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Abstract: Numerous dark matter studies of galactic halo gravitation depend on models with a 

core radius of r0 and a central density of ρ0. The central surface density product ρ0r0 is found 

to be nearly a universal constant for a large range of galaxies. Standard variational field theory 

with Weyl conformal symmetry postulated for gravitation and the Higgs scalar field, without 

dark matter, implies nonclassical centripetal acceleration ∆𝑎 , for a = aN + ∆𝑎 , where 

Newtonian acceleration aN is due to observable baryonic matter. Neglecting a halo cutoff at a 

very large galactic radius, conformal ∆𝑎 is constant over the entire halo, and a = aN + ∆𝑎 is a 

universal function, consistent with a recent study of galaxies with independently measured 

mass, that constrains acceleration due to dark matter or to an alternative theory. An equivalent 

dark matter source would be a pure cusp distribution with a cutoff parameter determined by a 

halo boundary radius. This is shown to imply a universal central surface density for any dark 

matter core model. 
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1. Introduction 
Observed deviations from standard Newton/Einstein galactic gravitation have 

been modeled by distributed but unobserved dark matter (DM). Typical DM halo 

models imply centripetal radial acceleration 𝑎 = 𝑎 + ∆𝑎 as a function of radius in an 

assumed spherical galactic halo. DM ∆𝑎 is added to the baryonic Newtonian 𝑎 . 
DM fits galactic rotation (orbital velocity vs. circular orbit radius) depending on 

the model parameters central density ρ0 and core radius r0 for a DM halo distribution. 

Observed data imply that the surface density product 𝜌 𝑟 ≃ 100𝑀⨀𝑝𝑐  is nearly a 

universal constant for a large range of galaxies [1–3]. 
Assuming Weyl conformal symmetry for field action integrals gives an 

alternative explanation of observed ∆𝑎 . Conformal gravity (CG) [4–8] and the 
conformal Higgs model (CHM) [9–13] introduce new gravitational terms in the field 
equations. The current updated conformal theory has recently been reviewed [14]. The 

nonclassical ∆𝑎 of spherically averaged CG and the CHM replace the galactic radial 
acceleration attributed to dark matter. 

A recent study of the rotational velocities of galaxies with independently 
measured galactic mass found total radial acceleration a to be a universal function of 

Newtonian acceleration 𝑎  [15]. This constrains acceleration attributed to dark matter 

or alternative theory [16], requiring ∆𝑎 to be a universal constant. 

Conformal 𝑣 /𝑐 = 𝑟𝑎/𝑐 = 𝛽/𝑟 + 𝛾𝑟 − 𝜅𝑟  implies ∆𝑎 = 𝑐 𝛾 − 𝑐 𝜅𝑟 , 

with constants defined by CG [5]. Values are fitted to the observed galactic rotation 

[4,14]. Neglecting halo cutoff 2𝜅𝑟/𝛾 for 𝑟 ≪ 𝑟  (halo radius), the CG acceleration 

constant 𝛾 predicts nonclassical acceleration ∆𝑎. 𝛾 ≃ 6.35 × 10 /𝑚 implies ∆𝑎 =
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𝛾𝑐 ≃ 0.285 × 10 𝑚/𝑠  [12,13,16] for all CDM core models. 

The uniform constant ∆𝑎 puts a severe constraint on any DM model. The source 

density must be of the form 𝜉/𝑟 , a pure radial cusp [13,16], where constant 𝜉 =

∆𝑎/2𝜋𝐺 = 0.06797𝑘𝑔/𝑚 = 32.535𝑀⨀/𝑝𝑐 . CODATA Newton constant 𝐺 =

6.67384 × 10 𝑚 𝑠 𝑘𝑔  [17]. The conflict between cusp and core DM models 
[18], may rule out DM for galactic rotation. Alternatives to CHM for Hubble 
expansion, such as introducing ad hoc curvature [4] or a cosmological constant, are 
not considered here. 

2. Implied DM parameters 
A DM galactic model equivalent to conformal theory would imply uniform DM 

radial acceleration ∆𝑎 = 2𝜋𝐺𝜉 , attributed to radial DM density 𝜉/𝑟  for universal 

constant 𝜉, modified at large galactic radius by a halo cutoff function. Enclosed mass 

𝑀 = 2𝜋𝜉𝑟  implies 𝑟∆𝑎/𝑐 = 𝐺𝑀 /𝑟 . DM models avoid a distribution cusp by 
assuming a finite central core density. A recent fit to the Milky Way rotation uses a 
DM core with a decreasing exponential cutoff [19]. For arbitrary r0, asymptotic radial 
acceleration is unchanged if mass within r0 is redistributed to uniform density ρ(r) 

within a sphere of this radius. Conformal density 𝜉/𝑟 implies mass 𝑀 = 2𝜋𝜉𝑟  in 

volume 𝑉 = 𝑟 . For a DM spherical model core that replaces a central cusp density, 

conformal theory implies constant 𝜌(𝑟 )𝑟 = 𝑟 𝑀 /𝑉 = 3𝜉/2. For assumed PI core 

DM density [1] 𝜌(𝑟) = 𝜌 𝑟 /(𝑟 + 𝑟 ), central 𝜌 = 2𝜌(𝑟 ). Hence, for a PI core, 

𝜌 𝑟 = 3𝜉 =
∆

= 0.204𝑘𝑔/𝑚 = 97.6𝑀⨀𝑝𝑐 , independent of 𝑟 . This value is 

proportional to 𝜌 /𝜌(𝑟 ) for other core models. DM studies indicate a mean value 

141𝑀⨀𝑝𝑐  [3]. MOND [20], assuming 𝑎 →𝑎 𝑎  as 𝑎 →0, without dark matter, 

implies 𝜌 𝑟 ≃ 130𝑀⨀𝑝𝑐  [21]. 

3. Conformal theory of ∆𝒂 
For a central gravitational source with spherical symmetry, in the Schwarzschild 

metric, conformal gravity has an exact solution of radial Schwarzschild potential B(r) 
[5–7]. Outside a source of finite radius [5], 

𝐵(𝑟) = −2𝛽/𝑟 + 𝛼 + 𝛾𝑟 − 𝜅𝑟  (1)

for constants related by 𝛼 = 1 − 6𝛽𝛾[7]. 𝐵(𝑟) determines circular geodesics with 

orbital velocity 𝜐  such that 𝜐 /𝑐 = 𝑟𝑎/𝑐 = 𝑟𝐵 (𝑟) = 𝛽/𝑟 + 𝛾𝑟 − 𝜅𝑟 . The 

Kepler formula is 𝑟𝑎 /𝑐 = 𝛽/𝑟, from a 2nd-order equation. The 4th order conformal 

equation introduces two additional constants of motion, radial acceleration 𝛾  and 

cutoff parameter 𝜅 . The parameter 𝜅 , unique to conformal theory, relates galactic 

baryonic mass to large radius 𝑟  of a galactic halo, whose cosmic mass has been 
deleted by falling into the central galaxy [12]. Classical gravitation is retained at 

subgalactic distances by setting 𝛽 = 𝐺𝑀/𝑐  for a spherical source of baryonic mass 

M [4]. For 𝑟 ≪ 𝑟 ,  can be neglected, so that ∆𝑎 = 𝛾𝑐 . 

The CHM [9,11,13,16] determines 𝛾  as a universal constant, independent of 
galactic mass. The Higgs scalar field acquires a gravitational term that implies a 
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modified Friedmann equation for the cosmic scale factor s(t) [9]. This implies 

dimensionless cosmic centrifugal acceleration Ω =
̈

̇
. The Friedmann equation 

determines the observable radial acceleration parameter 𝛾 for massive objects within 

𝑟  [13]. Assuming an empty halo, due to the gravitational concentration of all mass 

inside the halo radius 𝑟  to within galactic radius 𝑟 , γ is determined by requiring 

continuous acceleration across 𝑟 . Constant 𝛾  has a universal value throughout a 

depleted halo, proportional to uniform cosmic mass-energy density 𝜌  [12]. Equating 

constants for the baryonic Tully-Fisher relationship and neglecting cutoff 𝜅, constant 

∆𝑎 = 𝛾𝑐 = 𝑎 , for MOND 𝑎  [12,13]. Determined by CG from observed galactic 

rotation [4,13], parameter 𝛾 = 6.35 × 10 /𝑚, using data for the Milky Way galaxy 

[22,23]. Hence, neglecting halo cutoff, ∆𝑎 = 0.285 × 10 𝑚/𝑠  and MOND 𝑎 =

4∆𝑎 = 1.14 × 10 𝑚/𝑠 .  

4. Conclusions 
Conformal theory, consistent with the finding [15] for galaxies of known mass 

that observed radial acceleration a is a universal function of baryonic 𝑎 , explains the 
observed constancy of halo central surface density deduced from DM core models. 

Any DM core model can be considered an approximation to implied conformal ∆𝑎. 

Nonclassical ∆𝑎  predicted by conformal theory would require a pure cusp mass-
energy source plus halo cutoff, which may rule out an exact DM model. This requires 
reconsideration of the consensus LCDM paradigm. 
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