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Abstract: A Hidden Markov Model containing both stationary Markov processes and time-
varying Markov processes is considered: the corresponding Markov chain is newly proven to
be one whose transition operators are on a space with Hilbert metric (whose measure exists
and is unique). The Markov chain is therefore newly proven to be one with bounded moments.
The further mathematical developments are envisaged. Applications are newly given for the
analytical expressions of description of allosteric systems. The model of interaction of the
K-RAS4B proteins with lipid membranes is newly considered accordingly; new drug design is
explained.

Keywords: Markov chains; HiddenMarkovModels; Hilbert metrics; existence and uniqueness
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1. Introduction

The processes of interaction of the K-RAS4B proteins with the lipid membranes
are considered: they are known to consist of two different states of a Markov Model,
i.e. a Hiddden Markov Model, where two states are identified as the ’before-transition’
state and the ’pre-transition’ state, of which the former is a stationary Markov process,
and the latter is a time-varying Markov process.

The HiddenMarkovModel (HidMM) is obtained after some clustering techniques
from the (experimentally-observed) Markov-State Model (MSM).

The Markov chain corresponding to the MSM from which the clusters of the
HidMM are issued is newly analytically identified (from the experimental data) as one
whose transition operators are on a space with Hilbert metrics whose measure is newly
proven to exists and to be unique.

The results are therefore newly applied to the analytical expressions of description
of the experiment of the interaction of the K-RAS4B proteins with lipid membranes.
The new application to drug design are envisaged.

The paper is organised as follows.
In Section 3, the experiments observing the dynamics of K-RAS4B proteins with

membranes are recalled.
In Section 4, the experiments demonstrating the qualities of the interaction of the

K-RAS4B proteins with lipid membranes are reviewed; the corresponding HidMM’s
are described.

In Section 5, the elements apt to the identification of the corresponding Markov
chain and of its probability space are gathered.
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In Section 6, the clustering methods by means of which the HidMM’s are issued
from the MSM’s are recapitulated.

In Section 7, the partitions of the corresponding Markov chain are proven to be
Sinai; the Markov chain corresponding to the analysed HidMM is newly proven to be
one with Hilbert metrics.

The Discussion is provided with the Markov chain, which is commented as being
one with bounded moments. New drug design are discussed accordingly.

2. Aims and scope

The Chain fromwhich the HidMM’s of KRAS4-B rpoteins interaction with lipidic
membranes are issued is analytically proven to be one with Hilbert metric.

To this purpose, the proerties of the HidMM’s were analysed to demonstrated that
the number of the states depend on the number of critical points in the time sequence
(within the experimental data). The Baum-Welch algorithm and the Bakis model were
compared; for the comparison, the numbers of states of the possible (within propagation
of experimental error) HidMM’s are chosen as those which are not varying in time: the
motion capture data are described in the next Section.

A generic Markov Chain X̃ is one whose states are defined on a Borel (sub-)set,
endowedwith itsσ -algebra: these properties are here upgraded to a Chainwith aHilbert
metric.

For further purposes, which can find application in both the improvement of the
data analysis and theoretical developments, the originating Chain is commented to be
one with bounded moments.

3. The dynamics of K-RAS4B proteins with membranes

From López et al. [1], the dynamics of the KRAS4B proteins with lipid
membranes is schematised after data analysis and numerical simulation.

The behaviour of the KRAS4B proteins in solutions and in membranes was tried
after numerical simulations in Prakash and Gorfe [2].

The data analysed are those related to the mechanisms of the cell growth and those
of the cell differentiation: the synamics of the proteins is scrutinised at the cell-scale
point of view.

Various schemes of membranes were taken into account, such as i.e. the ‘binary
fluids mixtures’ and the ‘heterogeneous raft mimics’.

The analysis in López et al. [1] applies the long time scale coarse graining
discretisation method in order to define the Markov state models where the proper
eigenvalue scheme is not explained ibidem. In the following, a dominant-egeinvalue
technique will be newly followed.

The dynamics of the proteins is specified as ‘modulated’ after the presence of
anyonic lipids and the activation is attributed to the ‘nucleotide state’.

As a partial result from López et al. [1], we outline here the description of
the hyper-viable region as induced of ’preferential partitioning the domains of the
membranes, from which the signaling originates.
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The study of the conformational-dynamics-dependent orientations has gained
relevant focus after NMR spectroscopy and conformational-dynaics simulations
techniques [3].

Two main orientations of the membranes were discovered to be associated with
twomain configurations, one orthogonal with respect to themembrane, and one parallel
[4–7]: the experimental evidence gathered in these items of bibliography is in the
present paper given a systematic analytical description.

Numerical simulations issued from the experimental data are available in a wide
range of contests [8–13]: all these previous experimental results are in the present work
framed within the suitable Markov model.

The dynamics of K-RAS4B proteins is studied in regulating signaling pathways
which determine the cell growth and the cell differentiation in some authors’ studies
[14–17].

The allosteric behaviour of the K-RAs4B proteins in the molecular dynamics with
respect to lipid membranes is proposed to be described in López et al. [1] as within the
dynamics of Hidden Markov Model (HidMM).

More in details, the determination of the states of the HidMM is regulated after the
Hyper-Viable-Region molecular dynamics , of which the description of the transition
is path-signaling. The dynamics of the processes which determine the conditions for
the transition in the Markov landscape are defined as:

i) a ‘before-transition state’, which is defined after a stationary Markov process; and
ii) a ‘pre-transition state’, which is described as a time-varying Markov process.

The critical states of complex dynamics systems are the pre-transition states.
From Cholewa and Gomb [18], the methods to establish the number of states of

the HidMM can follow form the number of critical points of the motion capture data.
The recognition of patterns in the data sequences is applied to time sequences.

The number of states of the HidMM is predicted such as the number of states does not
change with the time evolution.

The results can be achieved after the Baum-Welch algorithm of wrt the Bakis
model.

From Cholewa and Gomb [19], the number of states of the HidMM is estimated
after the number of critical points in the time sequence. As a perspective study, it
is worth remarking that pioneering analyses of the dynamics at time scale which are
not resolved after the experimental available technique are are reported in Prakash and
Gorfe [20].

4. The molecular dynamics of K-RAS4B proteins within lipids
membranes

The properties of the molecular dynamics of K-RAS4B proteins within the
framework of interaction with lipids membranes are analysed in López et al. [1]
from both an optimistic molecular-dynamics point of view and a coarse-grained
molecular dynamics. The technique is placed among the study of force-field parameters
for non-conventional amino-acids and that of post-transactionally lipid-modified
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amino-acids. The models are resolved after numerical simulation.
The Markov models were selected as follows, as chosen in López et al. [1].
The transition related to the orientation of the lipidic membrane are described after

coarse-graining approximation.
The MSM and the HiddMSM are considered.
The use of the coarse-graining method is justified after the analysis of the protein

data bank PDB 4GON which provides one with the coordinates of the KRAS4B
proteins.

The meta-stable states within the coarse-graining method at the implied time
scales are therefore selected. The free-energy barriers of the Markov states space are
accounted for as modifying the Gaussian heights; a bias term is considered.

The MSM can be considered in order to account for the metastable states within
the implies time scales.

The Markov-State model is one consisting of n = 400 microstates by use of
k-means clustering algorithm as from Hartigan and Wong [21]. The algorithm [21]
is based on searching all the points of one cluster which are characterised such that the
movement form one cluster to another one does not reduce the ’within-cluster’ sum of
squares.

The microstates are selected according to the time scales inferred after the
eigenvalues as a function of the lag time.

The observed differences of the lag timescale described after the presentation of
M metastable states.

The implied time-scale exhibits a ‘plateau’ trend at 450ns.
The Perron ‘cluster-cluster’ analysis from Deuflhard and Weber [22] is used: the

almost-invariant sets of molecular dynamical systems are selected for time-discretised
Markov operators: the matrix representation is constituted after the pertinent
eigenvalue-problem.

The Perron ‘cluster-cluster’ analysis allows to select 4 metastable states M. The
allosteric properties of the KRAS-4B proteins with respect to some lipid membranes
is validated to be analysed within the Markov approaches after Unbiased Molecular
Dynamics Simulations in Castelli [23].

The phenomenon of selective membrane localization and clustering into
microdomains of KRAS-4B proteins is described in Weise [24].

5. Measure-theoretical developments from the probability spaces of
the Markov chains

Finite-states Markov chains are used for the analysis in Petrie [25].
Let Â be the matrix which generates a stationary Markov process {Xt}, according

to the entries
ai j = P[Xt = j | Xt = i]. (1)

Let B̂ be the matrix that generates the stationary Markov process {Yt} according
to the entries

b jk = P[Yt = k | Xt = j]. (2)
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Let R be the set of integers R = 1,2, , ...,r; R∞ is defined as

R∞ = Π∞
t−1Rt . (3)

whereRt is a pointY ∈R∞ with coordinatesYt ; Â and B̂ define ameasure onR∞ for ki ∈R
after the stationary absolute distribution for Â. The process {Yt} is the probabilistic
function of the Markov process {Xt}.

From Baum et al. [26], the maximisation techniques which are necessitated in the
statistical analysis of probabilistic functions of Markov chains are studied.

The given Â is therefore a stochastic matrix; one requests Â to be an s× s matrix,
fromwhich the ai, i.e. the probability distributions are defined; the probability densities
fi are normalised as

∫
fi(y)dy = 1.

Given a the stationary distribution of the matrix Â, the process {Yt} is the
probabilistic function of the process {Xt} determined after Â. The triple (Â,a, f )
therefore identifies a probability space. It is therefore needed to define the measure
of the probability space. For this purpose, let Λ be an open subset of the Euclidean
space: the following properties holds:

∀λ ∈ Λ∃λ : λ → (Â(λ ),a(λ ), f (λ )) (4)

with fi(y) being define the density in y ∀ fixed y; fi(y) is a smooth function of λ :
therefore, ∃y1,y2, ...,yT which defines

Py1,y2,...,yT (λ ) = Py1,y2,...,yT (Â(λ ).a(λ ), f (λ )) (5)

Py1,y2,...,yT (Â(λ ),a(λ ), f (λ )) is a smooth function of λ .
The problem to be solved is one to maximalise P over λ . It is worth recalling

that the measure is here chosen; therefore, the probabiities are to be maximalised
according to the chosen measure, the procedure being complementary to that described
in Jenkinson [27] as, even if a HiddMM is to be chosen, the state space can be requested
to be scanned, i.e. the free-energy barriers between states are requested to be not infinite
among the accessible chosen states. For this purpose, one remarks that there exists a
transformation T , T : Λ → Λ, and such that

Py1,y2,...,yT (T (λ )) = Py1,y2,...,yT (λ ) (6)

unless λ is a critical point. The critical points will be examined in the following Section
7.
It is the present purpose to define the measure of the probability space (Â,a, f ).

Let Pλ be
Pλ =

∫
X

p(x,λ )dµ(x), (7)

and let Qλ ,λ ′ be
Qλ ,λ ′ =

∫
X

Pλ (x,λ )log(p(x,λ ′))dµ(x); (8)
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the probability measure dνλ is therefore defined as

dνλ ≡ p(x,λ )
P(λ )

dµ(x). (9)

Furthermore, ∀T continuous map, T (λ ) is a critical point of Q(λ ,λ ′) as a
function of λ ′.

Moreover, ∀ f (u) ∃ a two-parameter family fm,ρ(u) which qualify f (u) according
to m the location and to ρ > 0 the scale parameter as

fm,ρ(u) = ρ−1 f (u−m)ρ. (10)

Pm,ρ is expressed according to the measure µ(x)> 0.
The corresponding expression of Q becomes

Qi(m,ρ,m′,ρ ′)≡
1=s

∑
i=1

Qi(m,ρ,m′,ρ ′) (11)

The request that fi(u) be strictly log-concave is expressed.

6. The clustering methods

As from Hartigan and Wong [28], in Hartigan [29] the K-means clustering
algorithm is explained as aimed at dividing the n point (i.e. the states of the MSM)
into M clusters (i.e. the states of the HidMM) in the way such that the ’within-cluster’
sum of squares is minimised. Instead of the optimisation within the states of the MSM,
the condition is given, that there exists no movement of a point form one cluster M to
another cluster M′ to reduce the ‘within-cluster’ sum of squares.

From Di Masi and Stettner [30], the condition for existence and uniqueness of the
measure of the HidMM from the probability space corresponding to the processes is
studied.

The probability space of the HidMM is one consisting of the triple (Ω,F ,P),
being the triple (state,obsrevation, f ilter) of the states Omega of the partition, the
observation operator F and the filter P , respectively.

From the probability space, a normed space with Borel measure is obtained; the
transition Kernel of the Markov process is therefore one with Borel measure.

The existence and uniqueness of the invariant measure for the pair
( f ilter,observation) is ensured after the existence and uniqueness of that of the
probability space.

Ergodicity of the pair ( f ilter,observation) is ensured after the uniqueness of
invariant measures for the transition operator of the Markov process.

The asymptotic stability of the f ilter allows one to infer that the metric on the
probability is that of probability measures defined in Liverani [31], where, for the
Markov partitions, the metrics are Hilbert.

As from Cholewa and Gomb [19], the mode of estimation of the number of states
of the HidMM can be selected after the Akaike Information Criterion [32] (AIC) of
search of the minimum AIC value of the likelihood function. Its effect is differently for
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different data-acquisition systems.

7. The measure of the chain

Within the enforcement of the Hilbert metric from Liverani [31] for the methods
of Di Masi and Stettner [30], the ergodicity of the Markov processes described allows
one to ensure that the partitions are Sinai [33].

From Sinai [33], the measure for the partition is the invariant measure of the
σ -algebra of all the Borel subsets.

From Sinai [33], the measure of the partitioned manifold of the Markov chain is
the Lebesgue measure.

In the present work, the existence and uniqueness of a Hilbert measure for the
partitions from which the HidMM is obtained is newly proven by construction.

8. Discussion

The main purpose of the present work is the study of the originating Chain of
the HiddMM of KRAS4B proteins in lipidic membranes environment. More in detail,
the originating Chain is proven to be one with Hilbert metric. The achievement is to
upgrade from the measures issued after the σ -algebra of the Borel (sub-)sets of the
generic Markov Chain definition to a Hilbert measure.

In the present paper, the HiddMM’s are considered, which contain both stationary
Markov processes and time-varying Markov processes. The MSM’s from which the
HidMM’s are issued are analysed. The correspondingMarkov chain is newly proven by
construction to be onewith Hilbert metrics. In the present work, the allosteric behaviour
of certain types of proteins with respect to membranes is newly considered.

More in detail, analytical expressions of the behaviour of K-RAS4B proteins with
respect of lipid-membranes environments are newly taken into account.
In the study of Banerjee et al. [34], the hypervariable region of the KRAS4B proteins
is demonstrated to be disordered; the oncogenic mutations are recalled to modulate
the binding in lipidic environment: as a result, the interaction is depicted as determined
after both the protein features and the environment. For this reason, in the study of Chen
et al. [35], the phase transitions are identiifed, according to which a Hidden Markov
Model is able to identify the stationary before-transition state to the time-varying
pre-transition state.

The spatiotemporal distribution of the path-signaling region is studied in the study
of Shrestha et al. [36]; the interaction with the phospholipids of cellular plasma
membranes is focused about: the non-Brownian features are examined in the study
of Metzler et al. [37].

The atomic interaction of the KRAS mutants with particular enzymes are
investigated in the study of Khaled and Gorfe [38] after ’all-atom molecular
dynamics simulations’, by means of which corresponding Markov state models can
be constructed; the catalytic domain and the hyper variable region are investigated
according to the conformational changes which are aside of the binding mechanisms
with membranes and with further-related proteins: the phosphorylation of specific
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aminoacids is anew investigated.
Application to new drug design in envisaged after Lu et al. [39] and after Lu et

al. [40]. More in detail, in Lu et al. [39], the interaction of the K-RAS4B proteins with
Phosphodiesterase δ is studied. Furthermore, in Lu et al. [40], the designs of new drugs
for targeting a broader class of oncogens is examined. The new techniques developed
in the present work allow one to newly broaden the analyses from the new perspective
as far as the stationary processes and the non-stationary processes are concerned.

The finding of the existence and of the uniqueness of the Hilbert measure is crucial
to be applied to the modelisations described in the above as far as the statistical analyses
of the experimental data are concerned for the processes descried in the above, as well
as for several different applications.

The study of the moments of the chains is a longstanding problem.
The study of moments of the originating chain is crucial for the perspective studies

here presented.
The convergence of movements in stationary Markov Chains was studied in

Holewijn and Hordijk [41]; more in detail, the necessary conditions and the sufficient
ones for the convergence of the first moment is studied.

In Bertail and Clémencon [42], the tails of functionals ofMarkov chains are proven
to have sharp bounds.

In Dobrushin [43], the version of the central limit theorem of non-stationary
Markov chains is studied.

The convergence of moments in a Markov-chain central limit theorem is proven
in Steinsaltz [44].

In Kartashov [45], some of the properties of time-inohogeneous Markov chains
are started to being investigated.

FromNaor et al. [46], theMarkov chain with Hilbert measure is one with bounded
moments.

All these properties, and in particular, those which lead to the understanding of
the central limit theorem on the chosen chain allow one to implement the least-square
method after new finding of the corresponding the Tchebys’ev inequalities for the
study of the maximal likeli-hood of the propagated error in the data analysis of the
experiments: these purposes are uninvestigated yet. Nevertheless, already the upgrade
to a normed space is wished.

Further aspects of the behaviour of the K-RAS4B proteins in lipid membranes can
be taken into account.

The dynamics of the K-RAS4b proteins in lipid environment is studied to depend
on the lipid composition of the medium after NMR techniques [47].

Nanoclusters are reported to be observed in X-ray cristallogrphy in Shrestha et al.
[48]; the lifetime of the nanoclusters is calculated in Sarkar and Goswami [49].

The proteins conformations are analysed to undergo the effect of the lipid
membranes as far as their interactions is concerned; the topology of the mechanism
is described in Shree [50].

The role of electrostatics in the behaviour of the proteins in lipid membranes is
depicted in Ki-Young et al. [47] after NMR experiments as far as the orientation of the
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proteins is concerned, and in Lee [51]. The spatio-temporal evolution of the orientation
is analysed in numerical simulations of the dynamics in Van [52]; the quantitative
paramagnetic effects are investigated in Gu et al. [53].

Potential applications of the mathematical features of the studied phenomenon to
new drugs design is studied in the study of authors [54–56].

Data availability: The data used in the analysis of this manuscript is taken from ATC,
Ghana. They usually mount the mast for MTN-Ghana.
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