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Abstract: Despite partial solutions by famous scientists during the early Industrial Revolution, 

gyroscope problems remained unsolvable until the beginning of the twentieth century, when 

several fundamental physical laws were finally formulated to describe them. Today, the 

principles of classical mechanics enable the formulation and description of the physical 

processes involved in the rotation of any object. Gyroscopic devices are objects that rotate and 

exhibit oscillation, which has been a challenging problem in engineering mechanics. The 

oscillation of a gyroscope is caused by the interaction between external and inertial torques. 

This is different from other examples of oscillation, such as pendulums and springs, which 

have been well documented. The main difference in the physics of gyroscopic oscillation is 

that the spinning rotors of the gyroscopic devices are supported on one side, with their axes 

perpendicular to the axis of oscillation. The oscillation of gyroscopic devices is interrelated 

with the potential and kinetic energy of their components. However, the physics of the 

oscillation of such objects has not been fully described in publications until recently. The theory 

of gyroscopic effects for rotating objects has now been published and provides a solution to 

this problem. According to this theory, gyroscopic inertial torques represent the potential 

energy of the external torque and the kinetic energy of the spinning rotor. This paper 

demonstrates the distribution of inertial torques about the axes of Cartesian coordinates, which 

enables the computation of gyroscope motion and oscillation. 
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1. Introduction 

Many helpful publications provide extensive information about mechanical 
gyroscopes, which are simple devices with a rotating disc that are used to maintain 
orientation based on the principles of the rotating disc’s angular momentum. 
Gyroscope problems attracted scientists at the time of the Industrial Revolution [1,2]. 
The famous mathematician L. Euler (1707–1783) studied the properties of rotating 
objects and formulated equations of the rotational motion around a fixed pivot point. 
His theory of the motion of rigid bodies (1765) became a seminal contribution to the 
contemporary theory of gyroscopes, and his principle is based on the conservation of 
kinetic energy, which is still considered fundamental. The phenomenon of gyroscopic 
effects attracted the attention of many outstanding scientists, paving the way for the 
formulation of the known gyroscope theory. 

The development of the theory of spinning bodies was based on the works of 
famous scientists and researchers such as I. Newton (1642–1726), J. L. R. D’Alembert 
(1717–1783), Lagrange (1736–1813), L. Poinsot (1777–1859), L. Foucault (1819–
1868), S. D. Poisson (1781–1840), Lord Kelvin (1824–1907), and others. The French 
mathematician P. S. Laplace (1749–1827) was the first to propose a gyrocompass that 
is insensitive to a magnetic field. Other brilliant scientists investigated, developed, and 
added new interpretations of the gyroscopic effects. 
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The theories of gyroscopes were developed mainly in the 20th century, but the 
first attempts at practical applications were made much earlier. In the 19th century, L. 
Foucault tried to prove the Earth’s rotation experimentally in 1852 using a 
gyroscope—a fast-spinning, axially symmetric body in a Cardan joint. However, the 
results were not always convincing due to technical and theoretical challenges that 
failed to describe gyroscopic effects. Scientific and engineering issues delayed 
practical applications of gyroscopes, which only emerged in the early 20th century. 

In 1914, Greenhill presented a simplified treatment of gyroscope properties in his 
book, Gyroscope Theory [3]. Despite the advancements in modern gyroscope theories, 
it is still difficult to distinguish them from the theoretical principles formulated in the 
past centuries, and gyroscopic theories have failed to match practice [4–6]. The 
absence of a complete gyroscope theory for centuries is an unusual phenomenon in the 
science of classical mechanics, which is more accustomed to solving complex 
problems than defining mathematical models for torques acting on a simple rotating 
disc. Numerical modeling of the gyroscopic effects was developed by researchers such 
as Klein and Sommerfield in 1913, which was later used for engineering solutions and 
software to account for gyroscope motions and oscillations [7]. 

The machine dynamics and vibration analysis in existing publications do not 
adequately describe the oscillation of gyroscopes due to the complexity and specificity 
of the process [8,9]. 

Mathematical modes for gyroscope oscillation and vibration are simplified and 
give partial solutions [10–12], Most publications focus attention on gyroscope designs, 
technology, and practical applications [13–15]. The quality of the control of the 
vehicles in space and the corrections of the flight by the algorithmic improvements of 
the parameters are considered in publications [16–18]. There are many publications 
describing the improvement of gyroscopes, but direct answers to solving the main 
problems will be difficult to find. Nevertheless, the physical principles of classical 
mechanics enable solving all gyroscopic effects [19,20]. 

Recent studies show the oscillation of gyroscopes is achieved through the 
interaction of external and inertial torques, which differ from the examples of 
pendulum and spring oscillation. The primary difference in the physics of oscillation 
lies in the fact that gyroscopic devices have spinning rotors exhibiting kinetic energy. 
The potential energy of the gyroscopic device interacting with the kinetic energy of 
the spinning rotor during oscillation has been a complex problem for physicists for 
over a century. However, new mathematical models for the system of interrelated 
inertial torques of the spinning disc and principles of conservation of potential and 
kinetic energy have been developed to solve this problem. Publications related to the 
theory of gyroscopic effects for rotating objects contain fundamental principles that 
enable the description of the properties of gyroscopic oscillation [21]. 

In gyroscope theory, the equations describe the inertial torques and their effects 
on rotational motions but do not provide a complete understanding of the torques 
involved. In addition to the main inertial torques, two other torques arise when the 
gyroscope disc rotates around its diametrical line along two axes. The values of the 
torques are relatively small because the angular velocities around these axes are low. 
They are equal in magnitude but act in opposite directions around a single axis, which 
cancels out their effect on the overall rotation. These two additional torques represent 



Journal of AppliedMath 2024, 2(3), 532.  

3 

a portion of the kinetic and potential energies that are important physical parameters 
in gyroscope theory. 

The motion of a gyroscope around the axes of the Cartesian coordinates is 
influenced by both its potential and kinetic energies, as well as the action of the 
resistance and precession inertial torques. These inertial torques indirectly represent 
the kinetic energy of the spinning disc, the kinetic energy of the gyroscope’s rotation 
around axes, and the potential energy of the external torque. It is important to note that 
the potential and kinetic energies of a gyroscope remain constant, which demonstrates 
the principle of mechanical energy conservation. The above characteristics of the 
gyroscope are explained by the new fundamental properties of its oscillation. 

2. Methodology 

The diagram in Figure 1 is a presentation of the published research on gyroscopic 
effects [21] that clearly illustrates the torques acting on gyroscopic devices. The 
spinning disc’s axle is horizontal, and an external torque T, as noted by the bold line, 
is applied to it. This generates a system of inertial, interrelated torques in the Cartesian 
coordinates, causing the gyroscope to move about its axes. However, the figure in 
previous publications does not display the vectors of the angular momentum Hx and 
Hy of the disc around axes ox and oy. 

 
Figure 1. Torques act on the spinning disc and its motions around the axes of 
Cartesian coordinates. 

For the readers, the actions of all inertial torques Tj.i with indices presented by the 
thin lines and the spinning disc angular velocities denoted by ωi and presented by the 
contour lines around axes i are explained in detail in Figure 1. The action of the load 
torque T and directions of angular velocities are represented in the counter-clockwise 
rotation around axes ox, oy, and oz. The external and inertial torques cause the spinning 
disc to rotate around these three axes. The rotations of the disc’s mass around axes ox, 
oy, and oz are represented by the vectors of the angular momentums Hx, Hy, and Hz, 
respectively. The changes in the disc’s angular momentums are represented by the 
vectors ΔHx and ΔHy around axes ox and oy, respectively. 

 The external torque, T, acts on the spinning disc around the axis ox and activates 
two inertial torques, Tct.x, caused by centrifugal forces (index ct) and acting 
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around axes ox and oy, respectively. The index “x” refers to the axis of origin, 
which is ox. The inertial torque, Tct.x, acting around the axis ox is a resistance 
torque to the load torque, T, and around the axis oy is a precession torque. The 
moment of inertia of the disc around the axis oz is represented as J. Meanwhile, 
the angular velocities of the disc around axes oz and ox are denoted as ω and ωx. 

 The external torque, T, generates the initial resistance torques of the Coriolis 
forces, Tcr.x (index cr), which act around the ox axis in the clockwise direction. 
Additionally, it causes a change in the angular momentum, Tam,x (index am), 
which acts around the oy axis in the counter-clockwise direction. 

 The load torques Tct.x and Tam.x acting around axis oy generate resistance and 
precession torques of the centrifugal forces, which act around axes oy and ox, 
respectively. Additionally, they generate the resistance torque of Coriolis forces 
Tcr.y that acts around axis oy, as well a precession torque of the change in angular 
momentum Tam.y that acts around axis ox. The precession torques of the 
centrifugal forces Tct.y and the change in angular momentum Tam.y are added to 
the initial two inertial torques Tct.x of the centrifugal forces and the torque of 
Coriolis forces Tcr.x acting around axis ox. 

 The resulting torque acting around the axis ox 𝑇 = 𝑇 − 𝑇 . − 𝑇 . − 𝑇 . −

𝑇 . = 𝑇 − (4π /9)𝐽𝜔𝜔 − (8/9)𝐽𝜔𝜔 − (4π /9)𝐽𝜔𝜔 − 𝐽𝜔𝜔  generates 

the corrected precession torques Tct.x and Tam.x acting around the axis oy that 
changing the values of the resistance torques of the centrifugal Tct.y, Coriolis Tcr.y 
forces acting around axis oy. The resulting torque acting around the axis oy 

is  𝑇 = 𝑇 . + 𝑇 . − 𝑇 . − 𝑇 . = (4π /9)𝐽𝜔𝜔 + 𝐽𝜔𝜔 − (4π /

9)𝐽𝜔𝜔 − (8/9)𝐽𝜔𝜔 . Two resistance and two precession torques act upon the 

ox and oy axes. 

 The disc’s rotations around the ox and oy axes create precession torques 𝑇 . =

𝐽 𝜔 𝜔  and 𝑇 . = 𝐽 𝜔 𝜔 . Both torques act around the oz axis, where Jx = Jy 

refers to the moment of inertia of the disc around the ox and oy axes, respectively. 
The inertial torques 𝑇 . = 𝑇 .  in the counter-clockwise and clockwise 

direction around the oz axis, are mutually subtracted and do not affect other 
inertial torques. 
Figure 1 illustrates how torques interact with feedback to produce the angular 

velocities of the disc around the Cartesian coordinate axes. This picture shows the 
basic principles of gyroscope theory, which are further explained in Table 1 [11]. 

Table 1. Physical principles of gyroscope theory. 

1) Inertial torques acting on the spinning disc 
Generated by Equation Action and resulting in motions 

Percentage, % Type 
Centrifugal forces, (index ct) 𝑇 . = (4π /9)𝐽𝜔𝜔  41,141 Resistance 

41,141 Precession 
Coriolis forces, (index cr) 𝑇 . = (8/9)𝐽𝜔𝜔  8337 Resistance 
Change in angular momentum, 
(index am) 

𝑇 . = 𝐽𝜔𝜔  9372 Precession 
𝑇 . = 𝐽 𝜔 𝜔  0 

𝑇 . = 𝐽 𝜔 𝜔  0 

2) Mechanical energy conservation law 
Dependency of angular velocities of the spinning disc about axes of rotation: 𝜔 = (8π + 17)𝜔 ) 
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Table 1 and Figure 1 show the expressions for the inertial torques produced by 
the rotating mass of the spinning disc. These torques are responsible for generating 
centrifugal and Coriolis forces as well as changes in angular momentum. The inertial 
torques have an index i that corresponds to their axis of origin and action ox, oy, or oz. 
The expressions for the torques of the change in the angular momentum related to the 
axis oz and the angular velocities of the spinning disc clearly indicate this index. The 
motions of the spinning disc are interconnected through the dependency of the angular 
velocities about the axes of rotation ox and oy. 

The previously mentioned inertial torques can be used to create mathematical 
models for various gyroscopic effects, including the oscillation and nutation of 
spinning objects. These are considered to be among the most complex problems in 
mechanical engineering. The oscillation processes of common objects such as a 
pendulum and spring are well-described in the sections on machine dynamics and 
vibration analysis of classical mechanics. Oscillations can be categorized into 
underdamped, damped, and critically damped types, each with distinct properties. 
 An underdamped oscillation maintains a constant amplitude over time, while a 

damped oscillation gradually reduces the amplitude of the oscillations over time. 
A critically damped system returns to its original position without oscillation. 
These properties apply to the oscillation of a gyroscope, with its unique 
characteristics. They can be compared to the oscillation of an extensible spring 
with a hung weight. When a weight is hung from a spring, it stretches to a certain 
length and generates a force equal to the weight in magnitude. The amplitude of 
the oscillation of the spring with the weight is determined by the action of the 
weight, the inertial force generated by its fall, and the resistance force of the 
stretched spring. 
When the gyroscope of one side support turns, it is brought down to a defined 

angle where the resistance torques generated by the rotating mass of the disc are equal 
to the components of the gyroscope weight. The amplitude of the gyroscope’s 
oscillation is determined by the weight of the gyroscope, the inertial torque generated 
by its fall, and the change in the resistance inertial torques generated by the rotating 
mass of the disc due to the turn of the gyroscope. In both cases, the potential energies 
of the spring and gyroscope weight, as well as the spring stretch and the gyroscope 
resistance inertial torques, are converted into the kinetic energy of their oscillations, 
and vice versa. 
 The damped oscillations of the spring and gyroscope exhibit the same level of 

specificity. In the case of a critically damped situation, the weight causes a minor 
stretch in the spring without any oscillation. When an external torque acts on one 
side of the gyroscope, it turns to an angle without returning to its initial position 
and oscillating. The potential energy of the weight of the spring is added to its 
stretch energy. The potential energy of the gyroscope weight decreases, and the 
kinetic energy of its resistance inertial torque decreases due to the turning of the 
gyroscope around its axis of rotation at a fixed angle. 

 The differences in potential and kinetic energies of an extensible spring with a 
weight and a gyroscope on one side support, when subjected to short-term 
external torque, show that the gyroscope oscillation follows the same rules as 
those accepted in machine dynamics and vibration analysis of classical 
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mechanics. Mathematical models for the gyroscope’s motion around axes should 
take into account the peculiarities of the changes in its potential and kinetic 
energies during oscillation. 
The constant kinetic energy of a gyroscope’s rotation around its axis depends on 

the spinning speed of the disc and its angular velocity of precession. This can be 
observed in the motions of a gyroscope that is suspended by a flexible cord on one 
side. If the spinning speed of the disc increases, the gyroscope’s angular velocity of 
precession decreases around its axis. This is because the inertial torques generated by 
the spinning disc have a larger value, and so they resist the action of the external 
torque. However, the difference in the values of these torques is small. When the 
rotor’s angular velocity is low, the gyroscope’s motions around its axes are faster. This 
happens because the value of the inertial torques is less, and the action of the external 
torque produced by the gyroscope’s weight is stronger. Although the mechanical 
energy transformation of gyroscopes is not the same as for physical objects like 
pendulums or springs, there are some similarities in the action of the resistance torques 
of the gyroscope and the spring and their oscillations. 
 The gyroscope rotor’s high angular velocity and the spring’s stiffness create the 

critical damping property in a gyroscope supported on one side, preventing any 
oscillation process. This is not the only similarity between the two dynamic 
objects. When an external load of minor value is applied for a short duration, the 
gyroscope supported on one side shifts by an angle γ around the ox axis (as shown 
in Figure 1) due to the torque difference between the gyroscope weight and the 
resistance torque. In this condition, the gyroscope does not rotate around the oy 
axis and has zero angular acceleration εy because all resistance and inertial 
torques are deactivated. The ratio between the angular velocities of the gyroscope 
along two axes is not maintained due to the inertia of the gyroscopic mass. This 
is because the angular velocity of the gyroscope around axis oy is about a hundred 
times greater than around axis ox. When the external load ceases to act, a 
resistance torque is activated around the axis ox. However, the gyroscope remains 
shifted at an angle γ and begins to rotate around the axis oy. The external load 
briefly stretches the spring, but it quickly returns to its initial state. 
When the rotor’s angular velocity decreases, the gyroscope with one side support 

starts oscillating. The weight of the gyroscope creates a torque that shifts it at an angle 
β around the axis ox (Figure 1). This movement is defined by the resistance inertial 
torque. The spring’s minor stiffness allows it to stretch under the weight of the 
gyroscope, enabling oscillation. If an external load of minor value is applied for a short 
duration, the gyroscope shifts at an angle γ1 around the axis ox. This action increases 
the value of its resistance and inertial torques. Please refer to Figure 1 for further 
clarification. When the external load stops moving, a resistance torque is activated 
around the axis ox, causing the gyroscope to oscillate back around the same axis. The 
gyroscope had initially shifted to angle β. Even though the external load stretches the 
spring, it eventually returns to its original state, allowing the oscillation process to 
continue. 

The functions of a spring or flexible component in the analysis of mechanical 
oscillation are carried out by the inertial torques generated by the centrifugal and 
Coriolis forces and the torque of the change in the angular momentum forces of the 
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rotating masses of the gyroscope. The gyroscope oscillates with specific properties 
that are represented by the different characteristics of the inertial torques and the spring 
in mechanical oscillation. 

The gyroscope oscillates and produces vibration through the constant action of 
torques. This phenomenon can be described analytically using the principles of 
mechanical energy conservation and the work of torques. However, for the sake of 
simplicity in analyzing the gyroscope oscillation, the effect of frictional torques at the 
spinning disc supports and the one-sided support of the gyroscope is not taken into 
consideration. 

3. Results and discussion 

The gyroscope oscillation is governed by classical mechanics. Recent 
publications have presented the inertial torques that act on the gyroscope and 
mathematical models that validate its motion through practical tests. The oscillation 
of the gyroscope is determined by the interrelated inertial torques that act on it. The 
rotating mass of the spinning object generates an inertial torque that expresses its 
kinetic energy and is involved in the oscillations. Machine dynamics and vibratory 
analysis describe oscillations of objects mainly in terms of underdamped, damped, and 
critically damped types, which are characterized by specific properties of the 
pendulum and spring. 

The following are the key properties that define the fundamental principles of 
oscillations for a gyroscope with one-side support: 

When the angular velocity of the rotor of the gyroscope is high, expressing its 
stiffness, it is considered critically damped. This is similar to a spring of high stiffness 
which is also critically damped. 

When the gyroscope experiences an external torque of short-time action, it shifts 
to a defined angle. As a result, the gyroscope’s potential energy and precession 
velocity decrease without oscillation. However, the critically damped spring does not 
shift under the action of an external load, as it has one end fixed. 

The oscillation properties of a gyroscope are more complex compared to those of 
a spring with weight. Gyroscope oscillation involves the kinetic energy of the spinning 
rotor and the weight of the gyroscope, which determine its stiffness. In contrast, the 
oscillation of a spring with weight is determined by the spring’s stiffness. When the 
spring oscillates, its kinetic energy is converted into potential energy due to spring 
extension. Similarly, in a gyroscope, its kinetic energy is converted into potential 
energy of the resistance inertial torques. A comparative analysis of their properties 
shows similarities in their oscillations. The key properties defining the fundamental 
principles of oscillations for a gyroscope with one-side support are as follows: When 
the angular velocity of the gyroscope’s rotor is high, indicating its stiffness, it is 
considered critically damped, similar to a spring of high stiffness, which is also 
critically damped. 

When an external torque is applied to the gyroscope for a short time, it moves to 
a specific angle. This causes a decrease in the potential energy and precession velocity 
of the gyroscope without any oscillation. On the other hand, a critically damped spring 
does not move when an external load is applied, as one end of the spring is fixed. The 
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potential energy from the external torque is converted into an increased resistance to 
the inertial torques generated by the spinning disc of the gyroscope. The external load 
compresses the spring and increases its resistance force. 

The increased resistance inertial torques play a role in the potential energy of the 
gyroscope, which is converted into kinetic energy of its motions. This property is also 
possessed by the spring. When the gyroscope is in a horizontal position and has low 
angular velocity, the spinning disc is shifted to an angle where its resistance torque 
equals the torque produced by the component of its weight. At the same time, a highly 
flexible spring is stretched under the influence of an external load. The kinetic energy 
of the resistance inertial torques depends on the angular velocities of the spinning rotor 
and the precession velocity around the axis of rotation, which are determined by its 
stiffness formulated by the principle of mechanical energy conservation. This property 
is also demonstrated in the spring. 

The analysis of gyroscope oscillations enables their description through the 
principles of machine dynamics and vibration analysis of classical mechanics. 
Understanding engineering allows for solvable problems related to the oscillation 
processes of gyroscopic devices. 

4. Conclusion 

The textbooks on engineering mechanics provide a detailed analysis of the 
dynamic machine and vibratory properties of a pendulum and spring oscillations. 
Although these properties cannot be directly applied to gyroscope oscillation due to 
different physical principles, there are some similarities. For a long time, gyroscope 
oscillation lacked mathematical models due to this reason. Classical mechanics 
establishes the fundamental principle of object oscillation based on the conservation 
of mechanical energy. The conversion of potential energy to kinetic energy and vice 
versa can be applied to gyroscope oscillation. The main challenge lies in defining the 
forms of energy conversion and their properties. A physical analysis of the nature of 
the inertial torques generated by the rotating mass of spinning objects enables the 
definition of the fundamental principles of gyroscope oscillations and their properties. 
A new theory for gyroscopic effects can solve this problem and derive mathematical 
models for gyroscope oscillations. 
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