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Abstract: A Hidden Markov Model containing both stationary Markov processes and
time-varyingMarkov processes is considered: the correspondingMarkov chain is newly
proven to be one whose transition operators are on a space with Hilbert metric (whose
measure exists and is unique). The Markov chain is therefore newly proven to be one
with bounded moments. The further mathematical developments are envisaged. Ap-
plications are newly given for the analytical expressions of description of allosteric
systems. The model of interaction of the K-RAS4B proteins with lipid membranes is
newly considered accordingly; new drug design is explained.

Keywords: Markov chains; HiddenMarkovModels; Hilbert metrics; existence and uniqueness
of measure

1. Introduction
The processes of interaction of the K-RAS4B proteins with the lipid membranes are con-

sidered: they are known to consist of two different states of a Markov Model, i.e. a Hiddden
Markov Model, where two states are identified as the ’before-transition’ state and the ’pre-
transition’ state, of which the former is a stationary Markov process, and the latter is a time-
varying Markov process.

The Hidden Markov Model (HidMM) is obtained after some clustering techniques from
the (experimentally-observed) Markov-State Model (MSM).

The Markov chain corresponding to the MSM from which the clusters of the HidMM
are issued is newly analytically identified (from the experimental data) as one whose transition
operators are on a space with Hilbert metrics whose measure is newly proven to exists and to
be unique.

The results are therefore newly applied to the analytical expressions of description of
the experiment of the interaction of the K-RAS4B proteins with lipid membranes. The new
application to drug design are envisaged.

The paper is organised as follows.
In Section 3, the experiments observing the dynamics of K-RAS4B proteins with mem-

branes are recalled.
In Section 4, the experiments demonstrating the qualities of the interaction of the K-

RAS4B proteins with lipid membranes are reviewed; the corresponding HidMM’s are described.
In Section 5, the elements apt to the identification of the corresponding Markov chain and

of its probability space are gathered.
In Section 6, the clustering methods by means of which the HidMM’s are issued from the

MSM’s are recapitulated.
In Section 7, the partitions of the corresponding Markov chain are proven to be Sinai; the

Markov chain corresponding to the analysed HidMM is newly proven to be one with Hilbert
metrics.
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The Discussion is provided with theMarkov chain, which is commented as being one with
bounded moments. New drug design are discussed accordingly.

2. Aims and scope
The Chain from which the HidMM’s of KRAS4-B rpoteins interaction with lipidic mem-

branes are issued is analytically proven to be one with Hilbert metric.
To this purpose, the proerties of the HidMM’s were analysed to demonstrated that the

number of the states depend on the number of critical points in the time sequence (within the
experimental data). The Baum-Welch algorithm and the Bakis model were compared; for the
comparison, the numbers of states of the possible (within propagation of experimental error)
HidMM’s are chosen as those which are not varying in time: the motion capture data are de-
scribed in the next Section.

A generic Markov Chain X̃ is one whose states are defined on a Borel (sub-)set, endowed
with its σ-algebra: these properties are here upgraded to a Chain with a Hilbert metric.

For further purposes, which can find application in both the improvement of the data anal-
ysis and theoretical developments, the originating Chain is commented to be one with bounded
moments.

3. The dynamics of K-RAS4B proteins with membranes
From López et al. [1], the dynamics of the KRAS4B proteins with lipid membranes is

schematised after data analysis and numerical simulation.
The behaviour of the KRAS4B proteins in solutions and in membranes was tried after

numerical simulations in Prakash and Gorfe [2].
The data analysed are those related to the mechanisms of the cell growth and those of the

cell differentiation: the synamics of the proteins is scrutinised at the cell-scale point of view.
Various schemes of membranes were taken into account, such as i.e. the ‘binary fluids

mixtures’ and the ‘heterogeneous raft mimics’.
The analysis in López et al. [1] applies the long time scale coarse graining discretisation

method in order to define the Markov state models where the proper eigenvalue scheme is not
explained ibidem. In the following, a dominant-egeinvalue technique will be newly followed.

The dynamics of the proteins is specified as ‘modulated’ after the presence of anyonic
lipids and the activation is attributed to the ‘nucleotide state’.

As a partial result from López et al. [1], we outline here the description of the hyper-viable
region as induced of ’preferential partitioning the domains of the membranes, from which the
signaling originates.

The study of the conformational-dynamics-dependent orientations has gained relevant fo-
cus after NMR spectroscopy and conformational-dynaics simulations techniques [3].

Two main orientations of the membranes were discovered to be associated with two main
configurations, one orthogonal with respect to the membrane, and one parallel [4–7]: the ex-
perimental evidence gathered in these items of bibliography is in the present paper given a
systematic analytical description.

Numerical simulations issued from the experimental data are available in a wide range of
contests [8–13]: all these previous experimental results are in the present work framed within
the suitable Markov model.

The dynamics of K-RAS4B proteins is studied in regulating signaling pathways which
determine the cell growth and the cell differentiation in some authors’ studies [14–17].

The allosteric behaviour of the K-RAs4B proteins in the molecular dynamics with respect
to lipid membranes is proposed to be described in López et al. [1] as within the dynamics of
Hidden Markov Model (HidMM).
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More in details, the determination of the states of the HidMM is regulated after the Hyper-
Viable-Region molecular dynamics , of which the description of the transition is path-signaling.
The dynamics of the processes which determine the conditions for the transition in the Markov
landscape are defined as:

i) a ‘before-transition state’, which is defined after a stationary Markov process; and

i) a ‘pre-transition state’, which is described as a time-varying Markov process.

The critical states of complex dynamics systems are the pre-transition states.
From Cholewa and Gomb [18], the methods to establish the number of states of the

HidMM can follow form the number of critical points of the motion capture data.
The recognition of patterns in the data sequences is applied to time sequences. The number

of states of the HidMM is predicted such as the number of states does not change with the time
evolution.

The results can be achieved after the Baum-Welch algorithm of wrt the Bakis model.
From Cholewa and Gomb [19], the number of states of the HidMM is estimated after the

number of critical points in the time sequence. As a perspective study, it is worth remarking that
pioneering analyses of the dynamics at time scale which are not resolved after the experimental
available technique are are reported in Prakash and Gorfe [20].

4. The molecular dynamics of K-RAS4B proteins within lipids mem-
branes
The properties of the molecular dynamics of K-RAS4B proteins within the framework

of interaction with lipids membranes are analysed in López et al. [1] from both an optimistic
molecular-dynamics point of view and a coarse-grained molecular dynamics. The technique
is placed among the study of force-field parameters for non-conventional amino-acids and that
of post-transactionally lipid-modified amino-acids. The models are resolved after numerical
simulation.

The Markov models were selected as follows, as chosen in López et al. [1].
The transition related to the orientation of the lipidic membrane are described after coarse-

graining approximation.
The MSM and the HiddMSM are considered.
The use of the coarse-graining method is justified after the analysis of the protein data

bank PDB 4GON which provides one with the coordinates of the KRAS4B proteins.
The meta-stable states within the coarse-graining method at the implied time scales are

therefore selected. The free-energy barriers of the Markov states space are accounted for as
modifying the Gaussian heights; a bias term is considered.

TheMSMcan be considered in order to account for themetastable states within the implies
time scales.

The Markov-State model is one consisting of n = 400 microstates by use of k-means
clustering algorithm as from Hartigan andWong [21]. The algorithm [21] is based on searching
all the points of one cluster which are characterised such that the movement form one cluster to
another one does not reduce the ’within-cluster’ sum of squares.

The microstates are selected according to the time scales inferred after the eigenvalues as
a function of the lag time.

The observed differences of the lag timescale described after the presentation ofM metastable
states.

The implied time-scale exhibits a ‘plateau’ trend at 450ns.
The Perron ‘cluster-cluster’ analysis from Deuflhard and Weber [22] is used: the almost-

invariant sets of molecular dynamical systems are selected for time-discretised Markov opera-
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tors: the matrix representation is constituted after the pertinent eigenvalue-problem.
The Perron ‘cluster-cluster’ analysis allows to select 4metastable statesM . The allosteric

properties of the KRAS-4B proteins with respect to some lipid membranes is validated to be
analysed within the Markov approaches after Unbiased Molecular Dynamics Simulations in
Castelli [23].

The phenomenon of selective membrane localization and clustering into microdomains of
KRAS-4B proteins is described in Weise [24].

5. Measure-theoretical developments from the probability spaces of
the Markov chains
Finite-states Markov chains are used for the analysis in Petrie [25].
Let Â be the matrix which generates a stationary Markov process {Xt}, according to the

entries
aij = P [Xt = j | Xt = i]. (1)

Let B̂ be the matrix that generates the stationary Markov process {Yt} according to the
entries

bjk = P [Yt = k | Xt = j]. (2)

Let R be the set of integers R = 1, 2, , ..., r; R∞ is defined as

R∞ = Π∞
t−1Rt. (3)

whereRt is a point Y ∈ R∞ with coordinates Yt; Â and B̂ define a measure onR∞ for ki ∈ R

after the stationary absolute distribution for Â. The process {Yt} is the probabilistic function
of the Markov process {Xt}.

From Baum et al. [26], the maximisation techniques which are necessitated in the statisti-
cal analysis of probabilistic functions of Markov chains are studied.

The given Â is therefore a stochastic matrix; one requests Â to be an s × s matrix, from
which the ai, i.e. the probability distributions are defined; the probability densities fi are nor-
malised as

∫
fi(y)dy = 1.

Given a the stationary distribution of the matrix Â, the process {Yt} is the probabilistic
function of the process {Xt} determined after Â. The triple (Â, a, f) therefore identifies a
probability space. It is therefore needed to define the measure of the probability space. For this
purpose, let Λ be an open subset of the Euclidean space: the following properties holds:

∀λ ∈ Λ∃λ : λ → (Â(λ), a(λ), f(λ)) (4)

with fi(y) being define the density in y ∀ fixed y; fi(y) is a smooth function of λ: therefore,
∃y1, y2, ..., yT which defines

Py1,y2,...,yT
(λ) = Py1,y2,...,yT

(Â(λ).a(λ), f(λ)) (5)

Py1,y2,...,yT
(Â(λ), a(λ), f(λ)) is a smooth function of λ.

The problem to be solved is one to maximalise P over λ. It is worth recalling that the
measure is here chosen; therefore, the probabiities are to bemaximalised according to the chosen
measure, the procedure being complementary to that described in Jenkinson [27] as, even if a
HiddMM is to be chosen, the state space can be requested to be scanned,i.e. the free-energy
barriers between states are requested to be not infinite among the accessible chosen states. For
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this purpose, one remarks that there exists a transformation T , T : Λ → Λ, and such that

Py1,y2,...,yT
(T (λ)) = Py1,y2,...,yT

(λ) (6)

unless λ is a critical point. The critical points will be examined in the following Section 7.
It is the present purpose to define the measure of the probability space (Â, a, f).

Let Pλ be
Pλ =

∫
X

p(x, λ)dµ(x), (7)

and let Qλ,λ′ be

Qλ,λ′ =

∫
X

Pλ(x, λ)log(p(x, λ
′))dµ(x); (8)

the probability measure dνλ is therefore defined as

dνλ ≡ p(x, λ)

P (λ)
dµ(x). (9)

Furthermore, ∀T continuous map, T (λ) is a critical point of Q(λ, λ′) as a function of λ′.
Moreover, ∀f(u) ∃ a two-parameter family fm,ρ(u) which qualify f(u) according to m

the location and to ρ > 0 the scale parameter as

fm,ρ(u) = ρ−1f(u−m)ρ. (10)

Pm,ρ is expressed according to the measure µ(x) > 0.
The corresponding expression of Q becomes

Qi(m, ρ,m′, ρ′) ≡
1=s∑
i=1

Qi(m, ρ,m′, ρ′) (11)

The request that fi(u) be strictly log-concave is expressed.

6. The clustering methods
As from Hartigan and Wong [28], in Hartigan [29] the K-means clustering algorithm is

explained as aimed at dividing the n point (i.e. the states of the MSM) into M clusters (i.e.
the states of the HidMM) in the way such that the ’within-cluster’ sum of squares is minimised.
Instead of the optimisation within the states of the MSM, the condition is given, that there exists
no movement of a point form one clusterM to another clusterM ′ to reduce the ‘within-cluster’
sum of squares.

FromDiMasi and Stettner [30], the condition for existence and uniqueness of the measure
of the HidMM from the probability space corresponding to the processes is studied.

The probability space of the HidMM is one consisting of the triple (Ω,F ,P), being the
triple (state, obsrevation, filter) of the states Omega of the partition, the observation opera-
tor F and the filter P , respectively.

From the probability space, a normed space with Borel measure is obtained; the transition
Kernel of the Markov process is therefore one with Borel measure.

The existence and uniqueness of the invariant measure for the pair (filter, observation)
is ensured after the existence and uniqueness of that of the probability space.

Ergodicity of the pair (filter, observation) is ensured after the uniqueness of invariant
measures for the transition operator of the Markov process.

The asymptotic stability of the filter allows one to infer that the metric on the probability
is that of probability measures defined in Liverani [31], where, for the Markov partitions, the
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metrics are Hilbert.
As from Cholewa and Gomb [19], the mode of estimation of the number of states of

the HidMM can be selected after the Akaike Information Criterion [32] (AIC) of search of
the minimum AIC value of the likelihood function. Its effect is differently for different data-
acquisition systems.

7. The measure of the chain
Within the enforcement of the Hilbert metric from Liverani [31] for the methods of Di

Masi and Stettner [30], the ergodicity of the Markov processes described allows one to ensure
that the partitions are Sinai [33].

From Sinai [33], the measure for the partition is the invariant measure of the σ-algebra of
all the Borel subsets.

From Sinai [33], the measure of the partitioned manifold of the Markov chain is the
Lebesgue measure.

In the present work, the existence and uniqueness of a Hilbert measure for the partitions
from which the HidMM is obtained is newly proven by construction.

8. Discussion
The main purpose of the present work is the study of the originating Chain of the HiddMM

of KRAS4B proteins in lipidic membranes environment. More in detail, the originating Chain
is proven to be one with Hilbert metric. The achievement is to upgrade from themeasures issued
after the σ-algebra of the Borel (sub-)sets of the generic Markov Chain definition to a Hilbert
measure.

In the present paper, the HiddMM’s are considered, which contain both stationary Markov
processes and time-varyingMarkov processes. TheMSM’s fromwhich theHidMM’s are issued
are analysed. The corresponding Markov chain is newly proven by construction to be one with
Hilbert metrics. In the present work, the allosteric behaviour of certain types of proteins with
respect to membranes is newly considered.

More in detail, analytical expressions of the behaviour of K-RAS4B proteins with respect
of lipid-membranes environments are newly taken into account.
In the study of Banerjee et al. [34], the hypervariable region of the KRAS4B proteins is demon-
strated to be disordered; the oncogenic mutations are recalled to modulate the binding in lipidic
environment: as a result, the interaction is depicted as determined after both the protein features
and the environment. For this reason, in the study of Chen et al. [35], the phase transitions are
identiifed, according to which a Hidden Markov Model is able to identify the stationary before-
transition state to the time-varying pre-transition state.

The spatiotemporal distribution of the path-signaling region is studied in the study of
Shrestha et al. [36]; the interaction with the phospholipids of cellular plasma membranes is
focused about: the non-Brownian features are examined in the study of Metzler et al. [37].

The atomic interaction of the KRAS mutants with particular enzymes are investigated
in the study of Khaled and Gorfe [38] after ’all-atom molecular dynamics simulations’, by
means of which corresponding Markov state models can be constructed; the catalytic domain
and the hyper variable region are investigated according to the conformational changes which
are aside of the binding mechanisms with membranes and with further-related proteins: the
phosphorylation of specific aminoacids is anew investigated.

Application to new drug design in envisaged after Lu et al. [39] and after Lu et al. [40].
More in detail, in Lu et al. [39], the interaction of theK-RAS4B proteinswith Phosphodiesterase
δ is studied. Furthermore, in Lu et al. [40], the designs of new drugs for targeting a broader
class of oncogens is examined. The new techniques developed in the present work allow one
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to newly broaden the analyses from the new perspective as far as the stationary processes and
the non-stationary processes are concerned.

The finding of the existence and of the uniqueness of the Hilbert measure is crucial to
be applied to the modelisations described in the above as far as the statistical analyses of the
experimental data are concerned for the processes descried in the above, as well as for several
different applications.

The study of the moments of the chains is a longstanding problem.
The study of moments of the originating chain is crucial for the perspective studies here

presented.
The convergence of movements in stationary Markov Chains was studied in Holewijn and

Hordijk [41]; more in detail, the necessary conditions and the sufficient ones for the convergence
of the first moment is studied.

In Bertail and Clémencon [42], the tails of functionals of Markov chains are proven to
have sharp bounds.

In Dobrushin [43], the version of the central limit theorem of non-stationary Markov
chains is studied.

The convergence of moments in a Markov-chain central limit theorem is proven in Stein-
saltz [44].

In Kartashov [45], some of the properties of time-inohogeneous Markov chains are started
to being investigated.

From Naor et al. [46], the Markov chain with Hilbert measure is one with bounded mo-
ments.

All these properties, and in particular, those which lead to the understanding of the cen-
tral limit theorem on the chosen chain allow one to implement the least-square method after
new finding of the corresponding the Tchebys’ev inequalities for the study of the maximal
likeli-hood of the propagated error in the data analysis of the experiments: these purposes are
uninvestigated yet. Nevertheless, already the upgrade to a normed space is wished.

Further aspects of the behaviour of the K-RAS4B proteins in lipidmembranes can be taken
into account.

The dynamics of the K-RAS4b proteins in lipid environment is studied to depend on the
lipid composition of the medium after NMR techniques [47].

Nanoclusters are reported to be observed in X-ray cristallogrphy in Shrestha et al. [48];
the lifetime of the nanoclusters is calculated in Sarkar and Goswami [49].

The proteins conformations are analysed to undergo the effect of the lipid membranes as
far as their interactions is concerned; the topology of the mechanism is described in Shree [50].

The role of electrostatics in the behaviour of the proteins in lipid membranes is depicted in
Ki-Young et al. [47] after NMR experiments as far as the orientation of the proteins is concerned,
and in Lee [51]. The spatio-temporal evolution of the orientation is analysed in numerical
simulations of the dynamics in Van [52]; the quantitative paramagnetic effects are investigated
in Gu et al. [53].

Potential applications of the mathematical features of the studied phenomenon to new
drugs design is studied in the study of authors [54–56].

Data availability: The data used in the analysis of this manuscript is taken from ATC,
Ghana. They usually mount the mast for MTN-Ghana.
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