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ABSTRACT: As we know, interpolation is one of the most basic and 

useful numerical techniques in mathematics. Newton’s forward 

interpolation method is one of the most important of these methods. Its 

most important task in numerical analysis to find roots of nonlinear 

equations, several methods already exist to find roots. But in this paper, 

we introduce the interpolation technique for this purpose. The proposed 

method derived from the Newton forward interpolation method, and 

we compared the results with another existing method (Bisection 

Method (BM), Regula-Falsi Method (RFM), Secant Method (SM), 

Newton Raphson Method (NRM)) and the method proposed by J. 

Sanaullah (SJM). It’s observed that the proposed method has fast 

convergence, but it has the same order of convergence as the SJM 

method. Maple software is used to solve problems using different 

methods. 
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equations; interpolation 

1. Introduction 
Interpolation is a very important and useful technique in numerical analysis. The main task of 

interpolation is to replace one function by another simpler[1]. To construct a polynomial of 
interpolation, there are many techniques, including linear interpolation, Lagrange’s interpolation 
formula, divided differences, spline interpolating, Newton’s forward and backward interpolation, 
sterling interpolation, Bessel’s interpolation, etc.[2]. 

One of the most important and frequent questions in numerical analysis is to find an approximate 
solution to a nonlinear equation. There are some analytical methods. But it’s near to impossible to 
locate the exact root of algebraic equations of order greater than four and transcendental equations with 
analytical methods[3–31]. There are several methods like bisection, regula-falsi, secant, and the Newton-
Raphson method that already exist in the literature, but the drawback of the above methods is that they 
are either slow or derivative. In this regard, many researchers are busy developing new, easy, and 
derivative-free methods for higher accuracy rates. Ozbzn[6] develops a new variant of Newton methods 
using the harmonic mean and midpoint iteration rules with third-order convergence for better accuracy. 
Recently, Qureshi et al.[12] introduced a method with six orders of convergence based on the Steffensen 
method and the Newton method to accelerate accuracy. Interpolation techniques and divided 
difference rules are also used to find a solution to nonlinear equations[8], and modified quadrature 
iterated methods for solving non-linear equations are proposed. This paper describes the analytic form 
for solving problems with Newton’s forward interpolation formula instead of Newton’s backward 
interpolation formula[4], and solving the same problem with Maple software. In Section 3, we give some 
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examples for solving the nonlinear algebraic equations of this interpolation and how they can be solved 
with Maple. In Section 4, we give some examples. Finally, Section 5 concludes the paper. 

2. Newton’s forward interpolation formula 
Let be given the points x0, x1, x2, ..., xn, and the function y on [x0, xn]. 

Suppose now that the points x0, x1, x2, ..., xn are equidistant, i.e., xi+1 − xi = h, for i = 0, 1, 2, …, n − 
1. 

Definition 1. The finite first order forward difference for the function f in relation to x is called the expressions. 

𝛥𝑦 = 𝑦 − 𝑦  
𝛥 𝑦 = 𝛥(𝛥𝑦 ) = 𝛥𝑦 − 𝛥𝑦  

… 

𝛥 𝑦 = 𝛥(𝛥 𝑦 ) = 𝛥 𝑦 − 𝛥 𝑦  

(1)

where Δnyi is the n-th order forward difference. 

These differences are often presented in a tabular format as in Table 1. 

Table 1. The finite backward difference[2]. 

4y 3y 2y y y x 

4y0 3y0 
3y1 

2y0 
2y1 
2y2 

y0 
y1 
y2 
y3 

... 
yn−1 

y0 
y1 
y2 
y3 
y4 

... 

yn−1 
yn 

x0 
x1 
x2 
x3 

x4 

... 

xn−1 
xn 

Newton’s forward interpolation formula for interpolation is obtained from the Definition 1 given 
above. 

For 𝑞 =
ℎ

, we get the polynomial: 

𝑃 (𝑥) = 𝑦 +
𝛥𝑦

ℎ
(𝑥 − 𝑥 ) +

𝛥 𝑦

2!. ℎ
(𝑥 − 𝑥 )(𝑥 − 𝑥 )+. . . +

  𝑦

𝑛!. ℎ
(𝑥 − 𝑥 ) (2)

or, 

𝑃 (𝑥 + 𝑞ℎ) = 𝑦 + 𝑞𝛥𝑦 +
𝑞(𝑞 − 1)

2!
𝛥 𝑦 +. . . +

𝑞(𝑞 − 1). . . (𝑞 − 𝑛 + 1)

𝑛!
Δ 𝑦

= 𝑦 +
𝑞
1

𝛥𝑦 +
𝑞
2

𝛥 𝑦 +. . . +
𝑞
𝑛

𝛥 𝑦  
(3)

This formula is useful when the value of y is required at point xp near the end of the segment. 

The error in this case is 

𝑅(𝑥) =
𝑓( )(𝜉)

(𝑛 + 1)!
(𝑥 − 𝑥 ) (4)

or, 

𝑅(𝑥 + 𝑞ℎ) = ℎ
𝑓( )(𝜉)

(𝑛 + 1)!
𝑞(𝑞 − 1). . . (𝑞 − 𝑛) (5)
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3. Proposed method 
As we know, Newton’s forward interpolation formula is used for finding the value of the function 

at a point a i.e., f(a). In this work we aim to find the root 𝑐 of a function y = f(x) by using Newton 
forward. 

Now, by using Newton forward difference formula: 

𝑃 (𝑥 + 𝑞ℎ) = 𝑦 + 𝑞∆𝑦 +
𝑞(𝑞 − 1)

2!
∆ 𝑦 +. . . + (6)

𝑦 = 𝑦 + q∆𝑦 +
𝑞(𝑞 − 1)

2
∆𝟐𝑦 + ⋯ (7)

by taking three terms of Equation (7), 

𝑦 = 𝑦 + q∆𝑦 +
𝑞(𝑞 − 1)

2
∆𝟐𝑦 = 0 (8)

we get the equation: 

𝑦 = 𝑞𝟐∆𝟐𝑦 + 2∆𝑦 − ∆𝟐𝑦 𝑞 − 2𝑦 = 0 (9)

or, 

𝑦 = 𝐴𝑞𝟐 + 𝐵𝑞 + 𝐶 = 0 (10)

where, A = ∆2y0, B = (2∆y0 − ∆2y0), C = −2y0; 𝑞 =
ℎ

. 

By solving the quadratic Equation (10), we get the two solutions 

x = 𝑥 + ℎ (
−𝐵 ± √𝐵 − 4𝐴𝐶

2𝐴
) (11)

we have two roots, the root depends the value of yi and yn, 

1) If yi > yn, we use the relation 

𝑥 = 𝑥 + ℎ (
−𝐵 ± √𝐵 − 4𝐴𝐶

2𝐴
) (12)

2) If yi < yn, we use the relation 

𝑥 = 𝑥 + ℎ (
−𝐵 + √𝐵 − 4𝐴𝐶

2𝐴
 (13)

4. Examples 
In this section, we will check the effectiveness of the present method. The below problems are 

taken from the literature[4] and tested in the proposed method by comparison with the following method, 
(Bisection Method (BM), Regula-Falsi method (RFM), Secant Method (SM) and Newton Raphson 
Method (NRM)), New Second Order Method (NSOM) of Jamali et al.[4] and New Proposed Method 
(NPM). It’s observed that the proposed method converges to the exact solution. Maple software was 
used to solve problems using these different methods. 

Example 1. For 𝑓(𝑥) = 𝑥 − exp(𝑥) − 3𝑥 + 2: 
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Table 1. It shows the number of iterations of problem −1 at error 10 × 10−15. 

Initial guess Method No of iterations Approximate root Error fixed 

2 BM 46 2.154434690031884  10 × 10−15 

10 × 10−16 RFM 18 

SM 6 

NRM 4 

NSOM 4 

NPM 6 

Example 2. For 𝑓(𝑥) = 𝑥 − 10: 

Table 2. It shows the number of iterations of problem −1 at error 10 × 10−15. 

Initial guess Method No of iterations Approximate root Error fixed 

2 BM 46 2.154434690031884  10 × 10−15 

10 × 10−16 
 

RFM 18 

SM 6 

NRM 4 

NSOM 4 

NPM 6 

Example 3. For 𝑓(𝑥) = 𝑥 + 4𝑥 − 10: 

Table 3. It shows the number of iterations of problem −1 at error 10 × 10−15. 

Initial guess Method No of iterations Approximate root Error fixed 

0.85 BM 47 2.57530285439861 10 × 10−15 

RFM 10 

SM 5 

NRM 4 

NSOM 4 

NPM 6 

Example 4. For 𝑓(𝑥) = 2 − exp(𝑥) + 2: 

Table 4. It shows the number of iterations of problem −1 at error 10 × 10−15. 

Initial guess Method No of iterations Approximate root Error fixed 

0.85 BM 47 2.57530285439861 10 × 10−15 

RFM 10 

SM 5 

NRM 4 

NSOM 4 

NPM 6 
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Example 5. For 𝑓(𝑥) = 𝑥 − exp(𝑥) − 3𝑥 + 2: 

Table 5. It shows the number of iterations of problem−1 at error 10 × 10−15. 

Initial guess Method No of iterations Approximate root Error fixed 

0.5 BM 47 2.57530285439861 10 × 10−15 

RFM 10 

SM 5 

NRM 4 

NSOM 4 

NPM 6 

5. Conclusion 
In this paper, we checked the effectiveness of the present method. By solving some problems given 

in the literature[4] for testing this proposed method by comparison with the, Bisection Method (BM), 
Regula-Falsi method (RFM), Secant Method (SM) and Newton Raphson Method (NRM), the New 
Second Order Method (NSOM) of Jamali et al.[4] and the New Proposed Method (NPM). It’s observed 
that the proposed method converges to the exact solution better than BM method and RFM method. 
Maple software was used to solve problems by these different methods. 
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