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Abstract: The dynamic loads from earthquakes and winds can destroy lives, cause collapse 
in civil structures, and interrupt basic services provided to the population. In this scenario, 
structural designs must be developed to decrease the damage induced by these actions. The 
objective of this work is to design a hybrid controller based on the H∞ optimization via state 
feedback and the magneto-rheological damper (MRD) to mitigate the excessive vibrations of 
a three-story steel frame building, represented through the shear building model, subjected to 
the simultaneous dynamic action of wind and earthquake. All research is based on 
computational simulation; experimental research and results will not be addressed. In the 
numerical analysis, digital computers and MATLAB® software are used, and implemented 
codes generate the expected results based on the mathematical modeling. With the 
application of the H∞ control technique via state feedback, the displacements were reduced 
by 77%. With MRD, this reduction was 79%. With the hybrid controller, this reduction was 
100%. Thus, the verifications in relation to maximum displacements were met for NBR 
15421:2006, NBR 8800:2008, and NBR 6118:2014. From the results, it can be concluded 
that the hybrid controller proved to be more efficient and achieved the proposed objective. 
The exogenous inputs had zero influence on the behavior of the system output. 

Keywords: shear building; earthquake; wind; H∞ control; MRD; hybrid controller 

1. Introduction 

Nowadays, natural disasters are increasingly present in humanity’s daily lives. 
They have had increasingly intense frequency and consequences. They cause 
economic, social, and environmental impacts. That is why it is becoming 
increasingly important to know about their occurrence, mechanisms, prevention 
measures, and damage mitigation. These disasters can be caused by various 
phenomena, such as earthquakes, tornadoes, hurricanes, and storms, among others 
[1]. 

The dynamic loads from earthquakes and winds can destroy lives, cause a 
collapse in civil structures, and interrupt basic services provided to the population. In 
this scenario, structural designs must be developed to reduce the damage induced by 
these actions. It is becoming increasingly necessary to have a correct and real 
representation of both the structural behavior and the wind and earthquakes to ensure 
structural safety [2]. 

With the increase in population and the verticalization of cities, structures have 
become more subject to vibrations due to tall, slim, flexible, and lightweight 
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structural designs. Although the structure can suffer displacements without collapse, 
excessive vibrations become a problem when the service situations of the building 
are verified. The low damping of high-strength materials and the use of precast 
structures, in which the connections are fully hinged or partially clamped, can justify 
this behavior [3]. 

Thus, searching for techniques that mitigate the effects of these actions on 
structures is of real importance because they can ensure the life of the building and 
the safety of people. Therefore, it is increasingly necessary to study these natural 
phenomena for their correct understanding and representation in order to analyze 
their behavior in real structures. Thus, interest in investigating and developing 
control techniques that improve the dynamic behavior of structures has increased [4]. 

The parameters of mass, stiffness, and damping govern the dynamic behavior of 
a structure. Therefore, the simplest way for a structure to behave satisfactorily with 
vibrations is to ensure its flexibility to absorb part of the excitation while remaining 
firm enough to resist the other loads. However, these techniques may be 
unsatisfactory to ensure structural stability under excessive vibrations, especially 
when they present frequencies close to the natural frequencies of the structure, which 
can cause resonance and consequently structural collapse [5]. 

The control of the amplitude of the vibrations of structures proves to be 
fundamental, especially in cases of resonance [6–8]. In several cases, just increasing 
the stiffness and mass of the system does not solve the problem since the natural 
frequencies are modified. Structural control is a technology for protecting structures 
that promotes a change in the stiffness and damping properties of the structure. To do 
this, external devices are added, which reduce the effects of the induced excitation by 
changing the dynamic characteristics of the structure. This way, the vibration energy 
is transformed into dissipation energy, reducing the level of damage suffered by the 
main structure. These control devices can be classified as passive, active, hybrid, or 
semi-active. They aim to reduce structural displacements by improving their 
behavior in service [9]. 

Structural vibration control has increased significantly in recent decades. One of 
the application areas for control design is the protection of civil engineering 
structures from dynamic loading, such as wind and strong earthquakes. In this 
context, the objective of this work is to design a hybrid controller based on H∞ 
optimization via state feedback and the magneto-rheological damper (MRD) to 
mitigate excessive vibrations caused by the dynamic action of wind and earthquake 
in a three-story metal frame building, represented through the shear building model. 
All research is based on computational simulation; tests and experimental results will 
not be addressed. 

2. Mathematical formulation 

2.1. Balance equations 
The shear building model is used to model a three-story building, as illustrated 

in Figure 1. 
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Figure 1. Shear building model with three stories. 

where: mass, stiffness and damping of each floor type; 𝑢𝑢𝑖𝑖(𝑡𝑡): displacement as a function of time on 
each floor type; 𝐹𝐹𝑖𝑖(𝑡𝑡): external force as a function of time on each floor type; where: 𝑖𝑖 = 1, 2 and 3, 
that corresponds to the number of floors. 

The building is symmetric, the slabs are infinitely rigid, and the columns do not 
undergo axial deformation. And consequently, the only motion of the nodes is 
horizontal. You have three masses concentrated at the level of the floors, connected 
by bars that have stiffness and dampen the columns of that floor [10,11]. 

The equations of motion of each floor can be determined by the Euler-Lagrange 
method in terms of the kinetic and potential energy of the body [12]. As such, 
Equation (1) represents the system of equilibrium equations for the model studied: 

�

𝑚𝑚1�̈�𝑢1 + (𝑐𝑐1 + 𝑐𝑐2)�̇�𝑢1 − 𝑐𝑐2�̇�𝑢2 + (𝑘𝑘1 + 𝑘𝑘2)𝑢𝑢1 − 𝑘𝑘2𝑢𝑢2 = 𝐹𝐹1(𝑡𝑡)

𝑚𝑚2�̈�𝑢2 + (𝑐𝑐2 + 𝑐𝑐3)�̇�𝑢2 − 𝑐𝑐2�̇�𝑢1 − 𝑐𝑐3�̇�𝑢3 + (𝑘𝑘2 + 𝑘𝑘3)𝑢𝑢2 − 𝑘𝑘2𝑢𝑢1 − 𝑘𝑘3𝑢𝑢3 = 𝐹𝐹2(𝑡𝑡)

𝑚𝑚3�̈�𝑢3 − 𝑐𝑐3�̇�𝑢2 + 𝑐𝑐3�̇�𝑢3 − 𝑘𝑘3𝑢𝑢2 + 𝑘𝑘3𝑢𝑢3 = 𝐹𝐹3(𝑡𝑡)

 (1) 

To facilitate analysis, it is possible to transform the system of Equations (1) into 
a system of first-order ordinary differential equations. Thus, let: 

𝑢𝑢1 = 𝑦𝑦1; �̇�𝑦1 = 𝑦𝑦2;𝑢𝑢2 = 𝑦𝑦3; �̇�𝑦3 = 𝑦𝑦4;𝑢𝑢3 = 𝑦𝑦5; �̇�𝑦5 = 𝑦𝑦6 (2) 
Deriving Equation (2) with respect to time, we have the following relations: 

�̇�𝑢1 = �̇�𝑦1 = 𝑦𝑦2; �̈�𝑦1 = �̇�𝑦2 = �̈�𝑢1; �̇�𝑢2 = �̇�𝑦3 = 𝑦𝑦4; 
(3) 

�̈�𝑦3 = �̇�𝑦4 = �̈�𝑢2; �̇�𝑢3 = �̇�𝑦5 = 𝑦𝑦6; �̈�𝑦5 = �̇�𝑦6 = �̈�𝑢3. 
Substituting the definitions made in Equations (2) and (3) in the system of 

Equation (1), isolating the first-order derivatives in each of the equations, 
considering that there is no external excitation, and adding the new variables to the 
system, we have: 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
�̇�𝑦1 = 𝑦𝑦2

�̇�𝑦2 = −
(𝑘𝑘1 + 𝑘𝑘2)𝑦𝑦1

𝑚𝑚1
−

(𝑐𝑐1 + 𝑐𝑐2)𝑦𝑦2
𝑚𝑚1

+
𝑘𝑘2𝑦𝑦3
𝑚𝑚1

+
𝑐𝑐2𝑦𝑦4
𝑚𝑚1

�̇�𝑦3 = 𝑦𝑦4

�̇�𝑦4 =
𝑘𝑘2𝑦𝑦1
𝑚𝑚2

+
𝑐𝑐2𝑦𝑦2
𝑚𝑚2

−
(𝑘𝑘2 + 𝑘𝑘3)𝑦𝑦3

𝑚𝑚2
−

(𝑐𝑐2 + 𝑐𝑐3)𝑦𝑦4
𝑚𝑚2

+
𝑘𝑘3𝑦𝑦5
𝑚𝑚2

+
𝑐𝑐3𝑦𝑦6
𝑚𝑚2

�̇�𝑦5 = 𝑦𝑦6

�̇�𝑦6 =
𝑘𝑘3𝑦𝑦3
𝑚𝑚3

+
𝑐𝑐3𝑦𝑦4
𝑚𝑚3

−
𝑘𝑘3𝑦𝑦5
𝑚𝑚3

−
𝑐𝑐3𝑦𝑦6
𝑚𝑚3

 (4) 
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Thus, the Jacobian matrix of the system linearized by Taylor series around the 
equilibrium point is: 

𝐽𝐽 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0
−(𝑘𝑘1 + 𝑘𝑘2)

𝑚𝑚1

0
𝑘𝑘2
𝑚𝑚2

0

0

1
−(𝑐𝑐1 + 𝑐𝑐2)

𝑚𝑚1

0
𝑐𝑐2
𝑚𝑚2

0

0

0
𝑘𝑘2
𝑚𝑚1

0
−(𝑘𝑘2 + 𝑘𝑘3)

𝑚𝑚2

0
𝑘𝑘3
𝑚𝑚3

0
𝑐𝑐2
𝑚𝑚1

1
−(𝑐𝑐2 + 𝑐𝑐3)

𝑚𝑚2

0
𝑐𝑐3
𝑚𝑚3

0

0

0
𝑘𝑘3
𝑚𝑚2

0

−
𝑘𝑘3
𝑚𝑚3

0

0

0
𝑐𝑐3
𝑚𝑚2

0

−
𝑐𝑐3
𝑚𝑚3⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5) 

For the numerical simulations, the physical parameters presented in Table 1 
were adopted, which were used by Chopra [13] and Corbani [14]. This example 
deals with a steel-frame building, and the damping of the structure is represented by 
the Rayleigh damping matrix, with a damping rate in the first two vibration modes of 
5%. 

The modulus of elasticity E of 205 GPa was used, the height of the columns 𝑙𝑙𝑖𝑖 
on all floors is 3 m, and the yield strength 𝑓𝑓𝑦𝑦 is 250 MPa (steel A36). 

Table 1. Physical parameters of the model. 

Floor Mass (Kg) Stiffness (N/m) 

1 45,344 33,379,175 

2 45,344 25,603,543 

3 45,344 15,250,045 

With the definitions of the physical characteristics of the structure, the natural 
frequencies can be obtained, which are indicated in Equation (6). To determine the 
system’s eigenfrequencies, a motion analysis is performed in a free vibration regime 
without damping. 

𝜔𝜔 = �

10.80

26.33

41.57

� (rad/s) (6) 

For the dynamic wind actions of the model studied, this will be the external 
force caused by the wind. For this, NBR 6123 [15] will be used, which establishes 
parameters and definitions to determine the forces due to wind in buildings. The 
modified synthetic wind method proposed by Carril [16] will also be used. For 
calculation purposes, the wind will be considered a time-series load obtained through 
the Davenport spectrum. The necessary data regarding the structure characteristics 
and wind parameters defined by NBR 6123 [15] are listed in Table 2. 

The series of loads that generate the load histories is obtained by summing the 
harmonic components according to a pseudo-random determination of the phase 
angles, thus giving a random representation to the process [17]: 
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𝑞𝑞(𝑡𝑡) = �𝑐𝑐𝑐𝑐𝑘𝑘

𝑚𝑚

𝑘𝑘=1

cos(𝜔𝜔𝑘𝑘𝑡𝑡 − 𝜃𝜃𝑘𝑘) (7) 

As the davenport spectrum is used (Figure 2), the method suggests that the 
frequency range of 0.0017 Hz to 2.5 Hz is chosen for the decomposition of the 
power spectrum, i.e., periods from 0.4 s to 600 s. The fluctuating portion of the wind 
pressure 𝑞𝑞(𝑡𝑡) can be represented by at least 11 harmonics, one of them being the 
resonant, and the others multiples or submultiples of this choice, using the factor 2 
[16]. 

Table 2. Properties of the building geometry and wind characteristics. 

Parameters Value 

𝒉𝒉 9 m 

Building dimension 28.30 m × 12.20 m 

𝑽𝑽𝟎𝟎 45 m/s 

Building category IV 

Land class B 

𝑺𝑺𝟏𝟏 1 

𝑺𝑺𝟑𝟑 1.1 

𝑪𝑪𝒂𝒂 1.2 

𝒃𝒃 0.85 

𝒑𝒑 0.125 

𝝃𝝃 1.5 
where: ℎ: height of the building; 𝑉𝑉0: basic wind speed; 𝑆𝑆1: topographic factor; 𝑆𝑆2: statistical factor; 𝐶𝐶𝑎𝑎: 
drag coefficient; 𝑏𝑏: the parameter as a function of the terrain category; 𝑝𝑝 the exponent of the potential 
law of variation of 𝑆𝑆2; 𝜉𝜉: dynamic amplification coefficient. 

 
Figure 2. Wind power spectrum (davenport). 

The choice of the phase angles (𝜃𝜃𝑘𝑘) of each of the 11 harmonics is obtained 
randomly, between 0 ≤ 𝜃𝜃𝑘𝑘 ≤ 2π, for each 𝜃𝜃𝑘𝑘  a loading pressure in time will be 
defined. The statistical analysis is done using the Monte Carlo technique [17], 
randomly generating 20 loading histories for the structure. Taking into account the 
Gaussian distribution, the displacement with a 95% probability of occurrence, which 
limits to only 5% the probability of this value being exceeded, is the characteristic 
displacement. The time series whose response is closest to the statistically 
determined characteristic response is adopted. According to Carril [16], this is a good 
representation of the characteristics of the real wind. 
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For the dynamic actions of the earthquake in the model studied, 𝐹𝐹1(𝑡𝑡) will be 
the external force caused by the earthquake. For this, NBR 15421 [18] will be used, 
which establishes parameters and criteria to determine the earthquake forces on 
structures. The methodology used will be based on the synthetic wind model, 
addressed in the works of Corbani [14] and Brandão [19]. For calculation purposes, 
the earthquake will be considered a time series loading, obtained through the Kanai-
Tajimi spectrum [20]. The necessary data regarding the characteristics of the 
structure, the soil, and the earthquake parameters defined by NBR 15421 [18] are 
listed in Table 3. 

With the aid of MATLAB® [21], the power spectral density function (PSDF) 
was generated. To obtain the values of the frequencies of the harmonic components, 
the suggestion of Corbani [14] was adopted: use multiples and submultiples with a 
factor equal to the ratio between the natural frequencies of the first and second 
vibration modes, being Δ𝜔𝜔 = 0.41. Figure 3 represents the Kanai-Tajimi PSDF on a 
logarithmic scale. 

In the case of earthquakes, Corbarni [14] investigated what would be the 
appropriate number of harmonic functions and the best position of the resonant term 
as a function of the natural period. Since the first natural period of the structure is 
𝑇𝑇𝑛𝑛1 ≅ 0.6 s, it is obtained that the most suitable number of harmonic functions to 
represent the earthquake are 11 harmonics, with the seventh resonant term. 

Table 3. Structure, soil and earthquake parameters. 

Parameters Value 

Zone 4 

𝒂𝒂𝒈𝒈 0.15 g 

Seismic category C 

Land class B 

Land type Rock 

𝑰𝑰 1.5 

𝑹𝑹 3.5 

𝑯𝑯 0.6 

𝝎𝝎𝒈𝒈 27 rad/s 
where 𝑎𝑎𝑔𝑔: horizontal seismic accelerations; 𝑔𝑔 = 9.81 m/s² (acceleration of gravity); 𝐼𝐼: importance of 
use factor; 𝑅𝑅: response coefficient; 𝐻𝐻: damping of the soil; 𝜔𝜔𝑔𝑔: characteristic natural frequency of the 
land. 

 
Figure 3. Kanai-Tajimi PSDF. 
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Aiming to determine the maximum earthquake acceleration ( üg ), adapting 
Equation (7), and using the parameters of NBR 15421 [18], the harmonic 
combination of accelerations will be given by the expression: 

�̈�𝑢𝑔𝑔(𝑡𝑡) =
𝐼𝐼
𝑅𝑅
𝑎𝑎𝑔𝑔�𝐶𝐶𝑘𝑘

𝑚𝑚

𝑘𝑘=1

cos(𝜔𝜔𝑘𝑘𝑡𝑡 − 𝜃𝜃𝑘𝑘) (8) 

Analogously to the methodology of the statistical analysis for wind action, the 
values of 𝜃𝜃𝑘𝑘, generated for each of the 11 harmonics corresponding to the 20 load 
histories will be analyzed for the determination of the characteristic loading. 

Finally, the time series of the characteristic loading of the wind and earthquake 
is performed in order to calculate the time history of the displacements, velocities, 
and their phase planes. For this, the portion of the external force caused by the wind 
𝐹𝐹3(𝑡𝑡) and the earthquake 𝐹𝐹1(𝑡𝑡) is added to Equation (4). The external force 𝐹𝐹2(𝑡𝑡) 
will be considered to be zero. For seismic excitation, the dynamic loading is given by 
the product between the mass and the acceleration over time, in the opposite 
direction to this acceleration. Thus: 

𝐹𝐹1(𝑡𝑡) = −𝑚𝑚1�̈�𝑢𝑔𝑔(𝑡𝑡) (9) 
For wind action, the harmonics of forces 𝐹𝐹3(𝑡𝑡) and fluctuating pressures (𝑄𝑄), 

are given by: 
𝐹𝐹3(𝑡𝑡) = 𝑄𝑄𝑄𝑄𝐶𝐶𝑎𝑎𝜉𝜉 (9) 
𝑄𝑄 = 𝑞𝑞𝑓𝑓𝑞𝑞(𝑡𝑡) (10) 

where: 𝑞𝑞𝑓𝑓:  is the fluctuating pressure, given by the difference of the pressures 
obtained with the gust and average velocity, according to NBR 6123 [15]. 

Adding 𝐹𝐹1(𝑡𝑡)  and 𝐹𝐹3(𝑡𝑡)  in Equation (4) gives the system of equilibrium 
equations, considering the simultaneous action of wind and earthquake: 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
�̇�𝑦1 = 𝑦𝑦2

�̇�𝑦2 = −
(𝑐𝑐1 + 𝑐𝑐2)𝑦𝑦2

𝑚𝑚1
+
𝑐𝑐2𝑦𝑦4
𝑚𝑚1

−
(𝑘𝑘1 + 𝑘𝑘2)𝑦𝑦1

𝑚𝑚1
+
𝑘𝑘2𝑦𝑦3
𝑚𝑚1

−  �̈�𝑢𝑔𝑔(𝑡𝑡)

�̇�𝑦3 = 𝑦𝑦4

�̇�𝑦4 = −
(𝑐𝑐2 + 𝑐𝑐3)𝑦𝑦4

𝑚𝑚2
+
𝑐𝑐2𝑦𝑦2
𝑚𝑚2

+
𝑐𝑐3𝑦𝑦6
𝑚𝑚2

−
(𝑘𝑘2 + 𝑘𝑘3)𝑦𝑦3

𝑚𝑚2
+
𝑘𝑘2𝑦𝑦1
𝑚𝑚2

+
𝑘𝑘3𝑦𝑦5
𝑚𝑚2

�̇�𝑦5 = 𝑦𝑦6

�̇�𝑦6 =
𝑐𝑐3𝑦𝑦4
𝑚𝑚3

−
𝑐𝑐3𝑦𝑦6
𝑚𝑚3

+
𝑘𝑘3𝑦𝑦3
𝑚𝑚3

−
𝑘𝑘3𝑦𝑦5
𝑚𝑚3

+
𝐹𝐹3(𝑡𝑡)
𝑚𝑚3

 (11) 

2.2. H∞ control via state feedback 
System modeling in modern control theory can be represented by a linearized 

time invariant (LTI) system expressed in state space, considering the action of 
exogenous inputs, which represent external disturbances to the system, given by 
[22]: 

�̇�𝑥(𝑡𝑡) = 𝑄𝑄𝑥𝑥(𝑡𝑡) + 𝐵𝐵2𝑢𝑢(𝑡𝑡) + 𝐵𝐵1𝑤𝑤(𝑡𝑡) 
(13) 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝑥𝑥(𝑡𝑡) + 𝐷𝐷2𝑢𝑢(𝑡𝑡) + 𝐷𝐷1𝑤𝑤(𝑡𝑡) 
where: 𝑥𝑥(𝑡𝑡) ∈ 𝑅𝑅𝑛𝑛 being the state vector, 𝑢𝑢(𝑡𝑡) ∈ 𝑅𝑅𝑚𝑚 the control input vector, 𝑦𝑦(𝑡𝑡) ∈
𝑅𝑅𝑞𝑞 the system outputs, 𝑄𝑄 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 the dynamic matrix, 𝐵𝐵2 ∈ 𝑅𝑅𝑛𝑛𝑛𝑛𝑚𝑚 the control input 
matrix, 𝐵𝐵1 ∈ 𝑅𝑅𝑛𝑛𝑛𝑛𝑚𝑚 the disturbance input matrix, 𝑤𝑤(𝑡𝑡) ∈ 𝑅𝑅𝑚𝑚 the disturbance vector, 
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𝐶𝐶 ∈ 𝑅𝑅𝑞𝑞×𝑛𝑛 the output matrix, 𝐷𝐷2 ∈ 𝑅𝑅𝑞𝑞×𝑚𝑚 the control direct transmission matrix, and 
𝐷𝐷1 ∈ 𝑅𝑅𝑞𝑞×𝑚𝑚 the disturbance direct transmission matrix. 

The goal is to find a matrix 𝐾𝐾 ∈ 𝑅𝑅𝑚𝑚𝑛𝑛𝑛𝑛 , called the feedback gain matrix or 
control matrix [23], that satisfies the condition: 

𝑢𝑢(𝑡𝑡) = 𝐾𝐾𝑥𝑥(𝑡𝑡) (14) 
Substituting Equation (14) into Equation (13) makes the system closed loop, 

that is, the system controlled with state feedback:  
�̇�𝑥(𝑡𝑡) = (𝑄𝑄 + 𝐵𝐵2𝐾𝐾)𝑥𝑥(𝑡𝑡) + 𝐵𝐵1𝑤𝑤(𝑡𝑡) 

(15) 
𝑦𝑦(𝑡𝑡) = (𝐶𝐶 + 𝐷𝐷2𝐾𝐾)𝑥𝑥(𝑡𝑡) + 𝐷𝐷1𝑤𝑤(𝑡𝑡) 

Since Equation (15) is linear, its stability will be defined by the eigenvalues of 
the matrix 𝑄𝑄𝑛𝑛 = (𝑄𝑄 + 𝐵𝐵2𝐾𝐾) . Thus, for a controllable and asymptotically stable 
system, the feedback gain K can be chosen such that all eigenvalues of 𝑄𝑄𝑛𝑛 have the 
negative real part. 

For the correct formulation of the problem, it is first necessary to define the 
norm H∞. Considering the Equation (13) with 𝑢𝑢(𝑡𝑡) = 0 , then its norm H∞ is 
characterized by the largest value of the modulus of the relationship between the 
frequency of the output signals 𝑦𝑦(𝑡𝑡)  and the exogenous input 𝑤𝑤(𝑡𝑡)  [24]. It is 
mathematically defined by: 

‖𝐻𝐻(𝑠𝑠)‖∞ = max
𝜔𝜔∈ℝ+

𝜎𝜎max(𝐻𝐻(𝑗𝑗𝜔𝜔)) = max
𝜔𝜔∈ℝ+

|𝑌𝑌(𝑗𝑗𝜔𝜔)|
|𝑊𝑊(𝑗𝑗𝜔𝜔)| (16) 

where: 𝐻𝐻(𝑠𝑠) is the transfer function relating the output 𝑦𝑦(𝑡𝑡) and the exogenous input 
𝑤𝑤(𝑡𝑡) of the system (15), 𝑌𝑌(𝑗𝑗𝜔𝜔) is the frequency response of the output 𝑦𝑦(𝑡𝑡) and 
𝑊𝑊(𝑗𝑗𝜔𝜔) is the frequency response of the exogenous input 𝑤𝑤(𝑡𝑡). 

 
Figure 4. Optimal control H∞. 

The goal is to design a controller 𝐾𝐾 ∈ 𝑅𝑅𝑚𝑚𝑛𝑛𝑛𝑛 , such that 𝑢𝑢(𝑡𝑡) = 𝐾𝐾𝑥𝑥(𝑡𝑡) , that 
asymptotically stabilizes and minimizes the impacts of the exogenous input 𝑤𝑤(𝑡𝑡) on 
the output y(t) by “sinking” the H∞ norm of the closed-loop Equation (15) through 
state feedback. This idea, which is called optimal control H∞, is represented in 
Figure 4. The graph in Figure 4 is known as the Bode diagram. The H norm of the 
system is characterized by the largest value of the modulus of the 𝑌𝑌(𝑗𝑗𝜔𝜔)/𝑊𝑊(𝑗𝑗𝜔𝜔), 
ratio, that is, the largest value of the frequency response |𝐻𝐻(𝑗𝑗𝜔𝜔)|. Thus, the H∞ norm 
is associated with the worst case, the maximum value of |𝐻𝐻(𝑗𝑗𝜔𝜔)| indicates the case 
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of the greatest impact that the exogenous input 𝑤𝑤(𝑡𝑡) causes on the output of the 
system 𝑦𝑦(𝑡𝑡). 

The Equation (15) is stabilized by state feedback if, and only if, there exists a 
solution to the convex optimization problem [25]: 

min𝜇𝜇 
subject to 

𝑊𝑊 = 𝑊𝑊′ > 0 

(17) 
�
𝑄𝑄𝑊𝑊 + 𝑊𝑊𝑄𝑄′ + 𝐵𝐵2𝑍𝑍 + 𝑍𝑍′𝐵𝐵2′ 𝑊𝑊𝐶𝐶′ + 𝑍𝑍′𝐷𝐷2′ 𝐵𝐵1

𝐶𝐶𝑊𝑊 + 𝐷𝐷2𝑍𝑍 −𝜇𝜇𝐼𝐼 𝐷𝐷1
𝐵𝐵1′ 𝐷𝐷1′ −𝐼𝐼

� < 0 

In the optimal solution, 𝐾𝐾 = 𝑍𝑍𝑊𝑊−1 ensures ‖𝐻𝐻(𝑠𝑠)‖∞ ≤ √𝜇𝜇. Further details can 
be found in the study of Boyd et al. [25]. The proof of LMI Equation (17) can be 
found in the works by Palma and Peres [26,27]. 

Since the dynamic equations of Equation (12) are linear and time-invariant 
equations, the shear building model with three floors can be rewritten in the state 
space form of Equation (13). In the structural model of the building, Figure 1, the 
control force 𝐹𝐹𝑐𝑐(𝑡𝑡), acting on the 3rd floor will be considered, which will be seen as 
the actuator of the controllers. It was defined that the input vector 𝑢𝑢(𝑡𝑡) = 𝐹𝐹𝑐𝑐(𝑡𝑡), will 
be given by Equation (14). The exogenous inputs 𝑤𝑤(𝑡𝑡) will be provided by the wind 
and earthquake action. The state vector 𝑥𝑥(𝑡𝑡)  and the output vector 𝑦𝑦(𝑡𝑡)  will be 
composed of six elements, according to the system of Equation (12): 

𝑥𝑥(𝑡𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
𝑦𝑦4
𝑦𝑦5
𝑦𝑦6⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,𝑦𝑦(𝑡𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
𝑦𝑦4
𝑦𝑦5
𝑦𝑦6⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (18) 

Thus, from the system of dynamic Equation (12) and the vectors 𝑢𝑢(𝑡𝑡), 𝑥𝑥(𝑡𝑡), 
𝑦𝑦(𝑡𝑡) defined in Equations (14) and (18), respectively, the matrices in Equation (13), 
which correspond to the representation of the shear building model in state space 
form, will be given by: 

𝑄𝑄 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0
−(𝑘𝑘1 + 𝑘𝑘2)

𝑚𝑚1

0
𝑘𝑘2
𝑚𝑚2

0

0

1
−(𝑐𝑐1 + 𝑐𝑐2)

𝑚𝑚1

0
𝑐𝑐2
𝑚𝑚2

0

0

0
𝑘𝑘2
𝑚𝑚1

0
−(𝑘𝑘2 + 𝑘𝑘3)

𝑚𝑚2

0
𝑘𝑘3
𝑚𝑚3

0
𝑐𝑐2
𝑚𝑚1

1
−(𝑐𝑐2 + 𝑐𝑐3)

𝑚𝑚2

0
𝑐𝑐3
𝑚𝑚3

0

0

0
𝑘𝑘3
𝑚𝑚2

0

−
𝑘𝑘3
𝑚𝑚3

0

0

0
𝑐𝑐3
𝑚𝑚2

0

−
𝑐𝑐3
𝑚𝑚3⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (19) 
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𝐵𝐵2 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0

0

0

0

0
1 𝑚𝑚3� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,𝐶𝐶 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,𝐷𝐷2 = 𝐷𝐷1 = 0 (20) 

𝐵𝐵1(𝑣𝑣+𝑠𝑠) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0

0

0

0

0
1 𝑚𝑚3�

0

−1

0

0

0

0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,𝑤𝑤(𝑣𝑣+𝑠𝑠)(𝑡𝑡) = �
𝐹𝐹3(𝑡𝑡)

�̈�𝑢𝑔𝑔(𝑡𝑡)
� (21) 

where: 𝐵𝐵1(𝑣𝑣+𝑠𝑠) e 𝑤𝑤(𝑣𝑣+𝑠𝑠)(𝑡𝑡) refers to the simultaneous exogenous input of wind and 
earthquake. 

By grouping these matrices according to Equation (13), the complete 
representation of the model studied in the form of state space can be obtained. Using 
the Sedumi solver of MATLAB® [21], the controller H∞ was obtained by solving the 
LMI in Equation (17) [28]. 

2.3. MRD 
MRD are semi-active control devices that can have their damping factor 

changed instantaneously, have high stability, reliability, and operate silently. 
Considered an intelligent material, the magneto-rheological (MR) fluid is a mixture 
of oil with ferromagnetic micro-particles that are sensitive to the action of a 
magnetic field. And when it is exposed to a magnetic field strength or electric 
current, it changes from a free-flowing liquid into a semisolid with controllable force 
strength. The ferromagnetic particles tend to align themselves into linear structures, 
parallel to the magnetic flow lines, which hinder the flow of the fluid and 
consequently increase its viscosity [7]. 

For the development of the control system of MR actuators, it is necessary that 
the mathematical model be faithful to their dynamic behavior. The most referenced 
and used in most research involving MRD is the modified Bouc-Wen parametric 
model, presented in the work of Spencer [29], Figure 5. It arose from the Bouc-Wen 
model, which depicts the behavior of a typical MRD. 

 
Figure 5. Modified Bouc-Wen model. 
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The equations governing the dynamic behavior of the modified Bouc-Wen 
model are described by [7,29]: 

𝑐𝑐𝑀𝑀𝑀𝑀�̇�𝑦 = 𝛼𝛼𝛼𝛼 + 𝑘𝑘0(𝑥𝑥 − 𝑦𝑦) + 𝑐𝑐0(�̇�𝑥 − �̇�𝑦) (22) 
The variable 𝛼𝛼 can be obtained by the equation: 

�̇�𝛼 = −𝛾𝛾|�̇�𝑥 − �̇�𝑦|𝛼𝛼|𝛼𝛼|𝑛𝑛−1 − 𝛽𝛽(�̇�𝑥 − �̇�𝑦)|𝛼𝛼|𝑛𝑛 + 𝑄𝑄(�̇�𝑥 − �̇�𝑦) (23) 
Solving Equation (22) as a function of �̇�𝑦, we get: 

�̇�𝑦 =
1

𝑐𝑐0 + 𝑐𝑐𝑀𝑀𝑀𝑀
[𝛼𝛼𝛼𝛼 + +𝑐𝑐0�̇�𝑥 + 𝑘𝑘0(𝑥𝑥 − 𝑦𝑦)] (24) 

The total strength of the modified Bouc-Wen model is given by: 
𝐹𝐹𝑀𝑀𝑀𝑀 = 𝛼𝛼𝛼𝛼 + 𝑘𝑘0(𝑥𝑥 − 𝑦𝑦) + 𝑐𝑐0(�̇�𝑥 − �̇�𝑦) + 𝑘𝑘𝑀𝑀𝑀𝑀(𝑥𝑥 − 𝑥𝑥0) (25) 

It can be rewritten as follows: 
𝐹𝐹𝑀𝑀𝑀𝑀 = 𝑐𝑐𝑀𝑀𝑀𝑀�̇�𝑦 + 𝑘𝑘𝑀𝑀𝑀𝑀(𝑥𝑥 − 𝑥𝑥0) (26) 

where: 𝐹𝐹𝑀𝑀𝑀𝑀  is the force generated by the MRD; 𝑐𝑐𝑀𝑀𝑀𝑀  is the damping factor of the 
MRD; 𝑘𝑘𝑀𝑀𝑀𝑀 is the stiffness associated with the MRD; �̇�𝑦 is the velocity of the MRD’s 
piston embolus; 𝑥𝑥 is the displacement of the MRD; 𝑐𝑐0 is the initial damping factor; 
𝑘𝑘0 is the initial stiffness coefficient of the assembly; 𝑥𝑥0 is the initial displacement of 
the MRD; 𝛾𝛾, 𝛽𝛽, 𝑛𝑛 and 𝑄𝑄, depend on the characteristics of the damper. 

In this methodology, many parameters are required to characterize the MRD. 
Their optimized values are determined by fitting the prototype according to 
experimental data obtained in laboratory tests. This model is the one that presents the 
highest accuracy, however, when used in control systems, the solution of all these 
equations naturally requires a certain computational effort, since it has three 
differential equations, besides the equations of the electric circuit dynamics [7,29]. 

In order to circumvent this problem, this paper proposes to use an approximate 
expression for Equation (26). Where force FMR  does not explicitly present a 
dependence on the control variable, which should be the electric current. According 
to Tusset and Balthazar [30], who conducted studies on MRD behavior and used 
experimental data to write the function Equation (27) that is dependent on the 
electric current: 

𝐹𝐹𝑀𝑀𝑀𝑀 =
3.2

(3𝑒𝑒−3.4𝑖𝑖) + 1
�̇�𝑥 + 𝑘𝑘0𝑥𝑥 +

8.5
(1.28𝑒𝑒−3.9𝑖𝑖) + 1

𝛼𝛼 (27) 

2.4. H∞ hybrid controller and MRD 
In order to further reduce the amplitudes of the temporal responses, it is 

proposed in this paper to use hybrid control, which is a combination of active control 
and semi-active control. The H∞ controller via state feedback will be the active 
control, and the MRD controller will be the semi-active control. Figure 6 shows the 
structural model of the building, considering the hybrid controller. 

Putting the two controls together from Equation (15), we have: 
�̇�𝑥(𝑡𝑡) = (𝑄𝑄 + 𝐵𝐵2𝐾𝐾)𝑥𝑥(𝑡𝑡) + 𝐵𝐵1𝑤𝑤(𝑡𝑡) + 𝐵𝐵3𝑓𝑓(𝑡𝑡) 

(28) 
𝑦𝑦(𝑡𝑡) = (𝐶𝐶 + 𝐷𝐷2𝐾𝐾)𝑥𝑥(𝑡𝑡) + 𝐷𝐷1𝑤𝑤(𝑡𝑡) 

where: 𝑓𝑓(𝑡𝑡) is the MRB force vector and B3 is the MRB input matrix. 
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Figure 6. Shear building model with action of the controlled hybrid. 

To solve Equation (28), the theories discussed in sections 2.2 and 2.4 will be 
adopted. The components of Equation (28), corresponding to MRB, are: 

𝐵𝐵3 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0
−1 𝑚𝑚1�

0

0

0

0

0
1 𝑚𝑚1�

0
−1 𝑚𝑚2�

0

0

0

0

0
1 𝑚𝑚2�

0
−1 𝑚𝑚3� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,𝑓𝑓(𝑡𝑡) = �

𝐹𝐹𝑀𝑀𝑀𝑀1
𝐹𝐹𝑀𝑀𝑀𝑀2
𝐹𝐹𝑀𝑀𝑀𝑀3

� (29) 

3. Results and discussion 

Initially, the stability of the structure was analyzed for the nominal physical 
parameters (Table 1), null initial conditions, and no external force. The eigenvalues 
of the Jacobian matrix were computationally calculated in Equation (5), which 
classified the structure as stable, according to Lyapunov [31]. Thus, it can be verified 
that the model studied is naturally stable. 

In order to analyze the robustness of the structural stability, the verification was 
repeated, considering a 10% uncertainty for the stiffness values and keeping the 
other values in Table 1 fixed. For all combinations, the structure presents stable 
behavior. For a civil structure, which is the case of the model studied, the stability 
points are related to the non-occurrence of the following structural conditions: loss of 
equilibrium, exhaustion of resistant capacity, or collapse. 

For the temporal responses to wind and earthquake action, null initial conditions 
will be considered for displacements and velocities, the physical parameters 
presented in Tables 1–3. This requires the integration over time of the system of 
first-order ordinary differential equations by some numerical method. In this work, 
the chosen technique is the 4th-order Runge-Kutta method [12], which presents good 
numerical stability. 

The results of the numerical simulations consider the simultaneous action of 
wind and earthquake. The response is analyzed for 50 s with a step of 0.01, which 
corresponds to 5000 points. This amount of points is necessary to observe transient 
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behavior and the permanent regime. The choice of time is based on the duration of 
an earthquake, as suggested by Chopra [13]. 

Figure 7 presents the displacement as a function of time for the joint excitation 
of wind and earthquake for the three floors. It can be observed that the displacements 
on the three floors have analogous behaviors for the same time range, which 
gradually increase until they stabilize and oscillate around the equilibrium point. The 
peaks and valleys are close together and occur with a similar frequency. The third 
floor presents the largest displacements, with 10.51 cm as the critical value and the 
displacement at the top of the building being 20.67 cm. 

From the results presented for the simulations with external excitations, it can 
be seen that the building does not have sufficient stiffness to ensure stability against 
external actions. Therefore, it is necessary to calculate the Lyapunov exponent (λ) to 
verify if the structure presents chaotic behavior. For this, we use the algorithm 
developed by Mohammadi [32], which is based on the methodology of Wolf and 
collaborators [31] and Rosenstein and collaborators [33]. 

 
Figure 7. Temporal response with simultaneous action—displacement. 

With the goal of obtaining the Lyapunov exponents, the time series obtained 
with the building model for the simultaneous action were cast into the algorithm. The 
results were: 𝜆𝜆1 = 0.7661;𝜆𝜆2 = 0.5114;𝜆𝜆3 = 0.4917; 𝜆𝜆4 = 0.4903;𝜆𝜆5 =
0.3713;𝜆𝜆6 = 0.396. 

The model has six dimensions, so it has six Lyapunov exponents. They were 
ordered from highest to lowest [8]. It can be observed that the values of the 
Lyapunov exponents showed variations, which means that the divergence rate of the 
trajectories was expressive. It can be concluded that all Lyapunov exponents are 
positive, meaning that the system is hyperchaotic. According to Savi [12], this 
implies that the trajectory diverges exponentially from the original orbit, indicating a 
non-stable system of the chaotic type, which characterizes the total or partial 
collapse of the structure. Because the structure no longer presents stable behavior but 
chaotic behavior, it is necessary to apply control techniques that allow structural 
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integrity under the effect of the presented excitations. 
Applying the H∞ control technique via state feedback to the system studied the 

following feedback gain was obtained: 
𝐾𝐾 = [−2.3113 0.1516 6.8743 −0.0554 3.1260 −0.1108] × 106 (30) 

Figure 8 shows the Bode diagram for the system with control (red color) and 
the system without control (blue color). It can be observed that there was a “sinking” 
of the H∞ standard, after the control by state feedback. With this, the exogenous 
input of the simultaneous action 𝑤𝑤(𝑣𝑣+𝑠𝑠)(𝑡𝑡)  will have minimal influence on the 
behavior of the system output 𝑦𝑦(𝑡𝑡). And this behavior can be observed in Figure 9, 
which compares the temporal responses of the displacements of the system with 
control and without control. It can be seen that the amplitudes were reduced 
considerably in the controlled system. 

 
Figure 8. Bode diagram—simultaneous action. 

 
Figure 9. H∞ control for simultaneous action—displacement. 
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relation to the floors established by the standard, apply to seismic categories B or C 
and depend on the type of occupancy of the building as established in NBR 15421 
[18], being limited to ℎ/100. NBR 8800 [34] recommends a relationship of 𝐻𝐻/400 
for displacements at the top of the building and ℎ/500 between floors, where 𝐻𝐻 is 
the total height of the building and ℎ is the height of the ceiling. NBR 6118 [35] 
recommends that for non-structural elements, such as walls, the lateral displacement 
of buildings should be a maximum of 𝐻𝐻/1700  for the top and ℎ/850  between 
floors. This large difference between the criteria is justified by the fact that non-
structural elements have low strength and modulus of elasticity. Therefore, a stricter 
displacement criterion is necessary to avoid collapse. 

Table 4 shows the comparative maximum displacements of the system in open 
loop (OL) and closed loop (CL). For the total displacement, the maximum 
displacements on the three floors were added, and in the relationship between the 
floors, the 3rd floor was adopted because it is the most critical. The total height of 
the building studied is 9 m, and the height of the typical floor is 3 m. After the H∞ 
control via state feedback, the total displacement of the structure presented a 
reduction of 77%, while the maximum displacement of the 3rd floor presented a 
reduction of 79%. Despite the significant reduction, the values were still above the 
limit determined by NBR 8800 [34] and NBR 6118 [35]. When analyzing NBR 
15421 [18], the reduction in displacement was enough to leave it below the limit. 

Table 4. Maximum displacements—H∞ control for simultaneous action. 

NBR Displacement 
Maximum value (cm) 

Limit (cm) Situation 
OL CL 

8800 
Top of the building 20.67 4.57 2.25 Above 

Between floors 10.51 2.15 0.60 Above 

6118 
Top of the building 20.67 4.57 0.53 Above 

Between floors 10.51 2.15 0.36 Above 

15421 Between floors 10.51 2.15 3.00 Below 

In the application of the MRD technique, the MRD parameters used in the 
simulations are presented in Table 5 [7,30]: 

Table 5. MRD parameters for simulation. 

Actuator parameters Values 

𝛾𝛾 [m−2] 408,720 

𝛽𝛽 [m−2] −360,220 

𝑛𝑛 [s−1] 2 

𝑄𝑄 634 

𝑖𝑖 [A] 2 

𝑘𝑘0 [N/m] −155.63 

Implementing the functions of Section 2.3 and the parameters of Table 5 in an 
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algorithm in MATLAB® [21] and integrating over time, we obtained the temporal 
responses shown in Figure 10, which compares the displacements of the system with 
control (red) and no control (blue). It can be seen that the amplitudes of the temporal 
responses were considerably reduced. When comparing Figure 10 with Figure 9, it 
is observed that the amplitude oscillations for the MRD controller were smaller. 

 
Figure 10. MRD control for simultaneous action—displacement. 

Table 6 confirms this, since the displacements after the MRD control showed a 
total displacement of 79%, while the maximum displacement of the 3rd floor showed 
a reduction of 86% when compared to the values without control (OL). Analogously 
to the H∞ control, only the verification of NBR 15421 [18] was met. 

Table 6. Maximum displacements—MRD control for simultaneous action. 

NBR Displacement 
Maximum value (cm) 

Limit (cm) Situation 
OL CL 

8800 
Top of the building 20.67 4.25 2.25 Above 

Between floors 10.51 1.42 0.60 Above 

6118 
Top of the building 20.67 4.25 0.53 Above 

Between floors 10.51 1.42 0.36 Above 

15421 Between floors 10.51 1.42 3.00 Below 

In order to further reduce the amplitudes of the temporal responses, a hybrid 
control is used. Implementing the functions from Section 2.4 and parameters adopted 
in an algorithm in MATLAB® [21] and doing the integration over time, we obtained 
the temporal responses, illustrated in Figure 11. It can be observed that the temporal 
responses of the controlled system (red) present zero oscillations when compared to 
the uncontrolled system. The system remained in equilibrium over time, even with 
the simultaneous action of wind and earthquake. 

From Table 7, it can be seen that the hybrid controller also presented a 100% 

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-0.05

0

0.05

D
is

p.
 1

st
 F

l. 
[m

]

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-0.1

0

0.1

D
is

p.
 2

nd
 F

l. 
[m

]

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-0.1

0

0.1

D
is

p.
 3

rd
 F

l. 
[m

]



Journal of AppliedMath 2024, 2(2), 451.  

17 

reduction in its maximum displacement when compared to the values without control 
(OL), staying below the limit established in the three analyzed standards. Figure 12 
shows the efficiency of the hybrid controller when comparing it to the H∞ and MRD, 
and hybrid controllers. The exogenous input 𝑤𝑤(𝑣𝑣+𝑠𝑠)(𝑡𝑡) had zero influence on the 
behavior of the system output 𝑦𝑦(𝑡𝑡), thus achieving the controller’s objective. 

 
Figure 11. Hybrid control for simultaneous action—displacement. 

Table 7. Maximum displacements—hybrid control for simultaneous action. 

NBR Displacement 
Maximum value (cm) 

Limit (cm) Situation 
OL CL 

8800 
Top of the building 20.67 8.34 × 10−4 2.25 Below 

Between floors 10.51 3.49 × 10−4 0.60 Below 

6118 
Top of the building 20.67 8.34 × 10−4 0.53 Below 

Between floors 10.51 3.49 × 10−4 0.36 Below 

15421 Between floors 10.51 3.49 × 10−4 3.00 Below 

 
Figure 12. H∞ control, MRD and hybrid control for simultaneous action—
displacement. 
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4. Conclusions 

The natural disaster that was the focus of this work was the occurrence of 
seismic and wind actions in civil structures, and thus it was found that these actions 
increase considerably the displacements of the structure. Because the structure no 
longer shows stable behavior but chaotic behavior, it was necessary to apply control 
techniques that allow structural integrity under the effect of the presented excitations. 
The first control technique applied was optimization H∞ via state feedback, using the 
mathematical method of LMIs. With this, the system had a reduction of more than 
77% in its maximum displacement. From the results presented, it can be concluded 
that, through state feedback and the H∞ controller design, the system was stabilized 
and its H∞ norm was minimized, thus achieving the controller’s goal. The second 
control technique applied was the MRD, using the modified Bouc-Wen model. In the 
simulations, there was a reduction of more than 79% in the maximum displacements. 
With the reduction as well as the H∞ technique, only the verification of NBR 
15421:2006 was met. Analyzing the presented results, it can be concluded that 
through the MRD controller, the system was stabilized, its oscillations were 
mitigated, and its displacements were reduced, thus achieving the controller’s goal. 
Aiming to further reduce the amplitudes of the temporal responses, the hybrid 
control technique H∞ via state feedback and MRD was developed and applied. With 
this, there was a 100% reduction in their displacements. Thus, the verifications in 
relation to maximum displacements were met for the three standards analyzed in this 
work. From these results, it can be concluded that the hybrid controller proved to be 
more efficient and achieved the proposed objective. The exogenous inputs had no 
influence on the system's output behavior. 
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