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ABSTRACT: The goal of the manuscript is to design a relatively good 

control structure for the noise suppression of a drone’s camera gimbal 

action. The gimbal’s movement can be simplified as a rest-to-rest 

reorientation system that can achieve the boundary result of a dynamic 

system. Six different control architectures are proposed and evaluated 

based on their ability to control the trajectory of the dynamic-system 

position and speed, their running time, and their quadratic cost. The 

robustness of the control architecture to uncertainties in inertia and sensor 

noise is also analyzed. Monte Carlo figures are used to assess the 

performance of the six control systems. The conditions for applying 

different architectures are identified through this analysis. The analysis and 

experimental tests reveal the most suitable control of the drone’s camera 

gimbal rotation. 

KEYWORDS: proportional plus velocity controller; double integrator 

patching filter; control law inversion patching filter; real-time optimal 
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1. Introduction 

1.1. The introduction to the drone and its single-axis 

Drones, also known as unmanned aerial vehicles, are a type of aircraft that can be controlled remotely 
without a pilot onboard[1]. The history of drones began after the First World War, when simple prototypes were 
used as weapons. In the late twentieth century, an autonomous control system was added to serve the operation 
of drones. Today, equipped with advanced technologies such as Global Positioning System[2] cameras, and 
sensors[3], the drone has the ability for navigation, data collection, videography, or some specific objectives. 
The drone is becoming increasingly important in a wide range of industries, including agriculture 
construction[4,5], journalism[6], and filmmaking[7], amongst other work. Drones of various sizes and shapes have 
been designed for a wide range of applications in various industries. Overall, drones are an important 
technological advancement and an increasingly vital tool that will continue to grow in modern society. 

Cameras are essential for drones as they enable users to capture images and videos from a unique 
perspective that is different from that obtained by traditional cameras or from the ground. As the basis of robot 
perception, cameras work as eyes for aerial photography and videography, surveying and mapping, and 
inspection and monitoring of infrastructure and facilities[9]. Therefore, cameras are a crucial component of 
modern drones, and their performance will also directly impact the performance of the drone. Figure 1a 
illustrates the use of NASA’s drone, and Figure 1b provides an approximate representation of the drone’s 
gimbal. 
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Figure 1. (a) NASA uses drones for launch detection[8]; (b) The detail of the one-gimbal drone’s camera. 

Errors caused by camera mounting devices are considered one of the main factors affecting camera 
performance. The most significant source of noise affecting the performance of the camera, apart from 
inherent differences in its own accuracy, is the deviation and vibration caused during the moving process. 
Therefore, selecting a suitable mounting device and reducing noise are crucial. Various camera mounting 
devices are available, as described by Carmona[10], who has designed a complex platform-style 
mechanical structure that can stabilize the camera and absorb vibrations. However, complex mechanical 
structures can be relatively cumbersome for drones that aim to be small and affordable. Danh[11] has 
described a dual-axis gimbal that stabilizes the camera, but this design still requires an excellent control 
structure to support the system’s operation. The current mainstream solution on the market is to use a 
single-axis gimbal and electrical control structure to mount the camera, as explained in Gasparovic et 
al.’s article[12] where the advantages of the gimbal are clearly outlined. Therefore, using more precise 
control methods can ensure the accuracy of the movement of the majority of drones equipped with single-
axis gimbals and cameras for visual control on the market. 

1.2. The abstract introduction of gimbal control research 

1.2.1. Challenges in the manipulation of the gimbal rotation 

Although the motion model of the gimbal is not complex and can be simplified to a general Euler 
rotation model. Accurately rotating the gimbal to a specific angle is still a challenging task. This means 
that within a limited time frame, the gimbal is required to start from a stationary state, rotate to a specific 
angle, and maintain a stationary state with zero speed or acceleration at the end. Also, the operation time 
is limited. This rest-to-rest rigid body system is the research focus of this manuscript. With the use of 
electronic control structures, precise control is possible theoretically, but selecting a suitable control is 
still crucial realistically. Meanwhile, the noise in the position and velocity sensors poses a significant 
challenge to precise control. In real-life situations, such noise and uncertainty are inevitable factors that 
need to be taken into account.  

1.2.2. How the challenges were addressed in the past 

At the fundamental level, Kim et al.’s article[13] explains the basic control method PID and its 
application in the stabilization control of gimbal for drone gimbal, as well as the tuning process. Their 
article provides great inspiration for the control structure of the gimbal. Similar to PID control[14], other 
control methods such as P+V control and some optimization control can also be applied to the drone 
camera gimbal while maintaining higher accuracy[15]. Lassak et al.[16] explain the importance of the filter 
or patching for the control structure, which helps the control structure to achieve control objectives better 
and faster. Actually, real-time control[17] is also crucial for a motion mechanism like a drone, and 
Aguilar[18] has presented a real-time image control method for drones in his paper. The approach is also 
applicable to gimbal control[19,20]. For simulating real environments, the noise in the sensors is a significant 
factor and the Monte Carlo model is particularly prominent in analyzing noise[21]. The application of 



Journal of AppliedMath 2023; 1(2.1): 69. 

3 

Monte Carlo by Binder[22] is a good example of data analysis. Last, Sands’s analysis of multiple controls[23] 
for space robots also provides a good instance for the comparison of different optimal-control structures. 
Although all control structures selected are optimization controls, they have their own advantages and 
disadvantages in different situations[24]. 

1.2.3. How the major limitation in the project 

Although this project has provided various excellent optimization control methods through the 
Pontryagin method, different control approaches demonstrate their own advantages in various 
environmental conditions. Theoretically, more outstanding control methods can be generated based on 
established system theory and existing output conclusions. These methods are also worth considering. 
Additionally, this paper adopts evaluation methods from realistic systems, including direct comparisons 
with declared benchmarks, comparisons using various performance data, and Monte Carlo chart 
comparisons. However, other analytical methods are worth introducing into the analysis process of 
control effectiveness. 

1.3. The rest-to-rest model of the drone’s gimbal and six controls 

The movement of the drone’s camera gimbal is simplified as a rest-to-rest rigid body system, which 
means that its velocities and acceleration at the beginning and end are zero, and its position changes in a 
limited time period. The rest-to-rest rigid-body system adheres to classical Newtonian mechanics and 
Euler rotation[25]. 

When it comes to a rest-to-rest reorientation system, the fundamental model is a basic double 
integrator. The rotation equation of the reorientation system is the basis for optimization. Based on the 
Euler rotation theorem, the equation of the gimbal rotation is displayed in Equation (1): 

𝐼𝜃̈ = 𝑇௤ = 𝑢 (1)

The name and explanations of symbols in some of the formulas are provided in Table 1. 

Table 1. Proximal variable definitions. 

Valuables Definitions Valuables Definitions 

𝜃 Angle 𝐽 the quadratic cost functional 

𝜔 Angular velocity 𝐹 The dynamic cost function 

𝜃̈ Rotational acceleration 𝑓 The dynamic constraint 

𝐼 The inertia of moment 𝑇௤ System torque 

𝑡଴ The initial time 𝑡௙ The final time 

u Control function of time - - 

Such tables are distributed throughout the manuscript to increase the ease of reading, while a combined, master table of 
definitions is included in the appendices. 

The boundary condition for the rest-to-rest maneuver is characterized by starting from a stationary 
position and ending with a new orientation and zero velocity. The expected duration of the maneuver is 
approximately one second. The boundary condition in this problem is simplified in Equation (2): 

൞

𝜃(0) = 0
𝜔(0) = 0
𝜃(1) = 1
𝜔(1) = 0

 (2)
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In addition, the performance of the controller is also evaluated by the quadratic cost. The control 
architecture should tune the relevant parameters and select appropriate values to minimize the quadratic 
cost. Equation (3) is the cost equation used in this manuscript: 

𝐽 =
1

2
න 𝑢ଶ

௧೑

௧బ

𝑑𝑡 = න 𝐹
௧೑

௧బ

𝑑𝑡 (3)

There are six control architectures used to achieve the control target: 

1) Open loop quadratic-cost control with HzMAT optimal control result[26,27]. 

2) Proportional plus velocity (P+V) feedback control. 
3) Real-time optimal control (RTOC) with the result of the HzMAT optimal control[28]. 
4) P+V feedback control with double-integrator patching filter[29]. 
5) Gain-tuning P+V controller with double-integrator patching. 
6) P+V controller with Control law inversion patching filter. 

Table 2 explains the meaning of the abbreviations in some controller names. 

Table 2. Explanation of nouns. 

Topic Definitions 

RTOC Real-time optimal control 

P+V Proportional plus velocity 

HzMAT Optimal control using Hamilton functional 

𝐾௣ and 𝐾௩ A proportional value for P+V control 

Such tables are distributed throughout the manuscript to increase the ease of reading, while a combined, master table of 
definitions is included in the appendices. 

The main controllers used in this manuscript are the P+V controller with or without different 
patching, like double-integrator quadratic cost control, and the HzMAT optimal controller (which 
includes open-loop with HzMAT analysis results, RTOC (real-time optimal controller)). [30] 

The P+V feedback controller is similar to the PID controller or PD controller. The P+V controller 
contains an amplifier to adjust the state values towards the target and an integrator to stabilize 
oscillations. The advantage of this controller is that it is simple to operate and easy to build. Compared 
to the open-loop controller, the P+V controller has better theoretical robustness to uncertainty. However, 
the P+V controller has two parameters. That is difficult to tune effectively. Therefore, the P+V controller 
may have poor accuracy and precision and cannot minimize the quadratic cost. 

The HzMAT optimal-control algorithm is based on Pontryagin’s minimize principle, which converts 
the optimal control problem into a multipoint boundary value problem[31–33]. The HzMAT functions 
contain four main functions: 

Hamiltonian minimization condition: 

𝐻 = 𝐹 + 𝜆்𝑓(𝑥, 𝑢) (4)

𝜕𝐻

𝜕𝑢
= 0 (5)

Adjoint equation: 
𝜕𝐻

𝜕𝑥
= −𝜆௫̇ (6)

Terminal transversality of Endpoint Lagrange: 
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𝐸ത = 𝐸 + 𝜈்𝑒 (7)

𝜕𝐸

𝜕𝑋௙
= 𝜆௫൫𝑡௙൯ (8)

Hamiltonian final value condition: 

𝐻൫𝑡௙൯ = −
𝜕𝐸

𝜕𝑡௙
 (9)

The name “HzMAT” is also composed of the initials of main functions’ name. 

The advantage of the HzMAT optimal-control algorithm is that the influence of the quadratic cost 
and running time is considered in this optimal control. The final control result minimizes both the cost 
and running time. However, the HzMAT optimal-control algorithm requires comprehensive 
computation. Adding the HzMAT optimal-control algorithm result to the open-loop controller and real-
time system makes two types of HzMAT optimal controllers. Overall, the HzMAT is an ideal algorithm 
for a position-to-position time-optimal system. The meaning of some symbols in the HzMAT algorithm 
has been explained in Table 3. 

Table 3. Table of proximal variable definitions. 

Variables Definitions Valuables Definitions 

𝐻 Hamiltonian 𝐹 Dynamic cost function 

𝜆, 𝜈 Lagrange multipliers 𝑓 Dynamic constraint 

𝜆௫ Lagrange multiplier for 𝑥 𝜆௫̇ Lagrange multiplier derivative for 𝑥 

x System states 𝑢 Control (a function of time) 

𝐸ത Total end-point cost functional 𝐸 Static cost function 

𝑒 Static constraint function 𝑡௙ Final time 

Such tables are distributed throughout the manuscript to increase the ease of reading, while a combined, master table of 
definitions is included in the appendices. 

2. Materials and methods 

2.1. The HzMAT optimal to the rest-to-rest orientation system 

Based on Equation (3), the quadratic cost function is considered, and we identify that the F in 
Equation (4) represents a dynamic cost in the system that is generated by the quadratic cost. Therefore, 
the dynamics, or running cost, presents the link between the quadratic cost and the dynamic system 
constraint. Equation (10) is the quadratic cost function: 

𝐹 =
1

2
𝑢ଶ (10)

The f in the Hamiltonian condition is a dynamic constraint in the system. The external control in 
the dynamics depends on the cost, state, and time. The costate represents the sensitivity of the system to 
perturbations, and the states represent the current physical state of the system. Additionally, time is also 
a critical factor in external control since time determines the duration of the control action and influences 
the overall performance of the system. Equation (11) displays the relationship between the dynamics and 
these factors. 

𝑥̇ = 𝑓(𝑥, 𝑢, 𝑡) = 𝑓(𝑥, 𝜆, 𝑡) (11)

Equation (11) provides insight into the relationship between the dynamic’s constraints and states. 
Equation (12) shows that the detail of the dynamic constraint, represented by f in the Hamiltonian, 
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influences the evolution of the state variables over time. The dynamic constraint is simplified by 
expressing the constraints as a set of equations that maintain the simplest structure, consisting of a first 
derivative and a derivative-free function. 

{𝑥̅} = ቄ
𝜃
𝜔

ቅ (12)

{𝑥̇̅} = ቄ
𝜔

𝜏/𝐼ቅ = ቄ
𝜔
𝑢

ቅ (13)

For each state variable in the system, there is a corresponding costate variable, which represents the 
sensitivity of the system’s performance to perturbations in that state variable. Therefore, the Hamiltonian 
condition function is a combination of dynamic cost and dynamic constraints by Lagrangian, which 
include both the state and costate variables. 

𝐻 = 𝐹 + 𝜆்𝑓(𝑥, 𝑢) =
1

2
𝑢ଶ + {𝜆ఏ 𝜆ఠ} ቄ

𝜔
𝑢

ቅ =
1

2
𝑢ଶ + 𝜆ఏ𝜔 + 𝜆ఠ𝑢 (14)

Based on Equation (5), the result of the partial derivative of the Hamiltonian condition functions 
with respect to the control value is calculated. 

𝑢 + 𝜆ఠ = 0 (15)

Therefore, referring to Equation (6), the adjoint equations in this condition are available. Equations 
(15) and (16) obtained by taking the partial derivative of the 𝜃 and 𝜔 using the Hamiltonian function 
are: 

𝜕𝐻

𝜕𝜃
= 0 = −𝜆ఏ̇ (16)

𝜕𝐻

𝜕𝜔
= 𝜆ఏ = −𝜆ఠ̇ (17)

Table 4 shows the definitions of some special symbols in the process of solving a practical issue by 
the HzMAT algorithm. 

Table 4. Table of proximal variable definitions. 

Variable Definition 

𝜏 The torque from the controller 

𝜆ఏ The Lagrangian about 𝜃 

𝜆ఠ The Lagrangian about 𝜔 

𝜆ఏ̇ The derivative about the 𝜃 lagrangian 

𝜆ఠ̇ The derivative about the 𝜔 lagrangian 

Such tables are distributed throughout the manuscript to increase the ease of reading, while a combined, master table of 
definitions is included in the appendices. 

Equations (15) and (16) establish the relationship between the Lagrangian and constant through 
integral operation, while Equations (17) and (18) demonstrate the obtained result: 

𝜆ఏ = 𝑎 (18)

−𝜆ఠ = 𝑎𝑡 + 𝑏 = 𝑢 (19)

where a and b are both constant. 

By combining Equations (17) and (18), a straightforward relationship between control and time can 
be derived in Equation (20). 
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𝑢 = 𝜔̇ = 𝑎𝑡 + 𝑏 (20)

Integrate these equations and obtain the optimal control for both velocity v and angle 𝜃. 

𝜔 =
1

2
𝑎𝑡ଶ + 𝑏𝑡 + 𝑐 (21)

𝜃 =
1

6
𝑎𝑡ଷ +

1

2
𝑏𝑡ଶ + 𝑐𝑡 + 𝑑 (22)

where a, b, c, and d are unknown constants. 

Equations may contain unknown constants; therefore, constructing a solvable equation needs to be 
based on time and control. The solution to the equation requires the specification of boundary conditions. 
After satisfying these conditions, a time-optimal control under the given conditions is available. 

Due to the boundary condition in Equation (2), the control function with respect to time from 
Equation (19) to (21) is displayed in Equations (23)–(25): 

𝑢 = 6 − 12𝑡 (23)

𝜔 = −6𝑡ଶ + 6𝑡 (24)

𝜃 = −2𝑡ଷ + 3𝑡ଶ (25)

Table 5 explains some values int the results and it proves that the result of solving a practical issue 
with the HzMAT depends solely on time. 

Table 5. Table of proximal variable definitions. 

Variable Definition 

t Time (dimensionless) 

a, b, c Constants of integration 

Such tables are distributed throughout the manuscript to increase the ease of reading, while a combined, master table of 
definitions is included in the appendices. 

2.2. The introduction of six control architectures 

2.2.1. Open loop controller with the result of the HzMAT optimal analysis 

By utilizing the optimal analysis result from the HzMAT with equation (22) as input, the ideal output 
for both theta and angular velocity can be derived through double integrator translation control. The 
control architecture is depicted in Figure 2: 

 
Figure 2. Open-loop controller structure. 
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2.2.2. P+V feedback controller 

Due to the feedback system, an ideal target (shown in Figure 3) is set and the error between the 
target and the output theta can be calculated. The error is then multiplied by 𝐾௣ and added to Kv times 

the output speed, forming the system input. After passing through the double integrator, the system 
provides output values for both theta and speed, which are then fed back into the input, completing the 
feedback loop. 

The values of 𝐾௣ and 𝐾௩ used in this system are tuned based on the analysis of oscillation. the 

system’s steady state can be set as 𝐾௣ = 𝜔௡
ଶ and 𝐾௩ = 2 × 𝜁 × 𝜔௡ . Where 𝜔௡  is the angular speed 

obtained from oscillation analysis, and 𝜁 is a parameter related to the system’s running time. 

 
Figure 3. P+V feedback controller structure. 

Table 6 explains the variable definitions in Figures 2 and 3. 

Table 6. Table of proximal variable definitions for Figures 2 and 3. 

Variable Definition 

𝜃ௗ The desired angle 

𝜃 The position output 

𝐾௣ A proportional value for P+V control 

𝐾௩ A proportional value for P+V control 

x System states 

𝑥̇ The derivative of states 

𝜔 The velocity output 

𝜔ෝ The actual velocity (the velocity output with the noise) 

𝜃෠ The actual angle (the position output with the noise) 

𝑛ఏ The noise from the position sensor 

𝑛௪ The noise from the velocity sensor 

Such tables are distributed throughout the manuscript to increase the ease of reading, while a combined, master table of 
definitions is included in the appendices. 

2.2.3. Real-time optimal controller (RTOC) 

RTOC is a real-time controller (shown in Figure 4) that utilizes the HzMAT optimization with 
different boundary conditions. The HzMAT analysis can provide reference equations like Equations 
(20)–(22). Various final boundary conditions can help to solve the values of a, b, c, and d. These values 



Journal of AppliedMath 2023; 1(2.1): 69. 

9 

will be utilized to determine the control u and subsequently calculate the output position and speed of 
the system. But in this manuscript, time, position, and velocity limitations keep the same for easy 
comparison. 

 
Figure 4. RTOC controller structure. 

2.2.4. P+V feedback control with double-integrator patching filter 

In the P+V feedback controller, a patching filter is introduced to optimize the basic target and 
enhance the system’s input to approach the ideal target. In the patching filter, there is a simple double 
integrator (shown in Figure 5) that closely represents the dynamics of the open-loop plant. The 𝐾௣ and 

𝐾௩ parameters remain unchanged. 

 
Figure 5. P+V feedback controller with double integrator patching filter. 

The meanings of the specific variables appearing in the Figures 4 and 5 are explained in Table 7. 

Table 7. Table of proximal variable definitions for Figures 4 and 5. 

Variable Definition 

s Complex variable for Laplace Transform 

𝜃ௗ
∗  The desired transformed angle 

𝜏∗ The desired torque input 

𝜔 The velocity output 

𝜃 The position output 

𝜔ෝ The actual velocity (the velocity output with the noise)  

𝜃෠ The actual angle (the position output with the noise)  

𝑛ఏ The noise from the position sensor 

𝑛௪ The noise from the velocity sensor 

Such tables are distributed throughout the manuscript to increase the ease of reading, while a combined, master table of 
definitions is included in the appendices. 
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2.2.5. Gain-tuning P+V controller with double-integrator patching. 

This control architecture still utilizes the P+V feedback control structure, complemented by a double 
integrator patching filter. However, the 𝐾௣  and 𝐾௩  parameters have been updated with brand-new 

values that are tested to improve the system’s ability to approach the ideal target. After careful selection 
and tuning, the 𝐾௣ and 𝐾௩ are set to 400 and 3, respectively. 

2.2.6. P+V controller with Control law inversion patching filter. 

This controller architecture is like the previous structure, with the primary difference being the use 
of a control law inversion patching filter. To achieve the HzMAT optimal control with the P+V controller, 
the input must be designed to be close to the final output. 

Table 8 explains the variable meanings in the process of deriving the law inversion. 

Table 8. Variables definitions. 

Variables Definitions Variables Definitions 

𝜃ௗ The desired angle  𝑋ௗ(𝑠) The input of the control structure (angle)  

𝜃 The actual angle 𝑈∗(𝑠) The output of the control structure (control) 

𝑢 ∗ The desired control 𝐾௣ A proportional value for P+V control 

u The actual control 𝐾௩ A proportional value for P+V control 

Such tables are distributed throughout the manuscript to increase the ease of reading, while a combined, master table of 
definitions is included in the appendices. 

As a reminder, the closed-loop control law is displayed in the Equation (25): 
𝑢 = 𝐾௣(𝜃ௗ − 𝜃) − 𝐾௩𝜔 (26)

Also, Equation (25) can be written as Equation (26) and (27). Equation (27) represents the ideal 
outcome of Equation (26). 

𝜃ௗ =
𝑢

𝐾௣
+ 𝜃 +

𝐾௩

𝐾௣
𝜔 (27)

𝜃ௗ(𝑡) =
𝑢 ∗

𝐾௣
+ 𝜃∗(𝑡) +

𝐾௩

𝐾௣
𝜔∗(𝑡) ∀𝑡𝜖[𝑡଴, 𝑡௙] (28)

For the double integrator plant, Equation (28) is the same as Equation (27): 

𝜃ௗ(𝑡) =
1

𝐾௣
(𝑢∗ + 𝐾௩ න 𝑢∗(𝑡)𝑑𝑡 + 𝐾௣ ඵ(𝑢∗(𝑡)𝑑𝑡)𝑑𝑡) (29)

Equation (28) may be written in the s-domain based on Laplace Transform as 

𝑋ௗ(𝑠) =
1

𝐾௣
(𝑈∗(𝑠) +

𝐾௩

𝑠
𝑈∗(𝑠) +

𝐾௣

𝑠
𝑈∗(𝑠)) (30)

Therefore, an alternative patching filter is shown in the Equation (30): 
𝑋ௗ(𝑠)

𝑈∗(𝑠)
=

1

𝐾௣
ቈ
𝑠ଶ + 𝐾௩𝑠 + 𝐾௣

𝑠ଶ
቉ (31)

The control structure is displayed in Figure 6: 
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Figure 6. P+V controller with control law inversion patching filter structure. 

Table 9 lists some variable definitions in Figure 6. 

Table 9. Table of proximal variable definitions for Figure 6. 

Variable Definition 

s Complex variable for Laplace Transform 

𝐾௣ A proportional value for P+V control 

𝐾௩ A proportional value for P+V control 

𝜔ෝ The actual velocity (the velocity output with the noise) 

𝜃෠ The actual angle (the position output with the noise)  

𝑛ఏ The noise from the position sensor 

𝑛௪ The noise from the velocity sensor 

Such tables are distributed throughout the manuscript to increase the ease of reading, while a combined, master table of 
definitions is included in the appendices. 

2.3. The MATLAB® solver selection 

In the Simulink system, the solver plays a crucial role in determining the trajectory of the position 
and speed variables. Thereby, the solver affects the accuracy and precision of the results. Therefore, 
selecting the appropriate solver and step size carefully for the analysis of the controllers’ performance is 
essential. 

For the purposes of this manuscript, using an open-loop controller to evaluate the solver is 
convenient. When ode1 with a step size of 0.01 is tested, the resulting trajectory appears in Figure 7a. To 
obtain more accurate results, using a different solver as a comparison is significant, such as ode4 with a 
step size of 0.01, whose trajectory is displayed in Figure 7b. To further improve the accuracy and 
precision of the results, reducing the step size to 0.0001 is also an option. The objective trajectory with a 
step size of 0.0001 is shown in Figure 7c. 

 
Figure 7. MATLAB® integration solver iteration with time on the abscissa and position and velocity on the ordinant. (a) the 
trajectory under the ode1 and step 0.01. (b) the trajectory under the ode4 and step 0.01. (c) the trajectory under the ode4 and 
step 0.0001. 
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The conclusion based on the trajectory of ode1 with a step size of 0.01 is obvious: the final angular 
speed fails to satisfy the rest-to-rest condition. As a result, ode1 may not be the optimal choice for our 
analysis. After switching to the ode4 solver, the final boundary condition appears to be better satisfied in 
Figure 7b. Switching to the ode4 solver with a step size of 0.0001 did not significantly improve the final 
boundary condition. However, the running time increased significantly. Table 10 presents the results of 
the usage of different step sizes and solvers. 

Table 10. The performances of the open-loop system with different solvers and step length. 

Solver and step length End position End velocity Computational runtime Quadratic cost 
(vehicle fuel usage) 

Ode1 solver with 0.01 step length 1.023 0.060 1.1338 6.001 

Ode4 solver with 0.01 step length 1.000 2.220 × 10ିଵ଺ 1.0502 6.000 

Ode4 solver with 0.0001 step length 1.000 6.820 × 10ିଵ଻ 4.3162 6.000 

Such tables are distributed throughout the manuscript to increase the ease of reading, while a combined, master table of 
definitions is included in the appendices. 

To find a compromise between accuracy and efficiency, using the ode4 solve with a step size of 0.01 
is an ideal option for the simulation. This should provide reasonably accurate results while also 
maintaining a manageable running time. 

3. Trajectory of the result from six architectures without any uncertainty 
Once the various control structures in Simulink are implemented, the resulting trajectories can be 

examined. Figures 8a–c and Figures 9a–c show the trajectories obtained from six control systems without 
noise. Figures 8a–c are associated with the open loop, P+V controller, and the RTOC while Figures 9a–
c are from the P+V controller with a double-integrator patching filter, the tuning parameter P+V 
controller with double integrator filter and the P+V controller with a law inversion filter. 

 
Figure 8. MATLAB® simulations with no noise with time on the abscissa and position and velocity on the ordinant. (a) the 
trajectory from the open loop; (b) the trajectory from the P+V controller; (c) the trajectory from the RTOC. 

 
Figure 9. MATLAB® simulations with no noise with time on the abscissa and position and velocity on the ordinant. (a) the 
trajectory from the P+V controller with double-integrator patching filter; (b) the trajectory from the tuning parameter P+V 
controller with double integrator filter; (c) the trajectory from the P+V controller with law inversion filter. 
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Table 11 shows some essential indicators for comparing of the control result of six different control 
structures without noise. 

Table 11. The performances of six control architectures without errors. 

Vehicle control method End position End velocity Computational 
runtime 

Quadratic cost 
(vehicle fuel usage) 

Open-loop optimal control, ideal case 1.000 −6.189 × 10ିଵ଻ 4.000 6.000 

Classical proportional + velocity feedback 0.990 0.066 3.449 28.167 

Real-time optimal control 1.000 −6.820 × 10ିଵ଻ 3.896 6.000 

P+V control with double-integrator filter 0.732 1.036 3.483 1.458 

Tunning parameter P+V control with filter 1.016 0.016 3.475 9.052 

P+V control with law inversion filter 1.000 4.857 × 10ିଵ଻ 3.962 6.000 

Such tables are distributed throughout the manuscript to increase the ease of reading, while a combined, master table of 
definitions is included in the appendices.  

Once the trajectories from different control structures are generated, the conclusion is obvious. 
Firstly, the HzMAT optimal controller provides significantly better precision and accuracy than the P+V 
controller. However, the HzMAT controller may cause a slight overshoot in the controlling, whether it 
is the open-loop controller or RTOC, as evidenced by the negative final boundary value of velocity. 
Secondly, by comparing the three figures of the P+V controller, the P+V controller with better tuning 
parameters of 𝐾௣ and 𝐾௩ and a suitable patching filter can provide accurate enough results. Thirdly, 

surprisingly, the open-loop controller achieved accuracy beyond our expectations, possibly due to the 
HzMAT optimal-control algorithm. It is worth noting that the ideal quadratic cost is 6, and the two types 
of HzMAT controllers performed better in terms of cost optimization, while the P+V controller incurred 
higher costs, even though they produced very similar trajectories. Finally, regarding running time, all 
P+V controller architectures had a shorter running time than the two types of HzMAT controllers. 

4. Analysis of six control architectures with some uncertainties 
After the uncertainties in inertia and sensor noises from the position and velocity sensors are added 

to the system, the trajectory demonstrates the distinct characteristics and robustness of different control 
architectures. Figures 10a–c and 11a–c illustrate the trajectories obtained from the six control structures 
with noise. The trajectories from the open loop, the traditional P+V controller, and the RTOC are shown 
in Figure 10. And the trajectories from the three new types of P+V controllers are shown in Figure 11. 

 
Figure 10. MATLAB® simulations with noise with time on the abscissa and position and velocity on the ordinant. (a) the 
trajectory from the open loop with noise; (b) the trajectory from the P+V controller with noise; (c) the trajectory of RTOC with 
noise. 
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Figure 11. MATLAB® simulations with noise with time on the abscissa and position and velocity on the ordinant. (a) the 
trajectory from the P+V controller with double-integrator patching filter with noise; (b) the trajectory from the tuning 
parameter P+V controller with double integrator filter with noise; (c) the trajectory from the P+V controller with law inversion 
filter with noise. 

Table 12 lists some essential indicators for comparing the control results of six different control 
structures with noise. 

Surprisingly, despite the uncertainties, the open-loop controller’s trajectory remains like the 
condition without errors, which shows good robustness. It’s possible that only the uncertainty of inertia 
can affect the open-loop system, but its impact is limited. However, the theta result has a huge gap 
between the correct result set, which means the open-loop controller is not suitable for the real 
environment. Also, uncertainties significantly affect the theta result of RTOC’s HzMAT controller. The 
P+V controllers’ trajectories show oscillation and are not as smooth as those from the HzMAT controller. 
Compared to the no-error system figures, a significant improvement in the performance of P+V 
controllers is that they maintain high accuracy under the influence of errors. But the self-tuning patching 
filter amplified the errors’ impact, rendering the figure useless. The reason is poor tuning parameters, and 
this result presents the significance of tuning. In conclusion, a well-set P+V controller in error may yield 
a similar output to the HzMAT controller without errors. In terms of cost, the HzMAT control 
architectures are less expensive compared with the P+V controller. 

Table 12. The performances of six control architectures with errors. 

Vehicle control method End position End velocity Computational runtime Quadratic cost 
(vehicle fuel usage) 

Open-loop optimal control, ideal case 0.511 0.00594 4.107 6.000 

Classical proportional + velocity feedback 1.048 0.02946 3.763 63.121 

Real-time optimal control 0.511 −0.00595 4.143 6.000 

P+V control with double-integrator filter 1.040 −0.02946 3.609 63.121 

Tunning parameter P+V control with filter 0.961 7.0317 3.617 20834.110 

P+V control with law inversion filter 1.048 −0.02946 3.625 63.121 

Such tables are distributed throughout the manuscript to increase the ease of reading, while a combined, master table of 
definitions is included in the appendices. 

5. Monte Carlo analysis 
Monte Carlo analysis is a computational algorithm that uses random samples or parameters to 

generate a result in a target area. This Monte Carlo figure, also known as the distribution diagram, 
provides evidence of the impact of some specific parameters. 

In this analysis, a large number of random error samples that conform to the normal distribution 
were selected from position and velocity sensors. By incorporating the generated values from the average 
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distribution into the seed of Simulink, the simulation results were made predictable and reproducible. 
Subsequently, Monte Carlo charts for position and velocity were generated to analyze the impact of the 
two sensor noises. The six images in Figures 12 and 13 correspond to Monte Carlo plots generated from 
1000 sets of samples for six different control structures in a real-noise environment. The real noise 
environment includes angle and velocity sensors, noise that has a has a normal distribution, as well as 
variations in inertial moments. The order of the control systems also follows the order of the images, 
namely the open loop, the traditional P+V controller, the RTOC, the P+V controller with a double-
integrator patching filter, the tuning P+V controller with filter, and the P+V controller with a law-
inversion patching filter. 

 
Figure 12. MATLAB® simulations with noise with the angle on the abscissa and the angular velocity on the ordinant. (a) 
Monte Carlo figure from the open loop; (b) Monte Carlo figure from the single P+V controller; (c) Monte Carlo figure from 
the RTOC. 

 
Figure 13. MATLAB® simulations with noise with the angle on the abscissa and the angular velocity on the ordinant. (a) 
Monte Carlo figure from the P+V controller with double-integrator patching filter; (b) Monte Carlo figure from the tuning 
parameter P+V controller with double integrator filter; (c) Monte Carlo figure from the P+V controller with law inversion 
filter. 

Table 13 lists some important indicators which can be used to analyze the Monte Carlo plots. 

Table 13. The performances of six control architectures with errors in Monte Carlo analysis. 

Vehicle control method Mean position 
error 

Position error 
deviation 

Mean velocity 
error 

Velocity error 
deviation 

Open-loop optimal control, ideal case 0.511 1.× 10ିଵଷ −5.944 × 10ିଵଷ 1 × 10ିଵ଻ 

Classical proportional + velocity feedback 1.056 0.016 −0.010 0.050 

Real-time optimal control 0.511 1 × 10ିଵଷ −0.511 1 × 10ିଵ଺ 

P+V control with double-integrator filter 0.699 0.015 1.222 0.065 

Tunning parameter P+V control with filter 1.029 0.069 -0.015 1.133 

P+V control with law inversion filter 1.043 0.155 0.328 0.073 

Such tables are distributed throughout the manuscript to increase the ease of reading, while a combined, master table of 
definitions is included in the appendices. 



Journal of AppliedMath 2023; 1(2.1): 69. 

16 

Open-loop controller is the least affected, as mentioned previously. All control architectures using 
P+V controllers are influenced by uncertainties. The Monte Carlo figures for the P+V controller with 
different filters show that 𝐾௣ and 𝐾௩ determine the degree of noise impact, and the patching filter is the 

one influenced by the uncertainty, despite its objective of closing the input to the final output. Surprisingly, 
the RTOC shows strong robustness. However, it’s undeniable that even the RTOC’s precision decreases 
due to uncertainties. 

6. Discussions 
The findings from the model indicate that HzMAT exhibits excellent accuracy and precision under 

ideal conditions. However, in real-world scenarios with system noise, both HzMAT and P+V controllers 
have certain drawbacks. Among the P+V controllers, the one with a law inversion filter consistently 
demonstrates superior performance regardless of the noise level. Other P+V controllers show satisfactory 
results in noisy environments. 

When dealing with a fixed dynamic system without significant errors or real-time adjustment 
requirements, the open-loop controller with the HzMAT value becomes a preferred option as it remains 
unaffected by sensor noise and effectively controls the system. Nevertheless, open-loop control lacks a 
feedback system and isn’t suitable for comprehensive dynamic systems. 

The gain-tuning patching filter and double integrator filter reveal that 𝐾௣/𝐾௩ and the patching filter 

greatly influence the precision of the P+V controller. Hence, using the ideal of Law inversion as a basis 
for patching filters is a promising approach. While RTOC takes precedence when sensor noise is minimal 
or cost optimization is crucial, the P+V controller with a law inversion filter becomes the priority when 
a simple computation algorithm or a faster controller is required in real-world applications. 

Simple P+V controllers or those with a double integrator can still be employed, primarily for their 
ease of operation. With appropriate 𝐾௣ and 𝐾௩ tuning, these controllers can also be effectively applied 

in practical scenarios. 

As for patching filters, adjusting the input to approximate the desired output proves to be a beneficial 
strategy, as patching filters essentially work as feedforward controls that influence the input value. 
Compared to a single P+V controller, those with double integrator patching filters or control law 
inversion patching filters exhibit less robustness, despite offering improved precision through patching. 

7. Conclusion 
When it comes to the control of the drone’s camera gimbal rotation, the P+V control with the law 

of inversion patching is the priority in the complex real environment needing high precision. Also, RTOC 
is suitable for general civilian products that don’t need high precision but need robustness. Other 
combinations of control structures, like adding feedforward patching for RTOC, should be tested and 
added for the drone camera gimbal control in future research. 
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Appendix A 

 
Figure A1. MATLAB® simulation with noise in plant and state and rate sensors. 

 
Figure A2. MATLAB® simulation of commanded trajectory options. 

 
Figure A3. MATLAB® simulation of controller options. 

 
Figure A4. MATLAB® simulation of (a) feedforward control calculation; (b) P+V control. 

 
Figure A5. MATLAB® simulation of real-time optimal control. 
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(a) (b) 

Figure A6. MATLAB® simulation of (a) PID feedback control calculation; (b) Plant. 

 

 
(a) (b) 

Figure A7. MATLAB® simulation of (a) noisy moment of inertia calculation; (b) noisy sensors. 
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Appendix B 
Definitions of variables and nomenclature. 

Table B1. Table of variable definitions 
Variables Definitions Variables Definitions 

𝜃 Angle 𝐽 the quadratic cost functional 

𝜔 Angular velocity 𝐹 The dynamic cost function 

𝜃̈ Rotational acceleration 𝑓 The dynamic constraint 

𝐼 The inertia of moment 𝑇௤ System torque 

𝑡଴ The initial time 𝑡௙ The final time 

u Control function on time t Time(dimensionless) 

𝐻 The Hamilton equation 𝐹 The dynamic cost function 

𝜆, 𝜈 The Lagrangian 𝑓 The dynamic constraint 

𝜆௫ The Lagrangian about x 𝜆௫̇ The derivative of Lagrangian 

x System states 𝑥̇ The derivative of states 

𝐸ത The total end-point cost 𝐸 The static cost function 

𝑒 The static constraint function 𝜏 The torque from the controller 

𝜆ఏ Lagrange multiplier about 𝜃 𝜆ఠ Lagrange multiplier about 𝜔 

𝜆ఠ̇ The derivative about the 𝜔 lagrangian 𝜆ఏ̇ The derivative about the 𝜃 lagrangian 

s Complex variable for Laplace Transform a, b, c Constants of integration 

𝜃ௗ
∗  The desired transformed angle 𝜔ෝ The actual velocity (the velocity output with the 

noise) 

𝜏∗ The desired torque input 𝜃෠ The actual angle (the position output with the 
noise) 

𝑛ఏ The noise from the position sensor 𝑛௪ The noise from the velocity sensor 

𝜃ௗ  The desired angle 𝑋ௗ(𝑠) The input of the control structure (angle) 

𝑢 ∗ The desired control 𝑈∗(𝑠) The output of the control structure (control) 

 


