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Abstract: The dynamic loads from earthquakes and winds can destroy lives, cause collapse in 

civil structures, and interrupt basic services provided to the population. In this scenario, 

structural designs must be developed to decrease the damage induced by these actions. The 

objective of this work is to design a hybrid controller based on the H optimization via state 

feedback and the magneto-rheological damper (MRD) to mitigate the excessive vibrations of 

a three-story steel frame building, represented through the shear building model, subjected to 

the simultaneous dynamic action of wind and earthquake. All research is based on 

computational simulation; experimental research and results will not be addressed. In the 

numerical analysis, digital computers and MATLAB® software are used, and implemented 

codes generate the expected results based on the mathematical modeling. With the application 

of the H control technique via state feedback, the displacements were reduced by 77%. With 

MRD, this reduction was 79%. With the hybrid controller, this reduction was 100%. Thus, the 

verifications in relation to maximum displacements were met for NBR 15421:2006, NBR 

8800:2008, and NBR 6118:2014. From the results, it can be concluded that the hybrid 

controller proved to be more efficient and achieved the proposed objective. The exogenous 

inputs had zero influence on the behavior of the system output. 
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1. Introduction 

Nowadays, natural disasters are increasingly present in humanity’s daily lives. 
They have had increasingly intense frequency and consequences. They cause 
economic, social, and environmental impacts. That is why it is becoming increasingly 
important to know about their occurrence, mechanisms, prevention measures, and 
damage mitigation. These disasters can be caused by various phenomena, such as 
earthquakes, tornadoes, hurricanes, and storms, among others [1]. 

The dynamic loads from earthquakes and winds can destroy lives, cause a 
collapse in civil structures, and interrupt basic services provided to the population. In 
this scenario, structural designs must be developed to reduce the damage induced by 
these actions. It is becoming increasingly necessary to have a correct and real 
representation of both the structural behavior and the wind and earthquakes to ensure 
structural safety [2]. 

With the increase in population and the verticalization of cities, structures have 
become more subject to vibrations due to tall, slim, flexible, and lightweight structural 
designs. Although the structure can suffer displacements without collapse, excessive 
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vibrations become a problem when the service situations of the building are verified. 
The low damping of high-strength materials and the use of precast structures, in which 
the connections are fully hinged or partially clamped, can justify this behavior [3]. 

Thus, searching for techniques that mitigate the effects of these actions on 
structures is of real importance because they can ensure the life of the building and the 
safety of people. Therefore, it is increasingly necessary to study these natural 
phenomena for their correct understanding and representation in order to analyze their 
behavior in real structures. Thus, interest in investigating and developing control 
techniques that improve the dynamic behavior of structures has increased [4]. 

The parameters of mass, stiffness, and damping govern the dynamic behavior of 
a structure. Therefore, the simplest way for a structure to behave satisfactorily with 
vibrations is to ensure its flexibility to absorb part of the excitation while remaining 
firm enough to resist the other loads. However, these techniques may be unsatisfactory 
to ensure structural stability under excessive vibrations, especially when they present 
frequencies close to the natural frequencies of the structure, which can cause resonance 
and consequently structural collapse [5]. 

The control of the amplitude of the vibrations of structures proves to be 
fundamental, especially in cases of resonance [6–8]. In several cases, just increasing 
the stiffness and mass of the system does not solve the problem since the natural 
frequencies are modified. Structural control is a technology for protecting structures 
that promotes a change in the stiffness and damping properties of the structure. To do 
this, external devices are added, which reduce the effects of the induced excitation by 
changing the dynamic characteristics of the structure. This way, the vibration energy 
is transformed into dissipation energy, reducing the level of damage suffered by the 
main structure. These control devices can be classified as passive, active, hybrid, or 
semi-active. They aim to reduce structural displacements by improving their behavior 
in service [9]. 

Structural vibration control has increased significantly in recent decades. One of 
the application areas for control design is the protection of civil engineering structures 
from dynamic loading, such as wind and strong earthquakes. In this context, the 

objective of this work is to design a hybrid controller based on H optimization via 

state feedback and the magneto-rheological damper (MRD) to mitigate excessive 
vibrations caused by the dynamic action of wind and earthquake in a three-story metal 
frame building, represented through the shear building model. All research is based on 
computational simulation; tests and experimental results will not be addressed. 

2. Mathematical formulation 

2.1. Balance equations 

The shear building model is used to model a three-story building, as illustrated in 
Figure 1. 
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Figure 1. Shear building model with three stories. 

where: mass, stiffness and damping of each floor type; 𝑢௜(𝑡): displacement as a function of time on 
each floor type; 𝐹௜(𝑡): external force as a function of time on each floor type; where: 𝑖 = 1, 2 and 3, 
that corresponds to the number of floors. 

The building is symmetric, the slabs are infinitely rigid, and the columns do not 
undergo axial deformation. And consequently, the only motion of the nodes is 
horizontal. You have three masses concentrated at the level of the floors, connected by 
bars that have stiffness and dampen the columns of that floor [10,11]. 

The equations of motion of each floor can be determined by the Euler-Lagrange 
method in terms of the kinetic and potential energy of the body [12]. As such, Equation 
(1) represents the system of equilibrium equations for the model studied: 

൞

𝑚ଵ𝑢̈ଵ + (𝑐ଵ + 𝑐ଶ)𝑢̇ଵ − 𝑐ଶ𝑢̇ଶ + (𝑘ଵ + 𝑘ଶ)𝑢ଵ − 𝑘ଶ𝑢ଶ = 𝐹ଵ(𝑡)

𝑚ଶ𝑢̈ଶ + (𝑐ଶ + 𝑐ଷ)𝑢̇ଶ − 𝑐ଶ𝑢̇ଵ − 𝑐ଷ𝑢̇ଷ + (𝑘ଶ + 𝑘ଷ)𝑢ଶ − 𝑘ଶ𝑢ଵ − 𝑘ଷ𝑢ଷ = 𝐹ଶ(𝑡)

𝑚ଷ𝑢̈ଷ − 𝑐ଷ𝑢̇ଶ + 𝑐ଷ𝑢̇ଷ − 𝑘ଷ𝑢ଶ + 𝑘ଷ𝑢ଷ = 𝐹ଷ(𝑡)

 (1)

To facilitate analysis, it is possible to transform the system of Equations (1) into 
a system of first-order ordinary differential equations. Thus, let: 

𝑢ଵ = 𝑦ଵ; 𝑦̇ଵ = 𝑦ଶ; 𝑢ଶ = 𝑦ଷ; 𝑦̇ଷ = 𝑦ସ; 𝑢ଷ = 𝑦ହ; 𝑦̇ହ = 𝑦଺ (2)
Deriving Equation (2) with respect to time, we have the following relations: 

𝑢̇ଵ = 𝑦̇ଵ = 𝑦ଶ; 𝑦̈ଵ = 𝑦̇ଶ = 𝑢̈ଵ; 𝑢̇ଶ = 𝑦̇ଷ = 𝑦ସ; 
(3) 

𝑦̈ଷ = 𝑦̇ସ = 𝑢̈ଶ; 𝑢̇ଷ = 𝑦̇ହ = 𝑦଺; 𝑦̈ହ = 𝑦̇଺ = 𝑢̈ଷ. 
Substituting the definitions made in Equations (2) and (3) in the system of 

Equation (1), isolating the first-order derivatives in each of the equations, considering 
that there is no external excitation, and adding the new variables to the system, we 
have: 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑦̇ଵ = 𝑦ଶ

𝑦̇ଶ = −
(𝑘ଵ + 𝑘ଶ)𝑦ଵ

𝑚ଵ
−

(𝑐ଵ + 𝑐ଶ)𝑦ଶ

𝑚ଵ
+

𝑘ଶ𝑦ଷ

𝑚ଵ
+

𝑐ଶ𝑦ସ

𝑚ଵ

𝑦̇ଷ = 𝑦ସ

𝑦̇ସ =
𝑘ଶ𝑦ଵ

𝑚ଶ
+

𝑐ଶ𝑦ଶ

𝑚ଶ
−

(𝑘ଶ + 𝑘ଷ)𝑦ଷ

𝑚ଶ
−

(𝑐ଶ + 𝑐ଷ)𝑦ସ

𝑚ଶ
+

𝑘ଷ𝑦ହ

𝑚ଶ
+

𝑐ଷ𝑦଺

𝑚ଶ

𝑦̇ହ = 𝑦଺

𝑦̇଺ =
𝑘ଷ𝑦ଷ

𝑚ଷ
+

𝑐ଷ𝑦ସ

𝑚ଷ
−

𝑘ଷ𝑦ହ

𝑚ଷ
−

𝑐ଷ𝑦଺

𝑚ଷ

 (4)
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Thus, the Jacobian matrix of the system linearized by Taylor series around the 
equilibrium point is: 

𝐽 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0

−(𝑘ଵ + 𝑘ଶ)

𝑚ଵ

0

𝑘ଶ

𝑚ଶ

0

0

1

−(𝑐ଵ + 𝑐ଶ)

𝑚ଵ

0

𝑐ଶ

𝑚ଶ

0

0

0

𝑘ଶ

𝑚ଵ

0

−(𝑘ଶ + 𝑘ଷ)

𝑚ଶ

0

𝑘ଷ

𝑚ଷ

0

𝑐ଶ

𝑚ଵ

1

−(𝑐ଶ + 𝑐ଷ)

𝑚ଶ

0

𝑐ଷ

𝑚ଷ

0

0

0

𝑘ଷ

𝑚ଶ

0

−
𝑘ଷ

𝑚ଷ

0

0

0

𝑐ଷ

𝑚ଶ

0

−
𝑐ଷ

𝑚ଷ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5)

For the numerical simulations, the physical parameters presented in Table 1 were 
adopted, which were used by Chopra [13] and Corbani [14]. This example deals with 
a steel-frame building, and the damping of the structure is represented by the Rayleigh 
damping matrix, with a damping rate in the first two vibration modes of 5%. 

The modulus of elasticity E of 205 GPa was used, the height of the columns 𝑙௜ on 

all floors is 3 m, and the yield strength 𝑓௬ is 250 MPa (steel A36). 

Table 1. Physical parameters of the model. 

Floor Mass (Kg) Stiffness (N/m) 

1 45,344 33,379,175 

2 45,344 25,603,543 

3 45,344 15,250,045 

With the definitions of the physical characteristics of the structure, the natural 
frequencies can be obtained, which are indicated in Equation (6). To determine the 
system’s eigenfrequencies, a motion analysis is performed in a free vibration regime 
without damping. 

𝜔 = ൦

10.80

26.33

41.57

൪ (rad/s) (6)

For the dynamic wind actions of the model studied, this will be the external force 
caused by the wind. For this, NBR 6123 [15] will be used, which establishes 
parameters and definitions to determine the forces due to wind in buildings. The 
modified synthetic wind method proposed by Carril [16] will also be used. For 
calculation purposes, the wind will be considered a time-series load obtained through 
the Davenport spectrum. The necessary data regarding the structure characteristics and 
wind parameters defined by NBR 6123 [15] are listed in Table 2. 

The series of loads that generate the load histories is obtained by summing the 
harmonic components according to a pseudo-random determination of the phase 
angles, thus giving a random representation to the process [17]: 

𝑞(𝑡) = ෍ 𝑐𝑐௞

௠

௞ୀଵ

cos(𝜔௞𝑡 − 𝜃௞) (7)
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As the davenport spectrum is used (Figure 2), the method suggests that the 
frequency range of 0.0017 Hz to 2.5 Hz is chosen for the decomposition of the power 
spectrum, i.e., periods from 0.4 s to 600 s. The fluctuating portion of the wind pressure 

𝑞(𝑡) can be represented by at least 11 harmonics, one of them being the resonant, and 
the others multiples or submultiples of this choice, using the factor 2 [16]. 

Table 2. Properties of the building geometry and wind characteristics. 

Parameters Value 

𝒉 9 m 

Building dimension 28.30 m × 12.20 m 

𝑽𝟎 45 m/s 

Building category IV 

Land class B 

𝑺𝟏 1 

𝑺𝟑 1.1 

𝑪𝒂 1.2 

𝒃 0.85 

𝒑 0.125 

𝝃 1.5 
where: ℎ: height of the building; 𝑉଴: basic wind speed; 𝑆ଵ: topographic factor; 𝑆ଶ: statistical factor; 𝐶௔: 
drag coefficient; 𝑏: the parameter as a function of the terrain category; 𝑝 the exponent of the potential 
law of variation of 𝑆ଶ; 𝜉: dynamic amplification coefficient. 

 
Figure 2. Wind power spectrum (davenport). 

The choice of the phase angles (𝜃௞)  of each of the 11 harmonics is obtained 

randomly, between 0 ≤ 𝜃௞ ≤ 2π , for each 𝜃௞  a loading pressure in time will be 
defined. The statistical analysis is done using the Monte Carlo technique [17], 
randomly generating 20 loading histories for the structure. Taking into account the 
Gaussian distribution, the displacement with a 95% probability of occurrence, which 
limits to only 5% the probability of this value being exceeded, is the characteristic 
displacement. The time series whose response is closest to the statistically determined 
characteristic response is adopted. According to Carril [16], this is a good 
representation of the characteristics of the real wind. 

For the dynamic actions of the earthquake in the model studied, 𝐹ଵ(𝑡) will be the 
external force caused by the earthquake. For this, NBR 15421 [18] will be used, which 
establishes parameters and criteria to determine the earthquake forces on structures. 
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The methodology used will be based on the synthetic wind model, addressed in the 
works of Corbani [14] and Brandão [19]. For calculation purposes, the earthquake will 
be considered a time series loading, obtained through the Kanai-Tajimi spectrum [20]. 
The necessary data regarding the characteristics of the structure, the soil, and the 
earthquake parameters defined by NBR 15421 [18] are listed in Table 3. 

With the aid of MATLAB® [21], the power spectral density function (PSDF) was 
generated. To obtain the values of the frequencies of the harmonic components, the 
suggestion of Corbani [14] was adopted: use multiples and submultiples with a factor 
equal to the ratio between the natural frequencies of the first and second vibration 

modes, being Δ𝜔 = 0.41 . Figure 3 represents the Kanai-Tajimi PSDF on a 
logarithmic scale. 

In the case of earthquakes, Corbarni [14] investigated what would be the 
appropriate number of harmonic functions and the best position of the resonant term 
as a function of the natural period. Since the first natural period of the structure is 

𝑇௡ଵ ≅ 0.6 s , it is obtained that the most suitable number of harmonic functions to 
represent the earthquake are 11 harmonics, with the seventh resonant term. 

Table 3. Structure, soil and earthquake parameters. 

Parameters Value 

Zone 4 

𝒂𝒈 0.15 g 

Seismic category C 

Land class B 

Land type Rock 

𝑰 1.5 

𝑹 3.5 

𝑯 0.6 

𝝎𝒈 27 rad/s 

where 𝑎௚: horizontal seismic accelerations; 𝑔 = 9.81 m/s² (acceleration of gravity); 𝐼: importance of 
use factor; 𝑅: response coefficient; 𝐻: damping of the soil; 𝜔௚: characteristic natural frequency of the 
land. 

 

Figure 3. Kanai-Tajimi PSDF. 

Aiming to determine the maximum earthquake acceleration ( ü୥ ), adapting 

Equation (7), and using the parameters of NBR 15421 [18], the harmonic combination 
of accelerations will be given by the expression: 
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𝑢̈௚(𝑡) =
𝐼

𝑅
𝑎௚ ෍ 𝐶௞

௠

௞ୀଵ

cos(𝜔௞𝑡 − 𝜃௞) (8)

Analogously to the methodology of the statistical analysis for wind action, the 

values of 𝜃௞, generated for each of the 11 harmonics corresponding to the 20 load 
histories will be analyzed for the determination of the characteristic loading. 

Finally, the time series of the characteristic loading of the wind and earthquake is 
performed in order to calculate the time history of the displacements, velocities, and 

their phase planes. For this, the portion of the external force caused by the wind 𝐹ଷ(𝑡) 

and the earthquake 𝐹ଵ(𝑡) is added to Equation (4). The external force 𝐹ଶ(𝑡) will be 
considered to be zero. For seismic excitation, the dynamic loading is given by the 
product between the mass and the acceleration over time, in the opposite direction to 
this acceleration. Thus: 

𝐹ଵ(𝑡) = −𝑚ଵ𝑢̈௚(𝑡) (9)

For wind action, the harmonics of forces 𝐹ଷ(𝑡) and fluctuating pressures (𝑄), are 
given by: 

𝐹ଷ(𝑡) = 𝑄𝐴𝐶௔𝜉 (9)

𝑄 = 𝑞௙𝑞(𝑡) (10)

where: 𝑞௙: is the fluctuating pressure, given by the difference of the pressures obtained 

with the gust and average velocity, according to NBR 6123 [15]. 

Adding 𝐹ଵ(𝑡)  and 𝐹ଷ(𝑡)  in Equation (4) gives the system of equilibrium 
equations, considering the simultaneous action of wind and earthquake: 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑦̇ଵ = 𝑦ଶ

𝑦̇ଶ = −
(𝑐ଵ + 𝑐ଶ)𝑦ଶ

𝑚ଵ
+

𝑐ଶ𝑦ସ

𝑚ଵ
−

(𝑘ଵ + 𝑘ଶ)𝑦ଵ

𝑚ଵ
+

𝑘ଶ𝑦ଷ

𝑚ଵ
−  𝑢̈௚(𝑡)

𝑦̇ଷ = 𝑦ସ

𝑦̇ସ = −
(𝑐ଶ + 𝑐ଷ)𝑦ସ

𝑚ଶ
+

𝑐ଶ𝑦ଶ

𝑚ଶ
+

𝑐ଷ𝑦଺

𝑚ଶ
−

(𝑘ଶ + 𝑘ଷ)𝑦ଷ

𝑚ଶ
+

𝑘ଶ𝑦ଵ

𝑚ଶ
+

𝑘ଷ𝑦ହ

𝑚ଶ

𝑦̇ହ = 𝑦଺

𝑦̇଺ =
𝑐ଷ𝑦ସ

𝑚ଷ
−

𝑐ଷ𝑦଺

𝑚ଷ
+

𝑘ଷ𝑦ଷ

𝑚ଷ
−

𝑘ଷ𝑦ହ

𝑚ଷ
+

𝐹ଷ(𝑡)

𝑚ଷ

 (11)

2.2. H control via state feedback 

System modeling in modern control theory can be represented by a linearized 
time invariant (LTI) system expressed in state space, considering the action of 
exogenous inputs, which represent external disturbances to the system, given by [22]: 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵ଶ𝑢(𝑡) + 𝐵ଵ𝑤(𝑡) 
(13)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷ଶ𝑢(𝑡) + 𝐷ଵ𝑤(𝑡) 

where: 𝑥(𝑡) ∈ 𝑅௡ being the state vector, 𝑢(𝑡) ∈ 𝑅௠ the control input vector, 𝑦(𝑡) ∈

𝑅௤  the system outputs, 𝐴 ∈ 𝑅௡×௡  the dynamic matrix, 𝐵ଶ ∈ 𝑅௡௫௠  the control input 

matrix, 𝐵ଵ ∈ 𝑅௡௫௠  the disturbance input matrix, 𝑤(𝑡) ∈ 𝑅௠  the disturbance vector, 

𝐶 ∈ 𝑅௤×௡ the output matrix, 𝐷ଶ ∈ 𝑅௤×௠ the control direct transmission matrix, and 

𝐷ଵ ∈ 𝑅௤×௠ the disturbance direct transmission matrix. 

The goal is to find a matrix 𝐾 ∈ 𝑅௠௫௡, called the feedback gain matrix or control 
matrix [23], that satisfies the condition: 
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𝑢(𝑡) = 𝐾𝑥(𝑡) (14)

Substituting Equation (14) into Equation (13) makes the system closed loop, that 
is, the system controlled with state feedback:  

𝑥̇(𝑡) = (𝐴 + 𝐵ଶ𝐾)𝑥(𝑡) + 𝐵ଵ𝑤(𝑡) 
(15)

𝑦(𝑡) = (𝐶 + 𝐷ଶ𝐾)𝑥(𝑡) + 𝐷ଵ𝑤(𝑡) 
Since Equation (15) is linear, its stability will be defined by the eigenvalues of 

the matrix 𝐴௡ = (𝐴 + 𝐵ଶ𝐾) . Thus, for a controllable and asymptotically stable 

system, the feedback gain K can be chosen such that all eigenvalues of 𝐴௡ have the 
negative real part. 

For the correct formulation of the problem, it is first necessary to define the norm 

H. Considering the Equation (13) with 𝑢(𝑡) = 0, then its norm H is characterized 

by the largest value of the modulus of the relationship between the frequency of the 

output signals 𝑦(𝑡) and the exogenous input 𝑤(𝑡) [24]. It is mathematically defined 
by: 

‖𝐻(𝑠)‖ஶ = max
ఠ∈ℝశ

𝜎୫ୟ୶(𝐻(𝑗𝜔)) = max
ఠ∈ℝశ

|𝑌(𝑗𝜔)|

|𝑊(𝑗𝜔)|
 (16)

where: 𝐻(𝑠) is the transfer function relating the output 𝑦(𝑡) and the exogenous input 

𝑤(𝑡)  of the system (15), 𝑌(𝑗𝜔)  is the frequency response of the output 𝑦(𝑡)  and 

𝑊(𝑗𝜔) is the frequency response of the exogenous input 𝑤(𝑡). 

 
Figure 4. Optimal control H. 

The goal is to design a controller 𝐾 ∈ 𝑅௠௫௡ , such that 𝑢(𝑡) = 𝐾𝑥(𝑡) , that 

asymptotically stabilizes and minimizes the impacts of the exogenous input 𝑤(𝑡) on 

the output y(t) by “sinking” the H norm of the closed-loop Equation (15) through 

state feedback. This idea, which is called optimal control H, is represented in Figure 

4. The graph in Figure 4 is known as the Bode diagram. The H norm of the system is 

characterized by the largest value of the modulus of the 𝑌(𝑗𝜔)/𝑊(𝑗𝜔), ratio, that is, 

the largest value of the frequency response |𝐻(𝑗𝜔)|. Thus, the H norm is associated 

with the worst case, the maximum value of |𝐻(𝑗𝜔)| indicates the case of the greatest 

impact that the exogenous input 𝑤(𝑡) causes on the output of the system 𝑦(𝑡). 
The Equation (15) is stabilized by state feedback if, and only if, there exists a 

solution to the convex optimization problem [25]: 

min𝜇 
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subject to 

𝑊 = 𝑊′ > 0 

(17)
቎

𝐴𝑊 + 𝑊𝐴ᇱ + 𝐵ଶ𝑍 + 𝑍ᇱ𝐵ଶ
ᇱ 𝑊𝐶ᇱ + 𝑍ᇱ𝐷ଶ

ᇱ 𝐵ଵ

𝐶𝑊 + 𝐷ଶ𝑍 −𝜇𝐼 𝐷ଵ

𝐵ଵ
ᇱ 𝐷ଵ

ᇱ −𝐼

቏ < 0 

In the optimal solution, 𝐾 = 𝑍𝑊ିଵ ensures ‖𝐻(𝑠)‖ஶ ≤ √𝜇. Further details can 
be found in the study of Boyd et al. [25]. The proof of LMI Equation (17) can be found 
in the works by Palma and Peres [26,27]. 

Since the dynamic equations of Equation (12) are linear and time-invariant 
equations, the shear building model with three floors can be rewritten in the state space 
form of Equation (13). In the structural model of the building, Figure 1, the control 

force 𝐹௖(𝑡) , acting on the 3rd floor will be considered, which will be seen as the 

actuator of the controllers. It was defined that the input vector 𝑢(𝑡) = 𝐹௖(𝑡), will be 

given by Equation (14). The exogenous inputs 𝑤(𝑡) will be provided by the wind and 

earthquake action. The state vector 𝑥(𝑡) and the output vector 𝑦(𝑡) will be composed 
of six elements, according to the system of Equation (12): 

𝑥(𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑦ଵ

𝑦ଶ

𝑦ଷ

𝑦ସ

𝑦ହ

𝑦଺⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑦(𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑦ଵ

𝑦ଶ

𝑦ଷ

𝑦ସ

𝑦ହ

𝑦଺⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (18)

Thus, from the system of dynamic Equation (12) and the vectors 𝑢(𝑡), 𝑥(𝑡), 𝑦(𝑡) 
defined in Equations (14) and (18), respectively, the matrices in Equation (13), which 
correspond to the representation of the shear building model in state space form, will 
be given by: 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0

−(𝑘ଵ + 𝑘ଶ)

𝑚ଵ

0

𝑘ଶ

𝑚ଶ

0

0

1

−(𝑐ଵ + 𝑐ଶ)

𝑚ଵ

0

𝑐ଶ

𝑚ଶ

0

0

0

𝑘ଶ

𝑚ଵ

0

−(𝑘ଶ + 𝑘ଷ)

𝑚ଶ

0

𝑘ଷ

𝑚ଷ

0

𝑐ଶ

𝑚ଵ

1

−(𝑐ଶ + 𝑐ଷ)

𝑚ଶ

0

𝑐ଷ

𝑚ଷ

0

0

0

𝑘ଷ

𝑚ଶ

0

−
𝑘ଷ

𝑚ଷ

0

0

0

𝑐ଷ

𝑚ଶ

0

−
𝑐ଷ

𝑚ଷ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (19)

𝐵ଶ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0

0

0

0

0

1
𝑚ଷ

ൗ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝐶 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝐷ଶ = 𝐷ଵ = 0 (20)
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𝐵ଵ(௩ା௦) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0

0

0

0

0

1
𝑚ଷ

ൗ

0

−1

0

0

0

0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑤(௩ା௦)(𝑡) = ቈ
𝐹ଷ(𝑡)

𝑢̈௚(𝑡)
቉ (21)

where: 𝐵ଵ(௩ା௦) e 𝑤(௩ା௦)(𝑡) refers to the simultaneous exogenous input of wind and 

earthquake. 
By grouping these matrices according to Equation (13), the complete 

representation of the model studied in the form of state space can be obtained. Using 

the Sedumi solver of MATLAB® [21], the controller H was obtained by solving the 

LMI in Equation (17) [28]. 

2.3. MRD 

MRD are semi-active control devices that can have their damping factor changed 
instantaneously, have high stability, reliability, and operate silently. Considered an 
intelligent material, the magneto-rheological (MR) fluid is a mixture of oil with 
ferromagnetic micro-particles that are sensitive to the action of a magnetic field. And 
when it is exposed to a magnetic field strength or electric current, it changes from a 
free-flowing liquid into a semisolid with controllable force strength. The 
ferromagnetic particles tend to align themselves into linear structures, parallel to the 
magnetic flow lines, which hinder the flow of the fluid and consequently increase its 
viscosity [7]. 

For the development of the control system of MR actuators, it is necessary that 
the mathematical model be faithful to their dynamic behavior. The most referenced 
and used in most research involving MRD is the modified Bouc-Wen parametric 
model, presented in the work of Spencer [29], Figure 5. It arose from the Bouc-Wen 
model, which depicts the behavior of a typical MRD. 

 
Figure 5. Modified Bouc-Wen model. 

The equations governing the dynamic behavior of the modified Bouc-Wen model 
are described by [7,29]: 

𝑐ெோ𝑦̇ = 𝛼𝑧 + 𝑘଴(𝑥 − 𝑦) + 𝑐଴(𝑥̇ − 𝑦̇) (22)

The variable 𝑧 can be obtained by the equation: 

𝑧̇ = −𝛾|𝑥̇ − 𝑦̇|𝑧|𝑧|௡ିଵ − 𝛽(𝑥̇ − 𝑦̇)|𝑧|௡ + 𝐴(𝑥̇ − 𝑦̇) (23)

Solving Equation (22) as a function of 𝑦̇, we get: 
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𝑦̇ =
1

𝑐଴ + 𝑐ெோ

[𝛼𝑧 + +𝑐଴𝑥̇ + 𝑘଴(𝑥 − 𝑦)] (24)

The total strength of the modified Bouc-Wen model is given by: 

𝐹ெோ = 𝛼𝑧 + 𝑘଴(𝑥 − 𝑦) + 𝑐଴(𝑥̇ − 𝑦̇) + 𝑘ெோ(𝑥 − 𝑥଴) (25)

It can be rewritten as follows: 

𝐹ெோ = 𝑐ெோ𝑦̇ + 𝑘ெோ(𝑥 − 𝑥଴) (26)

where: 𝐹ெோ  is the force generated by the MRD; 𝑐ெோ  is the damping factor of the 

MRD; 𝑘ெோ is the stiffness associated with the MRD; 𝑦̇ is the velocity of the MRD’s 

piston embolus; 𝑥 is the displacement of the MRD; 𝑐଴ is the initial damping factor; 𝑘଴ 

is the initial stiffness coefficient of the assembly; 𝑥଴ is the initial displacement of the 

MRD; 𝛾, 𝛽, 𝑛 and 𝐴, depend on the characteristics of the damper. 
In this methodology, many parameters are required to characterize the MRD. 

Their optimized values are determined by fitting the prototype according to 
experimental data obtained in laboratory tests. This model is the one that presents the 
highest accuracy, however, when used in control systems, the solution of all these 
equations naturally requires a certain computational effort, since it has three 
differential equations, besides the equations of the electric circuit dynamics [7,29]. 

In order to circumvent this problem, this paper proposes to use an approximate 

expression for Equation (26). Where force F୑ୖ  does not explicitly present a 
dependence on the control variable, which should be the electric current. According to 
Tusset and Balthazar [30], who conducted studies on MRD behavior and used 
experimental data to write the function Equation (27) that is dependent on the electric 
current: 

𝐹ெோ =
3.2

(3𝑒ିଷ.ସ௜) + 1
𝑥̇ + 𝑘଴𝑥 +

8.5

(1.28𝑒ିଷ.ଽ௜) + 1
𝑧 (27)

2.4. H hybrid controller and MRD 

In order to further reduce the amplitudes of the temporal responses, it is proposed 
in this paper to use hybrid control, which is a combination of active control and semi-

active control. The H controller via state feedback will be the active control, and the 

MRD controller will be the semi-active control. Figure 6 shows the structural model 
of the building, considering the hybrid controller. 

Putting the two controls together from Equation (15), we have: 

𝑥̇(𝑡) = (𝐴 + 𝐵ଶ𝐾)𝑥(𝑡) + 𝐵ଵ𝑤(𝑡) + 𝐵ଷ𝑓(𝑡) 
(28)

𝑦(𝑡) = (𝐶 + 𝐷ଶ𝐾)𝑥(𝑡) + 𝐷ଵ𝑤(𝑡) 

where: 𝑓(𝑡) is the MRB force vector and B3 is the MRB input matrix. 
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Figure 6. Shear building model with action of the controlled hybrid. 

To solve Equation (28), the theories discussed in sections 2.2 and 2.4 will be 
adopted. The components of Equation (28), corresponding to MRB, are: 

𝐵ଷ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0

−1
𝑚ଵ

ൗ

0

0

0

0

0

1
𝑚ଵ

ൗ

0

−1
𝑚ଶ

ൗ

0

0

0

0

0

1
𝑚ଶ

ൗ

0

−1
𝑚ଷ

ൗ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑓(𝑡) = ൦

𝐹ெோଵ

𝐹ெோ

𝐹ெோଷ

൪ (29)

3. Results and discussion 

Initially, the stability of the structure was analyzed for the nominal physical 
parameters (Table 1), null initial conditions, and no external force. The eigenvalues of 
the Jacobian matrix were computationally calculated in Equation (5), which classified 
the structure as stable, according to Lyapunov [31]. Thus, it can be verified that the 
model studied is naturally stable. 

In order to analyze the robustness of the structural stability, the verification was 
repeated, considering a 10% uncertainty for the stiffness values and keeping the other 
values in Table 1 fixed. For all combinations, the structure presents stable behavior. 
For a civil structure, which is the case of the model studied, the stability points are 
related to the non-occurrence of the following structural conditions: loss of 
equilibrium, exhaustion of resistant capacity, or collapse. 

For the temporal responses to wind and earthquake action, null initial conditions 
will be considered for displacements and velocities, the physical parameters presented 
in Tables 1–3. This requires the integration over time of the system of first-order 
ordinary differential equations by some numerical method. In this work, the chosen 
technique is the 4th-order Runge-Kutta method [12], which presents good numerical 
stability. 

The results of the numerical simulations consider the simultaneous action of wind 
and earthquake. The response is analyzed for 50 s with a step of 0.01, which 
corresponds to 5000 points. This amount of points is necessary to observe transient 
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behavior and the permanent regime. The choice of time is based on the duration of an 
earthquake, as suggested by Chopra [13]. 

Figure 7 presents the displacement as a function of time for the joint excitation 
of wind and earthquake for the three floors. It can be observed that the displacements 
on the three floors have analogous behaviors for the same time range, which gradually 
increase until they stabilize and oscillate around the equilibrium point. The peaks and 
valleys are close together and occur with a similar frequency. The third floor presents 
the largest displacements, with 10.51 cm as the critical value and the displacement at 
the top of the building being 20.67 cm. 

From the results presented for the simulations with external excitations, it can be 
seen that the building does not have sufficient stiffness to ensure stability against 

external actions. Therefore, it is necessary to calculate the Lyapunov exponent () to 

verify if the structure presents chaotic behavior. For this, we use the algorithm 
developed by Mohammadi [32], which is based on the methodology of Wolf and 
collaborators [31] and Rosenstein and collaborators [33]. 

 
Figure 7. Temporal response with simultaneous action—displacement. 

With the goal of obtaining the Lyapunov exponents, the time series obtained with 
the building model for the simultaneous action were cast into the algorithm. The results 

were: 𝜆ଵ = 0.7661; 𝜆ଶ = 0.5114; 𝜆ଷ = 0.4917; 𝜆ସ = 0.4903; 𝜆ହ = 0.3713; 𝜆଺ =

0.396. 
The model has six dimensions, so it has six Lyapunov exponents. They were 

ordered from highest to lowest [8]. It can be observed that the values of the Lyapunov 
exponents showed variations, which means that the divergence rate of the trajectories 
was expressive. It can be concluded that all Lyapunov exponents are positive, meaning 
that the system is hyperchaotic. According to Savi [12], this implies that the trajectory 
diverges exponentially from the original orbit, indicating a non-stable system of the 
chaotic type, which characterizes the total or partial collapse of the structure. Because 
the structure no longer presents stable behavior but chaotic behavior, it is necessary to 
apply control techniques that allow structural integrity under the effect of the presented 
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excitations. 

Applying the H control technique via state feedback to the system studied the 

following feedback gain was obtained: 

𝐾 = [−2.3113 0.1516 6.8743 −0.0554 3.1260 −0.1108] × 10଺ (30)

Figure 8 shows the Bode diagram for the system with control (red color) and the 
system without control (blue color). It can be observed that there was a “sinking” of 

the H standard, after the control by state feedback. With this, the exogenous input of 

the simultaneous action 𝑤(௩ା௦)(𝑡) will have minimal influence on the behavior of the 

system output 𝑦(𝑡). And this behavior can be observed in Figure 9, which compares 
the temporal responses of the displacements of the system with control and without 
control. It can be seen that the amplitudes were reduced considerably in the controlled 
system. 

 
Figure 8. Bode diagram—simultaneous action. 

 
Figure 9. H control for simultaneous action—displacement. 

When evaluating seismic performance, one must verify whether the structural 
displacements may imply damage or a loss of stability. The limit displacements, in 
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relation to the floors established by the standard, apply to seismic categories B or C 
and depend on the type of occupancy of the building as established in NBR 15421 

[18], being limited to ℎ/100. NBR 8800 [34] recommends a relationship of 𝐻/400 

for displacements at the top of the building and ℎ/500 between floors, where 𝐻 is the 

total height of the building and ℎ  is the height of the ceiling. NBR 6118 [35] 
recommends that for non-structural elements, such as walls, the lateral displacement 

of buildings should be a maximum of 𝐻/1700 for the top and ℎ/850 between floors. 
This large difference between the criteria is justified by the fact that non-structural 
elements have low strength and modulus of elasticity. Therefore, a stricter 
displacement criterion is necessary to avoid collapse. 

Table 4 shows the comparative maximum displacements of the system in open 
loop (OL) and closed loop (CL). For the total displacement, the maximum 
displacements on the three floors were added, and in the relationship between the 
floors, the 3rd floor was adopted because it is the most critical. The total height of the 

building studied is 9 m, and the height of the typical floor is 3 m. After the H control 

via state feedback, the total displacement of the structure presented a reduction of 77%, 
while the maximum displacement of the 3rd floor presented a reduction of 79%. 
Despite the significant reduction, the values were still above the limit determined by 
NBR 8800 [34] and NBR 6118 [35]. When analyzing NBR 15421 [18], the reduction 
in displacement was enough to leave it below the limit. 

Table 4. Maximum displacements—H control for simultaneous action. 

NBR Displacement 
Maximum value (cm) 

Limit (cm) Situation 
OL CL 

8800 
Top of the building 20.67 4.57 2.25 Above 

Between floors 10.51 2.15 0.60 Above 

6118 
Top of the building 20.67 4.57 0.53 Above 

Between floors 10.51 2.15 0.36 Above 

15421 Between floors 10.51 2.15 3.00 Below 

In the application of the MRD technique, the MRD parameters used in the 
simulations are presented in Table 5 [7,30]: 

Table 5. MRD parameters for simulation. 

Actuator parameters Values 

𝛾 [mିଶ] 408,720 

𝛽 [mିଶ] −360,220 

𝑛 [sିଵ] 2 

𝐴 634 

𝑖 [A] 2 

𝑘଴ [N/m] −155.63 

Implementing the functions of Section 2.3 and the parameters of Table 5 in an 
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algorithm in MATLAB® [21] and integrating over time, we obtained the temporal 
responses shown in Figure 10, which compares the displacements of the system with 
control (red) and no control (blue). It can be seen that the amplitudes of the temporal 
responses were considerably reduced. When comparing Figure 10 with Figure 9, it is 
observed that the amplitude oscillations for the MRD controller were smaller. 

 
Figure 10. MRD control for simultaneous action—displacement. 

Table 6 confirms this, since the displacements after the MRD control showed a 
total displacement of 79%, while the maximum displacement of the 3rd floor showed 
a reduction of 86% when compared to the values without control (OL). Analogously 

to the H control, only the verification of NBR 15421 [18] was met. 

Table 6. Maximum displacements—MRD control for simultaneous action. 

NBR Displacement 
Maximum value (cm) 

Limit (cm) Situation 
OL CL 

8800 
Top of the building 20.67 4.25 2.25 Above 

Between floors 10.51 1.42 0.60 Above 

6118 
Top of the building 20.67 4.25 0.53 Above 

Between floors 10.51 1.42 0.36 Above 

15421 Between floors 10.51 1.42 3.00 Below 

In order to further reduce the amplitudes of the temporal responses, a hybrid 
control is used. Implementing the functions from Section 2.4 and parameters adopted 
in an algorithm in MATLAB® [21] and doing the integration over time, we obtained 
the temporal responses, illustrated in Figure 11. It can be observed that the temporal 
responses of the controlled system (red) present zero oscillations when compared to 
the uncontrolled system. The system remained in equilibrium over time, even with the 
simultaneous action of wind and earthquake. 

From Table 7, it can be seen that the hybrid controller also presented a 100% 
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reduction in its maximum displacement when compared to the values without control 
(OL), staying below the limit established in the three analyzed standards. Figure 12 

shows the efficiency of the hybrid controller when comparing it to the H and MRD, 

and hybrid controllers. The exogenous input 𝑤(௩ା௦)(𝑡)  had zero influence on the 

behavior of the system output 𝑦(𝑡), thus achieving the controller’s objective. 

 
Figure 11. Hybrid control for simultaneous action—displacement. 

Table 7. Maximum displacements—hybrid control for simultaneous action. 

NBR Displacement 
Maximum value (cm) 

Limit (cm) Situation 
OL CL 

8800 
Top of the building 20.67 8.34 × 10−4 2.25 Below 

Between floors 10.51 3.49 × 10−4 0.60 Below 

6118 
Top of the building 20.67 8.34 × 10−4 0.53 Below 

Between floors 10.51 3.49 × 10−4 0.36 Below 

15421 Between floors 10.51 3.49 × 10−4 3.00 Below 

 
Figure 12. H control, MRD and hybrid control for simultaneous action—
displacement. 
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4. Conclusions 

The natural disaster that was the focus of this work was the occurrence of seismic 
and wind actions in civil structures, and thus it was found that these actions increase 
considerably the displacements of the structure. Because the structure no longer shows 
stable behavior but chaotic behavior, it was necessary to apply control techniques that 
allow structural integrity under the effect of the presented excitations. The first control 

technique applied was optimization H via state feedback, using the mathematical 
method of LMIs. With this, the system had a reduction of more than 77% in its 
maximum displacement. From the results presented, it can be concluded that, through 

state feedback and the H controller design, the system was stabilized and its H 

norm was minimized, thus achieving the controller’s goal. The second control 
technique applied was the MRD, using the modified Bouc-Wen model. In the 
simulations, there was a reduction of more than 79% in the maximum displacements. 

With the reduction as well as the H technique, only the verification of NBR 
15421:2006 was met. Analyzing the presented results, it can be concluded that through 
the MRD controller, the system was stabilized, its oscillations were mitigated, and its 
displacements were reduced, thus achieving the controller’s goal. Aiming to further 

reduce the amplitudes of the temporal responses, the hybrid control technique H via 

state feedback and MRD was developed and applied. With this, there was a 100% 
reduction in their displacements. Thus, the verifications in relation to maximum 
displacements were met for the three standards analyzed in this work. From these 
results, it can be concluded that the hybrid controller proved to be more efficient and 
achieved the proposed objective. The exogenous inputs had no influence on the 
system's output behavior. 
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