, 
the IVTSFS is the framework that deals with the information in the form of the 
intervals with the minimum level of uncertainty. It also has the capability to extract 
the maximum information from the real-life scenarios. 

In many scientific domains, MAGDM is a significant topic, particularly when 
choosing one among a list of options based on certain criteria. Since the beginning of 
MAGDM, FS theory has been a key component. Several researchers developed AOs 
to solve the MAGDM problems by using IFS, PyFS, qROFS, PFS, SFS, TSFS, and 
IVTSFS. Ali et al. [8] applied AOs to solve the MAGDM problem for the assessments 
for the establishment of software outsourcing partnerships. For resolving the MAGDM 
problem, Hung et al. [9] developed AOs for IFSs. AOs in the context of PyFS with 
application in MAGDM were formalized by the study of Zhang and Xu [10]. The AOs 
were created for the qROFS environment for use in MAGDM. Based on qROFS, Yang 
and Pang [11] presented the three-way MAGDM. Wei [12] provided AOs for the PFS 
and then utilized them in MAGDM. Ullah et al. [13] created AOs for the situation of 
picture-hesitant FS to address the MAGDM complications. Ullah et al. [14] introduced 
the AOs for TSF based on the Hamacher and used them in MAGDM. Zeng et al. [15] 
developed the AOs for TSFS with their application to MAGDM problems. AOs 
applied in the MAGDM for the selection of the solar cell selection based on Einstein’s 
operational laws are presented by Munir et al. [16]. AOs for TSFS based on the Frank 
operational laws are presented by Mahnaz et al. [17] and Riaz and Farid [18] 
introduced AOs for PFS. Ali et al. [19] introduced AOs for qROFS, Khan et al. [20] 
introduced AOs for TSFS, and so on. 

Additionally, the literature has a large number of AOs based on TN and TCN that 
were first introduced to FS theory by Deschrijver et al. [21]. AOs for IF were created 
by Xia et al. [22] using Archimedean TN and TCN. AOs for IFS were created by Wang 
and Liu [23] utilizing Einstein TN and TCN. Based on Einstein TN and TCN, Wei and 
Zhao [24] presented the AOs for interval-valued IFS (IVIFS). Liu [25] created 
interval-valued IF (IVIFS) AOs using Hamacher TN and TCN. By utilizing Dombi 
TN and TCN, Ullah et al. [26] established AOs for the IVTSFS. If power AOs were 
created by Zhang et al. [27] using Frank TCN and TN. It shows that the role of the 
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TNs and TCNs is very important for the information fusion and in the development of 
the AOs. However, another type of TN and TCN, the AATN and AATCN, were 
initially introduced by Aczel and Alsina [28]. It has greater flexibility than the other 
TN and TCN previously cited and is helpful in the fusion of information. Due to the 
usefulness of the AATN and AATCN Senapati et al. [29] used in the development of 
the AOs for IFS. Moreover, the AATN and AATCN are utilized by Hussain et al. [30] 
for the development of the AOs for the TSFS. Senapati et al. [31] used AATN and 
AATCN to develop the AOs for a hesitant fuzzy environment. Senapati et al. [32] used 
AATN and AATCN in an IFS environment to introduce AOs. Senapati et al. [33] used 
AATN and AATCN in an IVIFS environment to introduce AOs. Senapati et al. [34] 
used AATN and AATCN in an IFS environment to introduce AOs. Senapati et al. [35] 
used AATN and AATCN in an interval-valued PFS (IVPFS) environment to introduce 
AOs. Senapati et al. [36] used AATN and AATCN in a PyFS environment to introduce 
AOs. Senapati et al. [37] used AATN and AATCN in q-ROFS environments to 
introduce AOs. Senapati [38] used AATN and AATCN in the PFS environment to 
introduce AOs. 

Motivations behind this article are provided as follows. 
1) AATN and AATCN are the most generalized forms of the operational laws based 

on the parameter. AATN and AATCN convert some basic TNs and TCN in 
special cases of the involved parameter. 

2) Moreover, Farahbod and Eftekhari [39] did the comparison between different 
TNs and TCNs for the classification of the information. They found that the 
AATN and AATCN are the most reluctant, flexible, and reliable to deal with the 
fuzzy information. We can infer from the investigation above that the AOs used 
in MAGDM are complicated by actual phenomena. The information should be 
handled with more reliability to get the optimal alternative in MAGDM. 

3) Additionally, IVTSFS operates the information with more certainty than IFS, 
IVIFS, PyFS, qROFS, PFS, SFS, and TSFS. We have not yet discovered the use 
of AATN and AATCN for the IVTSFS framework. 

4) The information obtained from the real-life scenarios by the IVTSFS should be 
aggregated by using some of the of the latest operators. Hence, new AOs are 
developed in this article based on AATN and AATCN. 
Hence, we are inspired by these factors to prepare this study. The following is 

how this article is organized: 
Section 2 includes an introduction to basic terminology that makes the article 

easier to understand. In section 3, we define the TSFS, the IVTSFS, Aczel-Alsina sum, 
product, scalar multiplication, and power operation for IVTSF values (IVTSFVs). The 
IVTSFAAWA, IVTSFAAOWA, and IVTSFAAHA operators are created, and their 
basic properties are discussed in Section 4. With the aid of the Aczel-Alsina (AA) sum 
and AA product, we develop the IVTSFAAWG, IVTSFAAOWG, and IVTSFAAHG 
operators in Section 5 and observe their properties. The application of the 
IVTSFAAWA and IVTSFAAWG operators to the MAGDM problem is covered in 
Section 6. In section 6, we also examine how the IVTSFAAWA and IVTSFAAWG 
operators behave for various parameter values and conduct a comparison with other 
AOs. In Section 7, we conclude this study. 
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2. Preliminaries 

We shall introduce some fundamental terms in this section. The terms TSFS, 
IVTSFS, score function, AATN, and AATCN are defined in this section. 

Definition 1. The set 𝑇 = {(𝜌, 𝑐(𝜌), 𝑒(𝜌), 𝑣(𝜌)|𝜌 ∈ 𝕌)} is considered a TSFS where 

𝕌 is the universe and 𝑐, 𝑒, 𝑣 are mappings from 𝕌 to [0, 1]. 𝑐(𝜌), 𝑒(𝜌), 𝑣(𝜌) are MD, 

AD, and NMD respectively such that 0 ≤ 𝑐(𝜌) + 𝑒(𝜌) + 𝑣(𝜌) ≤ 1 where 𝑟 ∈ 𝑧ା. 

Moreover, π = ට1 − ൫𝑐(𝜌) + 𝑒(𝜌) + 𝑣(𝜌)൯
ೝ

 is known as RD of the T-spherical 

fuzzy value (TSFV) and ൫𝑐(𝜌), 𝑒(𝜌), 𝑣(𝜌)൯ is called a TSF value (TSFV). 

Definition 2. The set 𝑇 = {(𝜌, 𝑐(𝜌), 𝑒(𝜌), 𝑣(𝜌)|𝜌 ∈ 𝕌)}  is considered a IVTSFS 

where 𝕌  is the universe and  𝑐, 𝑒, 𝑣  are mappings from 𝕌  to [0, 1]  in the form of 

intervals. Moreover,  𝑐(𝜌) = [𝑐 , 𝑐௨], 𝑒(𝜌) = [𝑒 , 𝑒௨], 𝑣(𝜌) = [𝑣 , 𝑣௨] are MD, AD, 

and NMD respectively such that 0 ≤ 𝑐௨(𝜌) + 𝑒௨(𝜌) + 𝑣௨(𝜌) ≤ 1 where 𝑟 ∈ 𝑧ା. 

Moreover, π =

ቈට1 − ൫𝑐௨(𝜌) + 𝑒௨(𝜌) + 𝑣௨(𝜌)൯
ೝ

, ට1 − ൫𝑐(𝜌) + 𝑒(𝜌) + 𝑣(𝜌)൯
ೝ

  is known 

as RD of the IVTSF value (IVTSFV). 

Definition 3. Let 𝑠𝑐(𝛼) indicate the score value of IVTSFV 𝛼. Then score value can 
be specified as 

𝑠𝑐(𝛼) =
൫൯

ೝ
ቀଵି൫൯

ೝ
ି(௩ℊ)ೝቁା(ೠ)ೝ(ଵି(ೠ)ೝି(௩ೠ)ೝ)

ଷ
. 

The AATN and AATCN is the most flexible TN and TCN defined by Aczél and 
Alsina [28]. The definition of the AATN and TCN is provided as follows. 
Definition 4. The AATN is defined as 

𝑇
ெ(𝛼, 𝛽) = ൞

𝑇(𝛼, 𝛽)    𝑖𝑓 𝛤 = 0

min(𝛼, 𝛽)    𝑖𝑓 𝛤 → ∞

𝑒ି൫(ି ୪୬ ఈ))೨ା(ି୪୬ఉ)೨൯
భ
೨

otherwise

. 

Furthermore, the AATCN is defined by 

𝑆
ெ(𝛼, 𝛽) = ቐ

𝑇(𝛼, 𝛽)     𝑖𝑓 Γ = 0

max(𝛼, 𝛽)    𝑖𝑓 𝛤 → ∞

1 − 𝑒ି൫(ି ୪୬(ଵିఈ))೨ା(ି ୪୬(ଵିఉ))೨൯
భ

೨ൗ

. 

where 𝛤 ∈ [0, ∞]. 

3. Operational laws for IVTSFVS based on AATN and AATCN 

This section deals with the introduction of some operations for IVTSFVs based 

on the AATN and AATCN. The AA sum 𝑋 ⊕ 𝑌 and product 𝑋 ⊗ 𝑌 between 

two IVTSFVs 𝑋 = (𝑐, 𝑒, 𝑣) and 𝑌 = (𝑐, 𝑒, 𝑣) are defined first as follows. 

𝑋 ⊕ 𝑌 = {(𝑆(𝑐 , 𝑐), 𝑇(𝑒 , 𝑒), 𝑇(𝑣 , 𝑣))} 

𝑋 ⊗ 𝑌 = {(𝑇(𝑐, 𝑐), 𝑆(𝑒, 𝑒), 𝑆(𝑣 , 𝑣))} 

where  𝑇  and  𝑆 , respectively, are AATN and AATCN. As a result, we present 
Definition 5 and Theorem 1 in the following. 

Definition 5. Consider two IVTSFVs are 𝑇ଵ = ൫ൣ𝑐ଵ
 , 𝑐ଵ

௨൧, ൣ𝑒ଵ
 , 𝑒ଵ

௨൧, ൣ𝑣ଵ
 , 𝑣ଵ

௨൧൯ and 𝑇ଶ =

൫ൣ𝑐ଶ
 , 𝑐ଶ

௨൧, ൣ𝑒ଶ
 , 𝑒ଶ

௨൧, ൣ𝑣ଶ
 , 𝑣ଶ

௨൧൯. The AA sum and product are defined as follows. 
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𝑇ଵ ⊕ 𝑇ଶ =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

ට
1 − 𝑒

ିቀ൫ି ୪୬൫ଵିభ
ೝ൯൯

೨
ା൫ି ୪୬൫ଵିభ

ೝ൯൯
೨

ቁ

భ
೨

ೝ

,
ට

1 − 𝑒ି((ି ୪୬(ଵିభ
ೠೝ))೨ା(ି ୪୬(ଵିభ

ೠೝ))೨)
ଵ
௰

ೝ

 ,

൦𝑒
ିቀ൫ି ୪୬൫భ

ೝ൯൯
೨

ା൫ି ୪୬൫మ
ೝ൯൯

೨
ቁ

భ
೨

,
ష൬൫ష ౢ൫భ

ೠೝ൯൯
೨

శ൫ష ౢ ൫మ
ೠೝ൯൯

೨
൰

భ
೨

൪ ,

𝑒
ିቀ൫ି ୪୬൫௩భ

ೝ൯൯
೨

ା൫ି ୪୬൫௩మ
ೝ൯൯

೨
ቁ

భ
೨

, 𝑒ି൫(ି ୪୬(௩భ
ೠೝ))೨ା(ି ୪ (௩మ

ೠೝ))೨൯
భ
೨

൩
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

, 𝛤 ≥ 1 (1) 

𝑇ଵ ⊗ 𝑇ଶ =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ 𝑒

ି൬൫ି ୪୬൫భ
ೝ൯൯

೨
ା൫ି ୪୬൫మ

ೝ൯൯
೨

൰

భ
೨

, 𝑒ି൫(ି ୪୬(భ
ೠೝ))೨ା(ି ୪୬(మ

ೠೝ))೨൯
భ
೨




ට

1 − 𝑒
ିቀ൫ି ୪୬൫ଵିభ

ೝ൯൯
೨

ା൫ି ୪୬൫ଵିమ
ೝ൯൯

೨
ቁ

భ
೨

ೝ

, ට1 − 𝑒ି((ି ୪୬(ଵିభ
ೠೝ))೨ା(ି ୪୬(ଵିమ

ೠೝ))೨)
భ
೨

ೝ




ට

1 − 𝑒
ିቀ൫ି ୪୬൫ଵି௩భ

ೝ൯൯
೨

ା൫ି ୪୬൫ଵି௩మ
ೝ൯൯

೨
ቁ

భ
೨

ೝ

, ට1 − 𝑒ି((ି ୪ (ଵି௩భ
ೠೝ))೨ା(ି ୪୬(ଵି௩మ

ೠೝ))೨)
భ
೨

ೝ



⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 (2) 

We may be able to specify additional operations using the AATN and AATCN. The 

divisions and powers of the IVTSFV 𝑇 = ([𝑐 , 𝑐௨], [𝑒 , 𝑒௨], [𝑣 , 𝑣௨]) can be used to 

describe the operations for any real number 𝑧. 

𝑧𝑇 =

⎝

⎜
⎜
⎜
⎛ 

ට
1 − 𝑒

ିቀ௭൫ି ୪୬൫ଵିೝ൯൯
೨

ቁ

భ
೨

ೝ

, ට1 − 𝑒ି(௭(ି ୪୬(ଵିೠೝ))೨)
భ
೨

ೝ



ᇱ

𝑒
ିቀ௭൫ି ୪୬൫ೝ൯൯

೨
ቁ

ଵ
௰

, 𝑒ି൫௭(ି ୪୬(ೠೝ))೨൯
భ
೨

 , 𝑒
ିቀ௭൫ି ୪୬൫௩ೝ൯൯

೨
ቁ

భ
೨

, 𝑒ି൫௭(ି ୪୬(௩ೠೝ))೨൯
భ
೨

൩

⎠

⎟
⎟
⎟
⎞

, 𝛤 ≥ 1 (3)

𝑇௭ =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑒
ିቀ௭൫ି ୪୬൫ೝ൯൯

೨
ቁ

భ
೨

, 𝑒ି൫௭(ି ୪୬(ೠೝ))೨൯
ଵ
௰൩


ට

1 − 𝑒
ିቀ௭൫ି ୪୬൫ଵିೝ൯൯

೨
ቁ

భ
೨

ೝ

,
ට

1 − 𝑒ି(௭(ି ୪୬(ଵିೠೝ))೨)
ଵ
௰

ೝ




ට

1 − 𝑒
ିቀ௭൫ି ୪୬൫ଵି௩ೝ൯൯

೨
ቁ

భ
೨

ೝ

, ට1 − 𝑒ି(௭(ି ୪୬(ଵି௩ೠೝ))೨)
భ
೨

ೝ



⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

, 𝛤 ≥ 1 (4) 

We then present Theorem 1 to demonstrate some characteristics of the AA sum 

and product between IVTSFVs 𝑇ଵ and 𝑇ଶ, utilizing operations specified in Equations 
(1)–(4). 

Theorem 1. Let  𝑇 = ([𝑐 , 𝑐௨], [𝑒 , 𝑒௨], [𝑣 , 𝑣௨]) , 𝑇ଵ = (ൣ𝑐ଵ
 , 𝑐ଵ

௨൧, ൣ𝑒ଵ
 , 𝑒ଵ

௨൧, ൣ𝑣ଵ
 , 𝑣ଵ

௨൧) 

and 𝑇ଶ = (ൣ𝑐ଶ
 , 𝑐ଶ

௨൧, ൣ𝑒ଶ
 , 𝑒ଶ

௨൧, ൣ𝑣ଶ
 , 𝑣ଶ

௨൧) be three IVTSFVs, 𝑎 > 0, 𝑎ଵ > 0 and 𝑎ଶ > 0 

be real numbers. Then we can write: 

𝑇ଵ ⊕ 𝑇ଶ = 𝑇ଶ ⊕ 𝑇ଵ 

𝑇ଵ ⊗ 𝑇ଶ = 𝑇ଶ ⊗ 𝑇ଵ 

𝑎(𝑇ଵ ⊕ 𝑇ଶ = 𝑎𝑇ଵ ⊕ 𝑎𝑇ଶ) 
(𝑎ଵ + 𝑎ଶ)𝑇 = 𝑎ଵ𝑇 ⊕ 𝑎ଶ𝑇 
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(𝑇ଵ ⊗ 𝑇ଶ) = 𝑇ଵ
 ⊗ 𝑇ଶ

 

𝑇భ ⊗ 𝑇మ = 𝑇(భାమ) 
Proof of Theorem 1. The proofs of these properties are skipped to avoid the extra 
length.  

4. The proposed averaging AOS 

We define the IVTSFAAWA, IVTSFAAOWA, and IVTSFAAHWA operators 
in this section and observe some of their fundamental characteristics. Keep in mind 

that we’ll be using 𝜆 for the weight vector 𝜆 = (𝜆ଵ, 𝜆ଶ, 𝜆ଷ, . . . . 𝜆)் with 𝜆ℊ ≥ 0 and 

∑ 𝜆ℊ = 1
ℊ . Further, (ℊ = 1, 2, 3, … , 𝑛) will be used for indexing purposes. 

Definition 6. Let 𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧) be the set of IVTSFVs. Then, a 

IVTSFAAWA operator is a mapping 𝐼𝑉𝑇𝑆𝐹𝐴𝐴𝑊𝐴: 𝑇 → 𝑇 such that 

IVTSFAAWA(𝑇ଵ, 𝑇ଶ, . . . . 𝑇) = ⨁
ℊୀଵ



൫𝜆ℊ𝑇ℊ൯. 

In Theorem 2, we demonstrate that the value acquired by aggregation is an 
IVTSFV as well. 

Theorem 2. Let 𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧)  represent the set of IVTSFVs. 

Consequently, the value obtained by the IVTSFAAWA operator following aggregate 
is also an IVTSFV, and 

IVTSFAAWA(𝑇ଵ, 𝑇ଶ, . . . . 𝑇)

=

⎝

⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡
ඨ

1 − 𝑒
ିቀ∑ ఒℊ


ℊ ൫ି ൫ଵିℊ

ೝ൯൯
೨

ቁ

ଵ
௰

ೝ

,
ඨ

1 − 𝑒
ିቀ∑ ఒℊ


ℊ ൫ି ൫ଵିℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

ೝ

⎦
⎥
⎥
⎥
⎤

,

𝑒
ିቀ∑ ఒℊ


ℊ ൫ି ൫ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀ∑ ఒℊ


ℊ ൫ି ൫ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

 , 𝑒
ିቀ∑ ఒℊ


ℊ ൫ି ൫௩ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀ∑ ఒℊ


ℊ ൫ି ൫௩ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰



⎠

⎟
⎟
⎟
⎟
⎞

 
(5) 

Proof of Theorem 2. By using the induction approach, we shall prove Equation (5) as 
follows: 

We can write 𝑛 = 2 as  

IVTSFAAWA(𝑇ଵ, 𝑇ଶ) = 𝜆ଵ𝑇ଵ ⊕ 𝜆ଶ𝑇ଶ 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡
ඨ

1 − 𝑒
ିቀఒభ൫ି ୪୬൫ଵିℊ

ೝ൯൯
೨

ቁ

ଵ
௰

ೝ

,
ඨ

1 − 𝑒
ିቀఒభ൫ି ୪୬൫ଵିℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

ೝ

⎦
⎥
⎥
⎥
⎤

𝑒
ିቀఒభ൫ି ୪୬൫ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀఒభ൫ି ୪୬൫ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰



𝑒
ିቀఒభ൫ି ୪୬൫௩ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀఒభ൫ି ୪୬൫௩ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰



⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⊕

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡
ඨ

1 − 𝑒
ିቀఒమ൫ି ୪୬൫ଵିℊ

ೝ൯൯
೨

ቁ

ଵ
௰

ೝ

,
ඨ

1 − 𝑒
ିቀఒమ൫ି ୪୬൫ଵିℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

ೝ

⎦
⎥
⎥
⎥
⎤

𝑒
ିቀఒమ൫ି ୪୬൫ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀఒమ൫ି ୪୬൫ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰



𝑒
ିቀఒమ൫ି ୪୬൫௩ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀఒమ൫ି ୪୬൫௩ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰



⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 



Journal of AppliedMath 2024, 2(2), 79.  

7 

=

⎝

⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡
ඨ

1 − 𝑒
ିቀ∑ ఒℊ

మ
ℊ ൫ି ୪୬൫ଵିℊ

ೝ൯൯
೨

ቁ

ଵ
௰

ೝ

,
ඨ

1 − 𝑒
ିቀ∑ ఒℊ

మ
ℊ ൫ି ୪ ൫ଵିℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

ೝ

⎦
⎥
⎥
⎥
⎤

ᇱ

𝑒
ିቀ∑ ఒℊ

మ
ℊ ൫ି ୪୬൫ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀ∑ ఒℊ

మ
ℊ ൫ି ୪୬൫ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

 , 𝑒
ିቀ∑ ఒℊ

మ
ℊ ൫ି ୪ ൫௩ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀ∑ ఒℊ

మ
ℊ ൫ି ୪୬൫௩ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰



⎠

⎟
⎟
⎟
⎟
⎞

 

Consequently, for 𝑛 = 2, the result of IVTSFAAWA is also an IVTSFV. Assuming 

that Equation (5) holds for 𝑛 = 𝑘, we now get 

IVTSFAAWA(𝑇ଵ, 𝑇ଶ, . . . 𝑇) =

⎝

⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡

ඨ
1 − 𝑒

ି൬∑ ఒℊ
ೖ
ℊ ൫ି  ൫ଵିℊ

ೝ൯൯
೨

൰

ଵ
௰

ೝ

,
ට

1 − 𝑒ିቀ∑ ఒℊ
ೖ
ℊ ൫ି ൫ଵିℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

ೝ

⎦
⎥
⎥
⎥
⎤

,

𝑒
ି൬∑ ఒℊ

ೖ
ℊ ൫ି ൫ℊ

ೝ൯൯
೨

൰

ଵ
௰

, 𝑒ିቀ∑ ఒℊ
ೖ
ℊ ൫ି ൫ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

 , 𝑒
ି൬∑ ఒℊ

ೖ
ℊ ൫ି ൫௩ℊ

ೝ൯൯
೨

൰

ଵ
௰

, 𝑒ିቀ∑ ఒℊ
ೖ
ℊ ൫ି ൫௩ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰



⎠

⎟
⎟
⎟
⎟
⎞

 

We must demonstrate that Equation (5). For 𝑛 = 𝑘 + 1, the following is true: 

IVTSFAAWA(𝑇ଵ, 𝑇ଶ, . . . . 𝑇, 𝑇ାଵ) = ൫𝜆ℊ𝑇ℊ൯ ⊕ (𝜆ାଵ𝑇ାଵ) 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡
ඨ

1 − 𝑒
ିቀ∑ ఒℊ

ೖ
ℊ ൫ି ୪ ൫ଵିℊ

ೝ൯൯
೨

ቁ

ଵ
௰

ೝ

,
ඨ

1 − 𝑒
ିቀ∑ ఒℊ

ೖ
ℊ ൫ି ୪ ൫ଵିℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

ೝ

⎦
⎥
⎥
⎥
⎤

𝑒
ିቀ∑ ఒℊ

ೖ
ℊ ൫ି ୪୬൫ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀ∑ ఒℊ

ೖ
ℊ ൫ି ୪୬൫ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰



𝑒
ିቀ∑ ఒℊ

ೖ
ℊ ൫ି ୪୬൫௩ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀ∑ ఒℊ

ೖ
ℊ ൫ି ୪୬൫௩ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰



⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⊕ 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎡
ඨ

1 − 𝑒
ିቀఒೖశభ൫ି ୪୬൫ଵିೖశభ

ೝ ൯൯
೨

ቁ

ଵ
௰

ೝ

,

ඨ
1 − 𝑒

ିቀఒೖశభ൫ି ୪୬൫ଵିೖశభ
ೠೝ ൯൯

೨
ቁ

ଵ
௰

ೝ

⎦
⎥
⎥
⎥
⎥
⎤

𝑒
ିቀఒೖశభ൫ି ୪୬൫ೖశభ

ೝ ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀఒೖశభ൫ି ୪୬൫ೖశభ

ೠೝ ൯൯
೨

ቁ

ଵ
௰



𝑒
ିቀఒೖశభ൫ି ୪୬൫௩ೖశభ

ೝ ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀఒೖశభ൫ି ୪୬൫௩ೖశభ

ೠೝ ൯൯
೨

ቁ

ଵ
௰



⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡
ඨ

1 − 𝑒
ିቀ∑ ఒℊ

ೖశభ
ℊ ൫ି ୪୬൫ଵିℊ

ೝ൯൯
೨

ቁ

ଵ
௰

ೝ

,
ඨ

1 − 𝑒
ିቀ∑ ఒℊ

ೖశభ
ℊ ൫ି ୪୬൫ଵିℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

ೝ

⎦
⎥
⎥
⎥
⎤

,

𝑒
ିቀ∑ ఒℊ

ೖశభ
ℊ ൫ି ୪୬൫ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀ∑ ఒℊ

ೖశభ
ℊ ൫ି ୪୬൫ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

 , 𝑒
ିቀ∑ ఒℊ

ೖశమ
ℊ ൫ି ୪୬൫௩ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀ∑ ఒℊ

ೖశమ
ℊ ൫ି ୪୬൫௩ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰



⎠

⎟
⎟
⎟
⎟
⎞

 

which is again an IVTSFV. So, the proof is finished. 
Every AO has certain fundamental characteristics, such as boundedness, 
monotonicity, and idempotency. We demonstrate the IVTSFAAWA operator’s 
idempotency, boundedness, and monotonicity in Theorems 3 and 5, respectively, in 
the following.  

Theorem 3. (Idempotency) let 𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧) be the set of IVTSFVs 

such that 𝑇ℊ = 𝑇 and 𝜆 be the weight vector. Then 𝐼𝑉𝑇𝑆𝐹𝐴𝐴𝑊𝐴(𝑇ଵ, 𝑇ଶ, . . . 𝑇) = 𝑇. 

Proof of Theorem 3. Since 𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧) = 𝑇 we can acquire 
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IVTSFAAWA(𝑇ଵ, 𝑇ଶ, . . . 𝑇)

=

⎝

⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡
ඨ

1 − 𝑒
ିቀ൫ି ൫ଵିℊ

ೝ൯൯
೨

ቁ

ଵ
௰

ೝ

,
ඨ

1 − 𝑒
ିቀ൫ି  ൫ଵିℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

ೝ

⎦
⎥
⎥
⎥
⎤

,

𝑒
ିቀ൫ି ൫ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀ൫ି  ൫ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

 , 𝑒
ିቀ൫ି ൫௩ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀ൫ି ൫௩ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰



⎠

⎟
⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡
ඨ

1 − 𝑒
ିቀ൫ି ୪୬൫ଵିℊ

ೝ൯൯
೨

ቁ

ଵ
௰

ೝ

,
ඨ

1 − 𝑒
ିቀ൫ି ୪୬൫ଵିℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

ೝ

⎦
⎥
⎥
⎥
⎤

,

𝑒
ିቀ൫ି ୪୬൫ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀ൫ି ୪ ൫ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

 , 𝑒
ିቀ൫ି ୪୬൫௩ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀ൫ି ୪ ൫௩ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰



⎠

⎟
⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎛ 

ට
1 − 𝑒

ିቀ൫ି ୪୬൫ଵିℊ
ೝ൯൯

೨
ቁ

భ

೨
ೝ

,
ට

1 − 𝑒
ିቀ൫ି ୪୬൫ଵିℊ

ೠೝ൯൯
೨

ቁ

భ

೨
ೝ



𝑒
ିቀ൫ି ୪୬൫ℊ

ೝ൯൯
೨

ቁ

భ

೨

, 𝑒
ିቀ൫ି ୪ ൫ℊ

ೠೝ൯൯
೨

ቁ

భ

೨

 , 𝑒
ିቀ൫ି ୪ ൫௩ℊ

ೝ൯൯
೨

ቁ

భ

೨

, 𝑒
ିቀ൫ି ୪୬൫௩ℊ

ೠೝ൯൯
೨

ቁ

భ

೨



⎠

⎟
⎟
⎟
⎞

=

𝑇  
Because of this, the proof is finalized.  

Theorem 4. (Boundedness): Let  𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧) be the set of 

IVTSFVs. Let 𝑇ି = 𝑚𝑖𝑛൛𝑇ℊൟ  and 𝑇ା = 𝑚𝑎𝑥൛𝑇ℊൟ . Then 𝑇ି ≤

𝐼𝑉𝑇𝑆𝐹𝐴𝐴𝑊𝐴(𝑇ଵ, 𝑇ଶ, … , 𝑇) ≤ 𝑇ା. 

Proof of Theorem 4. Let 𝑇ି = 𝑚𝑖𝑛൛𝑇ℊൟ and 𝑇ା = 𝑚𝑎𝑥൛𝑇ℊൟ be the smallest and the 

greatest TSFVs respectively. Then we have 𝑐ℊ
ି = 𝑚𝑖𝑛൛𝑐ℊൟ, 𝑐ℊ

ା = 𝑚𝑎𝑥൛𝑐ℊൟ. Similarly, 

𝑒ℊ
ି = 𝑚𝑖𝑛൛𝑒ℊൟ, 𝑒ℊ

ା = 𝑚𝑎𝑥൛𝑒ℊൟ and 𝑣ℊ
ି = 𝑚𝑖𝑛൛𝑣ℊൟ, 𝑣ℊ

ା = 𝑚𝑎𝑥൛𝑣ℊൟ. Hence 

ට
1 − 𝑒

ିቀ∑ ఒℊ

ℊ ൫ି ୪୬൫ଵିℊషೝ

ೝ ൯൯
೨

ቁ

భ

೨
ೝ

≤
ට

1 − 𝑒
ିቀ∑ ఒℊ


ℊ ൫ି ୪୬൫ଵିℊ

ೝ൯൯
೨

ቁ

భ

೨
ೝ

≤

ට
1 − 𝑒

ିቀ∑ ఒℊ

ℊ ൫ି ୪୬൫ଵିℊశೝ

ೝ ൯൯
೨

ቁ

భ

೨
ೝ

. 

Similarly, 

ට
𝑒

ିቀ∑ ఒℊ

ℊ ൫ି ୪୬൫ℊషೝ

ೝ ൯൯
೨

ቁ

భ

೨
ೝ

≤
ට

𝑒
ିቀ∑ ఒℊ


ℊ ൫ି ୪୬൫ℊ

ೝ൯൯
೨

ቁ

భ

೨
ೝ

≤
ට

𝑒
ିቀ∑ ఒℊ


ℊ ൫ି ୪୬൫ℊశೝ

ೝ ൯൯
೨

ቁ

భ

೨
ೝ

. 
And 

ට
𝑒

ିቀ∑ ఒℊ

ℊ ൫ି ୪୬൫௩ℊషೝ

ೝ ൯൯
೨

ቁ

భ

೨
ೝ

≤
ට

𝑒
ିቀ∑ ఒℊ


ℊ ൫ି ୪୬൫௩ℊ

ೝ൯൯
೨

ቁ

భ

೨
ೝ

≤
ට

𝑒
ିቀ∑ ఒℊ


ℊ ൫ି ୪୬൫௩ℊశೝ

ೝ ൯൯
೨

ቁ

భ

೨
ೝ

. 
Similarly, the upper value of the interval is also provable. 
Therefore 

𝑇ି ≤ IVTSFAAWA(𝑇ଵ, 𝑇ଶ, . . . 𝑇) ≤ 𝑇ା.  
The monotonicity of the IVTSFAAWA operators is stated as follows. 

Theorem 5. Let 𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧)  and 𝑇ℊ
 =

(ൣ𝑐ℊ
 , 𝑐ℊ

൧, ൣ𝑒ℊ
, 𝑒ℊ

൧, ൣ𝑣ℊ
, 𝑣ℊ

൧) be two families of IVTSFVs. If 𝑇ℊ ≤ 𝑇ℊ
 for all. Then 
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IVTSFAAWA(𝑇ଵ, 𝑇ଶ, … , 𝑇) ≤ IVTSFAAWA(𝑇ଵ
, 𝑇ଶ

 , … , 𝑇
). 

The IVTSFAAOWA operator is now developed as follows. 

Definition 7. Let 𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧)  be a set of IVTSFVs. An 

IVTSFAAOWA operator of dimension 𝑛 is a function 𝐼𝑉𝑇𝑆𝐹𝐴𝐴𝑂𝑊𝐴: 𝑇 → 𝑇 such 
that 

IVTSFAAOWA(𝑇ଵ, 𝑇ଶ, . . . . 𝑇) = ⨁
ℊୀଵ



൫𝜆ℊ𝑇, 𝕌(ℊ)൯. 

where ൫𝕌(1), 𝕌(2), . . . . 𝕌(𝑛)൯ are the permutations of such that 𝕌(𝑛 − 1) ≥ 𝕌(1). 

In Theorems 6–8, we give the IVTSFAAOWA operator’s fundamental 
characteristics. 

Theorem 6. (Idempotency) let 𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧) be the collection of 

IVTSFVs such that 𝑇ℊ = 𝑇. Then, 𝐼𝑉𝑇𝑆𝐹𝐴𝐴𝑂𝑊𝐴(𝑇ଵ, 𝑇ଶ, . . . . 𝑇) = 𝑇. 

Theorem 7. (Boundedness) let 𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧)  be the set of 

IVTSFVs and 𝑇ି = 𝑚𝑖𝑛൛𝑇ℊൟ  and 𝑇ା = 𝑚𝑎𝑥൛𝑇ℊൟ . Then 𝑇ି ≤

𝐼𝑉𝑇𝑆𝐹𝐴𝐴𝑊𝐴(𝑇ଵ, 𝑇ଶ, … , 𝑇) ≤ 𝑇ା. 

Theorem 8. (Monotonicity) let 𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧)  and 𝑇ℊ
 =

(ൣ𝑐ℊ
 , 𝑐ℊ

൧, ൣ𝑒ℊ
, 𝑒ℊ

൧, ൣ𝑣ℊ
, 𝑣ℊ

൧) be the two sets of IVTSFVs and if 𝑇ℊ ≤ 𝑇ℊ
 for all ℊ. Then 

IVTSFAAWA(𝑇ଵ, 𝑇ଶ, … , 𝑇) ≤ IVTSFAAWA(𝑇ଵ
, 𝑇ଶ

 , … , 𝑇
). 

Definitions 5 and 7 make it very obvious that, respectively, the IVTSFAAWA 
and IVTSFAAOWA operators aggregate IVTSFVs by merely weighting them and by 
doing so in an ordered manner. Weights so display the various aspects for both 
IVTSFAAWA and IVTSFAAOWA operators. No operator addresses this 
shortcoming. In order to address the issue, we will define the IVTSFAAHWA operator 
in the following manner: 

Definition 8. Let  𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧)  be the set of IVTSFVs. An 

IVTSFAAHWA operator of dimension is a mapping 𝐼𝑉𝑇𝑆𝐹𝐴𝐴𝐻𝑊𝐴: 𝑇 → 𝑇 defined 
as 

IVTSFAAHWA(𝑇ଵ, 𝑇ଶ, … , 𝑇) = ⨁
ℊୀଵ



൫𝜆ℊ𝛤, 𝕌(ℊ)൯. 

where Γℊ = 𝑘𝜆ℊ𝑇ℊ  the permutation I weighted IVTSFVs are represented by 

൫Γ𝕌(ଵ), Γ𝕌(ଶ), … , Γ𝕌()൯, and 𝑘 is the essential balance coefficient. 

The IVTSFAAHWA operator shares many of the same characteristics as the 
IVTSFAAWA operator that we covered in Theorems 2–5. Nonetheless, according to 
Theorem 9, the IVTSFAAHWA operator is superior to the IVTSFAAOWA operator. 
Theorem 9. The developed IVTSFAAHWA operator is a generalization of the 
IVTSFAAWA and IVTSFAAOWA operators. 

Proof of Theorem 9. Let 𝜆 = ቀ
ଵ


,

ଵ


, … ,

ଵ

ఒ
ቁ. By Definition 8, we have 

IVTSFAAHWA(𝑇ଵ, 𝑇ଶ, … , 𝑇) = 𝜆ଵ𝛤𝕌(ଵ) ⊕ 𝜆ଶ𝛤𝕌(ଶ), … ,⊕ 𝜆𝛤𝕌()) =
ଵ


൫𝛤𝕌(ଵ) ⊕ 𝛤𝕌(ଶ), … ,⊕ 𝛤𝕌()൯ = 𝜆ଵ𝑇ଵ ⊕ 𝜆ଶ.  

We can also demonstrate that IVTSFAAOWA is a unique instance of 
IVTSFAAHWA. 
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5. The proposed geometric AOS 

In this part, we define the IVTSFAAWG, IVTSFAAOWG, and IVTSFAAHWG 
operators and observe some of their fundamental characteristics. 

Definition 9. Let 𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧) be a collection of IVTSFVs and 𝜆 

be the weight vector. Then, an IVTSFAAWG operator is a function 

𝐼𝑉𝑇𝑆𝐹𝐴𝐴𝑊𝐺: 𝑇 → 𝑇 such that 

IVTSFAAWG(𝑇ଵ, 𝑇ଶ, … , 𝑇) = ⨂
ℊୀଵ



 ቀ𝑇ℊ

ఒℊቁ. 

Theorem 8 states that the aggregate value of any number of IVTSFVs is also an 
IVTSFV, and the following Theorem 10 states that this is true using the procedures 
described above and Definition 9. 

Theorem 10. Let 𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧)  be the set of IVTSFVs. 

Consequently, the value that the IVTSFAAWG operator obtained after aggregate is 
also an IVTSFV, and 

IVTSFAAWG(𝑇ଵ, 𝑇ଶ, … , 𝑇) = ⨂
ℊୀଵ



 ቀ𝑇ℊ

ఒℊቁ 

IVTSFAAWG(𝑇ଵ, 𝑇ଶ, . . . , 𝑇) =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ 𝑒

ିቀ∑ ఒℊ

ℊ ൫ି ൫ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

, 𝑒
ିቀ∑ ఒℊ


ℊ ൫ି ൫ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰



⎣
⎢
⎢
⎢
⎡
ඨ

1 − 𝑒
ିቀ∑ ఒℊ


ℊ ൫ି  ൫ଵିℊ

ೝ൯൯
೨

ቁ

ଵ
௰

ೝ

,
ඨ

1 − 𝑒
ିቀ∑ ఒℊ


ℊ ൫ି ൫ଵିℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

ೝ

⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡

ඨ
1 − 𝑒

ିቀ∑ ఒℊ

ℊ ൫ି ൫ଵି௩ℊ

ೝ൯൯
೨

ቁ

ଵ
௰

ೝ

,
ඨ

1 − 𝑒
ିቀ∑ ఒℊ


ℊ ൫ି ൫ଵି௩ℊ

ೠೝ൯൯
೨

ቁ

ଵ
௰

ೝ

⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

. (6) 

The IVTSFAAWG operator’s idempotency, monotonicity, and boundedness are 
then stated. 

Theorem 11. (Idempotency) let 𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧)  be the set of 

IVTSFVs such that 𝑇ℊ = 𝑇. Then 

IVTSFAAWG(𝑇ଵ, 𝑇ଶ, … , 𝑇) = ⨂
ℊୀଵ



 ቀ𝑇ℊ

ఒℊቁ = 𝑇. 

Theorem 12. (Boundedness) let 𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧)  be the set of 

IVTSFVs. Let 𝑇ି = 𝑚𝑖𝑛൛𝑇ℊൟ𝑇ା = 𝑚𝑎𝑥൛𝑇ℊൟ. Then 

𝑇ି ≤ IVTSFAAWA(𝑇ଵ, 𝑇ଶ, … , 𝑇) ≤ 𝑇ା. 

Theorem 13. (Monotonicity) let 𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧)  and 𝑇ℊ
 =

(ൣ𝑐ℊ
 , 𝑐ℊ

൧, ൣ𝑒ℊ
, 𝑒ℊ

൧, ൣ𝑣ℊ
, 𝑣ℊ

൧) be two sets of IVTSFVs and 𝑇ℊ ≤ 𝑇ℊ
 for all ℊ. Then 

IVTSFAAWG(𝑇ଵ, 𝑇ଶ, … , 𝑇) ≤ 𝐼𝑉𝑇𝑆𝐹𝐴𝐴𝑊𝐺(𝑇ଵ
, 𝑇ଶ

 , … , 𝑇
). 

The IVTSFAAOWG operator is generated as follows. 

Definition 10. Let  𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧)  be the set of IVTSFVs, an 

IVTSFAAOWA operator of dimension 𝑛 is a function 𝐼𝑉𝑇𝑆𝐹𝐴𝐴𝑊𝐺: 𝑇 → 𝑇 such that 

IVTSFAAOWG(𝑇ଵ, 𝑇ଶ, … , 𝑇) = ⨂
ℊୀଵ



 ቀ𝑇
𝕌(ℊ)

ఒℊ ቁ. 
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where (𝕌(1), 𝕌(2), … , 𝕌(𝑛))  are the permutations of (ℊ = 1, 2, 3, … , 𝑛)  such 

that 𝕌(𝑛 − 1) ≥ 𝕌(1). 
Next, we discuss the fundamental characteristics of the IVTSFAAOWG operator 

in Theorems 14–16. 

Theorem 14. (Idempotency) let  𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧)  be the set of 

IVTSFVs such that 𝑇ℊ = 𝑇. Then 

IVTSFAAOWG(𝑇ଵ, 𝑇ଶ, … , 𝑇) = ⨂
ℊୀଵ



 ቀ𝑇
𝕌(ℊ)

ఒℊ ቁ = 𝑇. 

Theorem 15. (Boundedness) let 𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧)  be the set of 

IVTSFVs. Let 𝑇ି = 𝑚𝑖𝑛൛𝑇ℊൟ𝑇ା = 𝑚𝑎𝑥൛𝑇ℊൟ. Then 

𝑇ି ≤ IVTSFAAOWG(𝑇ଵ, 𝑇ଶ, … , 𝑇) ≤ 𝑇ା. 

Theorem 16. (Monotonicity) let 𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧)  and 𝑇ℊ
 =

(ൣ𝑐ℊ
 , 𝑐ℊ

൧, ൣ𝑒ℊ
, 𝑒ℊ

൧, ൣ𝑣ℊ
, 𝑣ℊ

൧) be two sets of IVTSFVs and 𝑇ℊ ≤ 𝑇ℊ
 for all ℊ. Then 

IVTSFAAOWG(𝑇ଵ, 𝑇ଶ, … , 𝑇) ≤ IVTSFAAOWG(𝑇ଵ
, 𝑇ଶ

, … , 𝑇
). 

Similar to Definition 8, we describe the IVTSFAAHG operator for the aggregate 
of weighted IVTSFVs. 

Definition 11. Let  𝑇ℊ = (ൣ𝑐ℊ
 , 𝑐ℊ

௨൧, ൣ𝑒ℊ
 , 𝑒ℊ

௨൧, ൣ𝑣ℊ
 , 𝑣ℊ

௨൧)  be the set of IVTSFVs, an 

IVTSFAAHWG operator of dimension n is a mapping 𝐼𝑉𝑇𝑆𝐹𝐴𝐴𝐻𝑊𝐺: 𝑇 → 𝑇 such 
that 

IVTSFAAHWG(𝑇ଵ, 𝑇ଶ, . . . . 𝑇) = ⨂
ℊୀଵ



 ቀ𝑇
𝕌(ℊ)

ఒℊ ቁ. 

where Γℊ = 𝑘𝜆ℊ𝑇ℊ for ℊ =  1, 2, 3, … , 𝑛. The permutation of the weights of IVTSFVs 

are represented by ൫Γ𝕌(ଵ), Γ𝕌(ଶ), … , Γ𝕌()൯, and 𝑘 is the essential balance coefficient. 

6. Application of proposed AOS 

With the use of IVTSF data, we will construct a methodology in this part to apply 
the suggested operators in MAGDM and resolve a numerical example. We also 
examine how parameter variation affects behavior, and we contrast the suggested work 
with earlier methods already in use. 

Let 𝐹 = ൛𝑓ଵ, 𝑓ଶ, … , 𝑓ൟ  represent 𝑗  selection possibilities, 𝑌 = ൛𝑦ଵ, 𝑦ଶ, … , 𝑦ൟ 

represent 𝑗 attributes with weight vector, and 𝑄  represents 𝑘 decision-makers with 

weight vector  𝑤  possessing the same criteria as mentioned before. The IVTSF 

information matrix should take the form 𝐼 = (𝑠)× , where 𝑠 is the value of an 

attribute 𝑦  that the decision-maker assigns for the alternative 𝑓  in the form of 

IVTSFV, i.e., 𝑠 = (ൣ𝑐
 , 𝑐

௨൧, ൣ𝑒
 , 𝑒

௨൧, ൣ𝑣
 , 𝑣

௨൧) indicates the alternative’s evaluation 

value, where 0 ≤ 𝑐
௨ + 𝑒

௨ + 𝑣
௨ ≤ 1. 

There are two types of criteria in MAGDM. The cost attribute is one of them, 
while the benefit attribute is the other. By taking its complements, we should change 

the values of cost attributes into benefit attribute values. Therefore, we get  𝐼 =

[𝐵]× such that 

𝐵 = ൜
𝑠   for benefit attribute
(𝑠)   for cost attribute

 

Then, using the suggested IVTSFAAWA/IVTSFAAWG operator, we may apply 
the proposed technique to MADM as shown in the subsequent steps: 
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Step 1: Investigate the IVTSFV for the value of parameter 𝑟. Consider the 𝑟 

integers for which 0 ≤ 𝑐
௨ + 𝑒

௨ + 𝑣
௨ ≤ 1. 

Step 2: On the given IVTSF decision information, the 
IVTSFAAWA/IVTSFAAWG operator is applied to find the aggregated values of each 
attribute individually. 

Step 3: Apply the IVTSFAAWA/IVTSFAAWG operator again to aggregate the 
obtained values of the individually aggregated attributes collectively. 

Step 4: To rank the possibilities, use the score function described in Definition 3. 
Step 5: Choose the most suitable option. 
Figure 1 shows the flowchart, which is helpful to understand the stepwise 

methodology in the following. 

 

Figure 1. The stepwise method of MAGDM based on the IVTSF information. 

Figure 1 shows the stepwise methodology of the MAGDM process. According 

to Figure 1, the first step is to investigate the information for the value of 𝑟. Secondly, 
we apply IVTSFAAWA/IVTSFAAWG operator to aggregate the attribute 
individually. In the third step, we aggregate the attributes collectively. Then we find 
the score values of the alternatives, and then we find the ranking of the alternatives 
finally. In the following, the example 1 describes the stepwise application of the 
MAGDM process. 
Example 1. An investment company wants to rank its projects and assess their 

success. To conduct the evaluation, they assemble a 𝐹 = (1, 2, 3) team of specialists. 

According to the weights 𝑤 = (0.2, 0.1, 0.7)௧  are given to the designation by the 
experts. The specialists assess the performance using a few performance metrics 

(attributes), including (1) rate of return denoted by 𝒞ଵ, (2) time to completion denoted 

by 𝒞ଶ, (3) total cost of investment denoted by 𝒞ଷ, and (4) client feedback 𝒞ସ. These 

qualities are given the following weights 𝑤 = (0.2, 0.1, 0.35, 0.25)௧  only four 

projects 𝑎ℊ = (ℊ = 1, 2, 3, 4) are selected for the next round of examination.  

The following Tables 1–3 present the decision matrices offered by experts. 
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Table 1. Decision matrix from expert I. 

 𝒂𝟏 𝒂𝟐 

 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 

𝓒𝟏 0.46 0.6 0.4 0.7 0.3 0.8 0.2 0.8 0.24 0.48 0.29 0.52 

𝓒𝟐 0.4 0.7 0.34 0.9 0.48 0.6 0.3 0.46 0.45 0.9 0.39 0.76 

𝓒𝟑 0.55 0.6 0.54 0.61 0.5 0.65 0.33 0.59 0.34 0.76 0.49 0.65 

𝓒𝟒 0.65 0.73 0.6 0.65 0.34 0.76 0.37 0.7 0.11 0.78 0.44 0.66 

 𝒂𝟑 𝒂𝟒 

 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 

𝓒𝟏 0.1 0.6 0.33 0.4 0.34 0.4 0.34 0.46 0.3 0.45 0.32 0.64 

𝓒𝟐 0.2 0.5 0.54 0.6 0.24 0.29 0.24 0.64 0.34 0.64 0.42 0.67 

𝓒𝟑 0.3 0.4 0.23 0.36 0.5 0.67 0.53 0.7 0.54 0.75 0.53 0.75 

𝓒𝟒 0.4 0.7 0.54 0.6 0.45 0.7 0.53 0.6 0.64 0.84 0.35 0.74 

Table 2. Decision matrix from expert II. 

 𝒂𝟏 𝒂𝟐 

 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 

𝓒𝟏 0.46 0.53 0.21 0.8 0.76 0.78 0.5 0.56 0.42 0.7 0.3 0.87 

𝓒𝟐 0.34 0.66 0.7 0.85 0.76 0.88 0.46 0.61 0.29 0.9 0.1 0.33 

𝓒𝟑 0.45 0.59 0.43 0.59 0.43 0.55 0.32 0.4 0.51 0.65 0.9 0.91 

 𝑐  𝑐௨ 𝑒 𝑒௨ 𝑣 𝑣௨ 𝑐  𝑐௨ 𝑒 𝑒௨ 𝑣 𝑣௨ 

𝓒𝟒 0.44 0.5 0.48 0.57 0.21 0.9 0.55 0.79 0.58 0.76 0.34 0.44 

 𝒂𝟑 𝒂𝟒 

 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 

𝓒𝟏 0.55 0.6 0.34 0.55 0.5 0.67 0.5 0.67 0.32 0.37 0.5 0.57 

𝓒𝟐 0.6 0.71 0.34 0.6 0.35 0.64 0.35 0.64 0.52 0.74 0.24 0.53 

𝓒𝟑 0.15 0.25 0.65 0.71 0.32 0.53 0.32 0.53 0.24 0.73 0.4 0.47 

𝓒𝟒 0.26 0.76 0.35 0.43 0.42 0.53 0.42 0.53 0.26 0.74 0.5 0.57 

Table 3. Decision matrix from expert III. 

 𝒂𝟏 𝒂𝟐 

 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 

𝓒𝟏 0.3 0.49 0.56 0.65 0.12 0.24 0.6 0.77 0.6 0.67 0.57 0.6 

𝓒𝟐 0.53 0.65 0.62 0.78 0.33 0.5 0.32 0.36 0.3 0.68 0.45 0.55 

𝓒𝟑 0.29 0.9 0.67 0.75 0.44 0.49 0.54 0.69 0.2 0.5 0.64 0.7 

𝓒𝟒 0.37 0.56 0.22 0.9 0.32 0.66 0.66 0.9 0.35 0.6 0.22 0.39 

 𝒂𝟑 𝒂𝟒 

 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 

𝓒𝟏 0.55 0.6 0.34 0.55 0.5 0.67 0.5 0.67 0.32 0.37 0.5 0.57 

𝓒𝟐 0.6 0.71 0.34 0.6 0.35 0.64 0.35 0.64 0.52 0.74 0.24 0.53 

𝓒𝟑 0.15 0.25 0.65 0.71 0.32 0.53 0.32 0.53 0.24 0.73 0.4 0.47 

𝓒𝟒 0.26 0.76 0.35 0.43 0.42 0.53 0.42 0.53 0.26 0.74 0.5 0.57 
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6.1. IVTSFAAWA operator 

In this sub-section, we will do MAGDM with the help of the IVTSFAAWA 
operator. 

Step 1: Look at the 𝑟 parameter’s value for IVTSF information. Consider the 𝑟 

integers for which 0 ≤ 𝑐
 + 𝑒

 + 𝑣
 ≤ 1 which is 3 here. 

Step 2: On the IVTSF decision information, when the total IVTSF preference 

values are 𝐵 and 𝐵ᇱ
 = ([𝑐

ᇱ , 𝑐
ᇱ ], [𝑒

ᇱ , 𝑒
ᇱ ], [𝑣

ᇱ , 𝑣
ᇱ ]), use the IVTSFAAWA operator 

as provided in Table 4 in the following. 

Table 4. Individual preference values by IVTSFAAWA. 

 𝒂𝟏 𝒂𝟐 

 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 

𝓒𝟏 0.3 0.49 0.56 0.65 0.12 0.24 0.6 0.77 0.6 0.67 0.57 0.6 

𝓒𝟐 0.53 0.65 0.62 0.78 0.33 0.5 0.32 0.36 0.3 0.68 0.45 0.55 

𝓒𝟑 0.29 0.9 0.67 0.75 0.44 0.49 0.54 0.69 0.2 0.5 0.64 0.7 

𝓒𝟒 0.37 0.56 0.22 0.9 0.32 0.66 0.66 0.9 0.35 0.6 0.22 0.39 

 𝒂𝟑 𝒂𝟒 

 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 

𝓒𝟏 0.55 0.6 0.34 0.55 0.5 0.67 0.5 0.67 0.32 0.37 0.5 0.57 

𝓒𝟐 0.6 0.71 0.34 0.6 0.35 0.64 0.35 0.64 0.52 0.74 0.24 0.53 

𝓒𝟑 0.15 0.25 0.65 0.71 0.32 0.53 0.32 0.53 0.24 0.73 0.4 0.47 

𝓒𝟒 0.26 0.76 0.35 0.43 0.42 0.53 0.42 0.53 0.26 0.74 0.5 0.57 

Table 4 shows the aggregated values of information provided in Tables 1–3 with 
the IVTSFAAWA operator. 

Step 3: To derive the total preference values, all preference values are combined. 
Table 5 shows the aggregated values of the attributes collectively with the help 

of the IVTSFAAWA operator 

Table 5. Collective preference values by IVTSFAAWA. 

 𝒂𝟏 𝒂𝟐 

 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 

𝓒𝟏 0.5145 0.7866 0.3566 0.6186 0.3694 0.6887 0.4515 0.6877 0.3307 0.5984 0.2770 0.5388 

 𝒂𝟑 𝒂𝟒 

 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 

𝓒𝟏 0.5494 0.6619 0.3905 0.5025 0.3761 0.5131 0.491 0.6816 0.3672 0.5634 0.372 0.6076 

Step 4: To rank the possibilities, use the score function described in Definition 3. 

𝑠𝑐(𝑎ଵ) = 0.33568 , 𝑠𝑐(𝑎ଶ) = 0.291432 , 𝑠𝑐(𝑎ଷ) = 0.361207  and 𝑠𝑐(𝑎ସ) =

0.295855 
Step 5: Choose the most suitable option. 

Since, sc(aଷ) > 𝑠𝑐(aଵ) > 𝑠𝑐(aସ) > 𝑠𝑐(aଶ) , 𝑎ଷ ≻ 𝑎ଵ ≻ 𝑎ସ ≻ 𝑎ଶ , where “ ≻ ” 

denotes superior to. Thus 𝑎ସ is the best alternative. 
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Hence, by using the IVTSFAAWA operator, we ranked the project success and 

found that the project 𝑎ଷ  is the most successful project. Now, we rank the project 
success by using the IVTSFAAWG operator. 

6.2. IVTSFAAWG operator 

In this sub-section, we will do decision-making with the help of the 
IVTSFAAWG operator. 

Step 1: Look at the 𝑟 parameter’s value for IVTSF information. Consider the 𝑟 

integers for which 0 ≤ 𝑐
 + 𝑒

 + 𝑣
 ≤ 1 which is 3 here. 

Step 2: On the IVTSF decision information, when the total IVTSF preference 

values are 𝐵 and 𝐵ᇱ
 = ([𝑐

ᇱ , 𝑐
ᇱ ], [𝑒

ᇱ , 𝑒
ᇱ ], [𝑣

ᇱ , 𝑣
ᇱ ]), use the IVTSFAAWG operator 

such that given in Table 6. 

Table 6. Individual preference values by IVTSFAAWG. 

 𝒂𝟏 𝒂𝟐 

 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 

𝓒𝟏 0.7575 0.3443 0.6521 0.5490 0.6684 0.5195 0.6 0.77 0.6 0.5666 0.6476 0.5237 

𝓒𝟐 0.8215 0.3463 0.433 0.3905 0.8748 0.4148 0.6763 0.3408 0.566 0.4707 0.5763 0.4920 

𝓒𝟑 0.585 0.3739 0.5023 0.4577 0.6876 0.845 0.8582 0.2408 0.351 0.5918 0.6514 0.4479 

𝓒𝟒 0.8486 0.494 0.7756 0.5220 0.7398 0.3843 0.5791 0.3516 0.6789 0.469 0.53690 0.41330 

 𝒂𝟑 𝒂𝟒 

 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 

𝓒𝟏 0.6383 0.376 0.4606 0.4620 0.5385 0.6791 0.8160 0.7575 0.3443 0.6521 0.5490 0.6684 

𝓒𝟐 0.6843 0.2844 0.599 0.3251 0.579 0.3758 0.6330 0.8215 0.3463 0.433 0.3905 0.8748 

𝓒𝟑 0.5954 0.3050 0.6068 0.4715 0.6689 0.5201 0.717 0.5850 0.3739 0.5023 0.4577 0.6876 

𝓒𝟒 0.6207 0.3652 0.6899 0.6226 0.7714 0.6226 0.7217 0.8486 0.4945 0.7756 0.5220 0.7398 

Table 6 shows the aggregated values of the attributes provided in Tables 1–3 
with the help of the IVTSFAAWG operator. 

Step 3: To derive the total preference values, all preference values are combined. 
Table 7 shows the aggregated values of attributes collectively with the help of 

the IVTSFAAWG operator. 

Table 7. Collective preference values by IVTSFAAWG. 

 𝒂𝟏 𝒂𝟐 

 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 

𝓒𝟏 0.5839 0.6010 0.8148 0.6456 0.7980 0.3780 0.5363 0.5068 0.7940 0.7750 0.7750 0.2672 

 𝒂𝟑 𝒂𝟒 

 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 𝒄𝒍 𝒄𝒖 𝒆𝒍 𝒆𝒖 𝒗𝒍 𝒗𝒖 

𝓒𝟏 0.4545 0.5541 0.6238 0.4825 0.6384 0.3271 0.5604 0.5476 0.6989 0.617 0.7560 0.5839 

Step 4: To rank the possibilities, use the score function described in Definition 3. 

𝑠𝑐(𝑎ଵ) = 0.008402732, 𝑠𝑐(𝑎ଶ) = 0.0270360614 , 𝑠𝑐(𝑎ଷ) = 0.0603637788 

and 𝑠𝑐(𝑎ସ) = 0.060868. 
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Step 5: Choose the most suitable option. 

Since, sc(𝑎ସ) > 𝑠𝑐(𝑎ଷ) > 𝑠𝑐(𝑎ଶ) > 𝑠𝑐(𝑎ଵ), 𝑎ସ ≻ 𝑎ଷ ≻ 𝑎ଶ ≻ 𝑎ଵ ≻, where “≻” 

denotes superior to. Thus, 𝑎ସ is the best alternative. 
It is noticeable that the score values produced above show the order in which all 

alternatives are ranked. By using the IVTSFAAWA and IVTSFAAWG operators, we 

determine that the alternatives 𝑎ଷ and 𝑎ସ are the best alternatives among the projects 
that were shortlisted. Additionally, we see that whereas the IVTSFAAWG operator is 
based on the geometric average, the IVTSFAAWA operator is based on the arithmetic 
mean and provides the average of group judgment. To test the applicability of these 
two AOs, we apply them. The IVTSFAAOWA (IVTSFAAOWG) and IVTSFAAHA 
(IVTSFAAHG) operators can also be used to obtain the corresponding findings. When 
the sequence of the information or its weight is significant, these four different types 
of operators stand out. 

We shall discuss the implications of the parameters 𝛤  and 𝑟 on the described 
operations in the subsection that follows. 

6.3. Impact of parameter 𝜞 

In our numerical example, the parameter 𝛤’s value is 3, as can be seen. The values 

of parameter 𝛤 can, however, be changed by the decision-maker. By modifying the 

value of 𝛤, the hierarchy of the options can be modified. The following section shows 
how the IVTSFAAWA and IVTSFAAWG operators, as given in Table 8, show the 
ranking order of the alternatives. 

Table 8. Variation of ranking in IVTSFAAWA and IVTSFAAWG with 𝛤. 

𝜞 IVTSFAAWA IVTSFAAWG 

3 𝑎ଶ ≻ 𝑎ଵ ≻ 𝑎ଷ ≻ 𝑎ସ 𝑎ସ ≻ 𝑎ଷ ≻ 𝑎ଶ ≻ 𝑎ଵ 

5 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ଷ ≻ 𝑎ସ ≻ 𝑎ଵ ≻ 𝑎ଶ 

7 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ଷ ≻ 𝑎ସ ≻ 𝑎ଵ ≻ 𝑎ଶ 

9 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ଷ ≻ 𝑎ସ ≻ 𝑎ଵ ≻ 𝑎ଶ 

11 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ଷ ≻ 𝑎ସ ≻ 𝑎ଵ ≻ 𝑎ଶ 

21 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ଷ ≻ 𝑎ସ ≻ 𝑎ଵ ≻ 𝑎ଶ 

25 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ଷ ≻ 𝑎ସ ≻ 𝑎ଵ ≻ 𝑎ଶ 

35 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ଷ ≻ 𝑎ସ ≻ 𝑎ଵ ≻ 𝑎ଶ 

41 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ଷ ≻ 𝑎ସ ≻ 𝑎ଵ ≻ 𝑎ଶ 

45 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ଷ ≻ 𝑎ସ ≻ 𝑎ଵ ≻ 𝑎ଶ 

49 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ଷ ≻ 𝑎ସ ≻ 𝑎ଵ ≻ 𝑎ଶ 

51 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ଷ ≻ 𝑎ସ ≻ 𝑎ଵ ≻ 𝑎ଶ 

Table 8 shows the ranking positions of the alternatives according to parameter 𝛤 
obtained by the IVTSFAAWA and IVTSFAAAWG operators. Be aware that the 

IVTSFAAWA operator selects 𝑎ଷ  as the best option when 𝛤 = 3. However, if we 

increase the value of the parameter  𝛤  to be more than  3 , the best option is  𝑎ଷ . 

Until 𝛤 = 51, we keep track of the ranking order. After 𝛤 = 3, the IVTSFAAWA 
operator produces identical results. It should be observed that the IVTSFAAWA fails 
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and does not produce the desired outcome when we use any even 𝛤. Therefore, we 
advise using any odd number higher than 3. Table 8 also displays the behavior of 

changing the values of  𝛤  to generate different ranking orders of alternatives and 

preference orders using the IVTSFAAWG operator. After 𝛤 = 3, we observe that the 

ranking of alternatives remains stable. The best alternative is 𝑎ସ, which is obtained 

when 𝛤 = 3. The best alternative is 𝑎ଷ, however, if we vary the amount of 𝛤 and use 𝛤 

bigger than 3, we still get the same optimal alternative when we use 𝛤 ≥ 5. It should 
be observed that the IVTSFAAWG operator fails and produces no results when we 

utilize an even 𝛤. As a result, we advise choosing an odd number of 𝛤 ≥ 5. We show 
the variance in ranking orders of options in Figure 2. 

 

Figure 2. Ranking of the IVTSFAAWA operator with the values of the parameter 𝛤. 

In Figure 2, we display how the IVTSFAAWA operator’s ranking orders of 

alternatives change as 𝛤 values are changed. Because the IVTSFAAWA operator does 

not produce results for even values of 𝛤, we plot the graph from 𝛤 = 3 to 𝛤 = 51 

without using any even 𝛤. 
Figure 2 shows the variation of the ranking results obtained at the different values 

of 𝛤 discussed above in Table 8. The interesting ranking can be observed in Figure 
2. Similarly, the ranking obtained by the IVTSFAAWG operator in Table 8 can be 
plotted graphically. 

Figure 3 shows the tendency of the ranking of the alternatives produced by the 
IVTSFAAWG operator as discussed in Table 8. Use the IVTSFAAWA operator in 
Table 9 to compare options. We explore the characteristics of the ranking trends of 

alternatives by adjusting the values of 𝑟 in the IVTSFAAWG operator. This is the 
same as how the IVTSFAAWA operator lets its output results change. 

 

Figure 3. Ranking of the IVTSFAAWG operator with the values of the parameter Γ. 
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Table 9. Variation of ranking in IVTSFAAWA and IVTSFAAWG with 𝑟. 

𝒓 IVTSFAAWA IVTSFAAWG 

3 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ ≻ 𝑎ଵ 𝑎ସ ≻ 𝑎ଶ ≻ 𝑎ଷ ≻ 𝑎ଵ 

4 𝑎ଶ ≻ 𝑎ଵ ≻ 𝑎ଷ ≻ 𝑎ସ 𝑎ସ ≻ 𝑎ଷ ≻ 𝑎ଶ ≻ 𝑎ଵ 

5 𝑎ଶ ≻ 𝑎ଵ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ସ ≻ 𝑎ଶ ≻ 𝑎ଷ ≻ 𝑎ଵ 

6 𝑎ଶ ≻ 𝑎ଵ ≻ 𝑎ଷ ≻ 𝑎ସ 𝑎ସ ≻ 𝑎ଶ ≻ 𝑎ଷ ≻ 𝑎ଵ 

7 𝑎ଶ ≻ 𝑎ଵ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ସ ≻ 𝑎ଶ ≻ 𝑎ଵ ≻ 𝑎ଷ 

8 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ସ ≻ 𝑎ଶ ≻ 𝑎ଵ ≻ 𝑎ଷ 

9 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ସ ≻ 𝑎ଶ ≻ 𝑎ଵ ≻ 𝑎ଷ 

10 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ସ ≻ 𝑎ଶ ≻ 𝑎ଵ ≻ 𝑎ଷ 

15 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ସ ≻ 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ଷ 

20 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ସ ≻ 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ଷ 

30 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ଵ ≻ 𝑎ସ ≻ 𝑎ଶ ≻ 𝑎ଷ 

50 𝑎ଵ ≻ 𝑎ଶ ≻ 𝑎ସ ≻ 𝑎ଷ 𝑎ଵ ≻ 𝑎ସ ≻ 𝑎ଶ ≻ 𝑎ଷ 

6.4. The impact of 𝒓 

The values of the parameter 𝑟 are changed in the next section, and the reordering 

of the options is observed. We utilize 𝑟 values ranging from 3 to 50, and for each 

number we achieve the same ordering of the options. 𝑎ସ remains the optimal solution 

for all values of 𝑟. Moreover, it should be noted that when 𝑟 is appreciably large, the 
score values of alternatives approach zero. We demonstrate several ranking order 

alternatives. Table 9 shows the effects of the parameter  𝑟  obtained by the 

IVTSFAAWA and IVTSFAAWG operators. We variated the values of the 𝑟 up to 51 
and obtained interesting results from both developed operators. 

6.5. Comparison with other operators 

Given that Ullah et al. [7] constructed AOs in an IVTSFS context employing 
“Hamacher TN and TCN” and explored potential implementation in the assessment of 
robot performance, Hussain et al. [40] proposed AOs IVTSFS adopting Frank TN and 
TCN. We compare the order in which the AOs were ranked with the operators we 
suggested for IVTSFAAWA and IVTSFAAWG. The IVTSFAAWA and 
IVTSFAAWG operators should be preferred given that the AATN and TCN are more 
flexible than the TN and TCN that were used in earlier AOs (Table 10). The following 
are some intriguing findings we’ve made: 
1) Each of the recommended operators in this article is based on two parameters 

known as 𝛤  and  𝑟 , and because of this, it is up to the decision-makers to 
determine what values these parameters should be given. 

2) By utilizing the (generic) IVTSF weighted average (IVTSFWA) AOs, we 

determine that 𝑎ଵ is the optimal alternative. Once the IVTSFDWA and 

IVTSFAAWA are applied. As a result, 𝑎ଷ is the finest choice. When we use 

IVTSFDWG and IVTSFWG operators, we obtain the optimal alternative 𝑎ଵ. 

3) Using the IVTSFAAWG AOs, we can produce 𝑎ସ, which is the best alternative. 
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Table 10. Comparison with other operators. 

IVTSFDWG 𝒂𝟏 ≻ 𝒂𝟒 ≻ 𝒂𝟐 ≻ 𝒂𝟑 

IVTSFWG 𝑎ଵ ≻ 𝑎ସ ≻ 𝑎ଷ ≻ 𝑎ଶ 

IVTSFAAWG 𝑎ସ ≻ 𝑎ଷ ≻ 𝑎ଶ ≻ 𝑎ଵ 

IVTSFDWA 𝑎ଷ ≻ 𝑎ସ ≻ 𝑎ଶ ≻ 𝑎ଵ 

IVTSFWA 𝑎ଵ ≻ 𝑎ସ ≻ 𝑎ଷ ≻ 𝑎ଶ 

IVTSFAAWA 𝑎ଷ ≻ 𝑎ଵ ≻ 𝑎ସ ≻ 𝑎ଶ 

Figures 4 and 5 depict the comparison between the score values achieved 
employing the AOs stated in this section. 

 

Figure 4. Displays the comparison between the developed IVTSFAAWG operator 
and traditional AOs. 

In Figure 4, the comparison of different geometric operators with existing is 
displayed graphically. We can observe the ranking of the alternatives in Figure 4. It 
is cleared that the ranking is linear in case of each operator. 

 

Figure 5. Displays the comparison between the developed IVTSFAAWA operator 
and existing AOs. 
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In Figure 5, the comparison of different geometric operators with existing is 
displayed graphically. We can observe the ranking of the alternatives in Figure 5. It 
is cleared that the ranking is linear in case of each operator. 

7. Conclusion 

In this study, we started by outlining some fundamental about IVTSFS, AATN, 
and AATCN. Then, we introduced four different AO types: IVTSFAAWG, 
IVTSFAAOWG, IVTSFAAHWG, and IVTSFAAWG operators. We demonstrated 
several intriguing characteristics of these AOs, such as monotonicity, idempotency, 
and boundedness. With the aid of an example, we also used the IVTSFAAWA and 

IVTSFAAWG operators to resolve MADM problems. By altering the values of the 𝑟 

and 𝛤  involved parameters, we further analyzed how these operators behave. We 
compared the suggested operators to the IVTSFWA, IVTSFHWA, and IVTSFEHWA 
operators as well as the IVTSFWG, IVTSFHWG, and IVTSFEHWG operators. The 
findings include the results below. 
1) First off, thanks to AATN and AATCN, due to which, the IVTSFAAWA and 

IVTSFAAWG operators are more adaptable than the other equivalent operators. 

2) Additionally, by varying the values of the two parameters 𝑟  and  𝛤 , the 
IVTSFAAWA and IVTSFAAWG operators provide a distinct ranking of 
possibilities. 

3) The IVTSFAAWG operator based on the weighted geometric mean of 
alternatives typically provides a superior option to obtain the best alternative than 
the IVTSFAAWA operator based on the weighted average of the alternatives. 
We intend to work on the theory and applications of Archimedean norms Wang 

and Garg [41] inside the framework of IVTSFSs shortly. We also intend to investigate 
how the proposed works might be applied in the manufacturing sector [42] and to the 
framework defined in the studies of Ullah [43] and Mahmood [44]. The current work 
can also be generalized for the frameworks defined in the studies of Al-Quran [45] and 
Al-Quran [46]. 
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