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ABSTRACT: With accurate dynamic system parameters (embodied in 

self-awareness statements), a controller can provide precise signals for 

tracking desired state trajectories. If  dynamic system parameters are ini-

tially guessed inaccurately, a learning method may be used to find the ac-

curate parameters. In the deterministic artificial intelligence method, 

self-awareness statements are formed as mathematical expressions of  the 

governing physics. When the nonlinear, coupled expressions are precisely 

parameterized as the product of  known matrix components and unknown 

vectrix (i.e., an intermediate between a dyadic and a matrix in regression 

form) tracking errors may be projected onto the known matrix to update 

the unknown vectrix in an optimal form (in a two-norm sense). In this 

work, a modified learning method is proposed and proved to have global 

convergence of  both state error and parameter estimation error. The mod-

ified learning method is compared with those in the prequels using simu-

lation experiments of  three-dimensional rigid body dynamic rotation mo-

tion. The achieved state error convergence using the modified approach is 

two magnitudes better than using the methods in the prequels. 

KEYWORDS: nonlinear systems; mechanics; spacecraft attitude control; 

deterministic artificial intelligence; regression; learning 

 

1. Introduction 

   
         (a)                                                  (b) 

Figure 1. (a) The International Space Station’s Canadarm2 and Dextre carry the RapidScat instrument assembly after removing 
it from the trunk of the SpaceX Dragon cargo ship (upper right), which is docked at the nadir port of the Harmony node. (b) 
NASA Gateway would support a growing space economy photos taken from [1] and [2] respectively in compliance with 
NASA’s image use policy[3]. 

Consider intricate robotic operations in 
low-earth orbit near the space station as dis-
played in Figure 1, where considerable human 

intervention is available. Next, contemplate the 
requirements to autonomously do such opera-
tions in far distant cis-lunar orbits. The latter sys-
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tem must be able to learn in real-time dynamic 
changes that occur when the space robot grasps 
and grapples targeted spacecraft. Dynamics and 
control issues associated with rendezvous in 
Cis-lunar space near rectilinear halo orbits were 
investigated in [4], where a fully-safe, automatic 
rendezvous strategy was developed between a 
passive vehicle and an active one orbiting around 
the Earth-Moon L2 Lagrangian point. Bando et 
al.[4] proposed a chattering attenuation sliding 
mode control utilizing the eigen structure of the 
linearized flow around a libration point of the 
Earth-Moon circular restricted three-body prob-
lem, and this novel article serves as a reminder of 
the prevalence of linearization when dealing with 
multiple, coupled nonlinear equations. In 2021, 
Colombia presented a guidance, navigation and 
control framework for 6 degrees of freedom 
(6DOF) coupled Cislunar rendezvous and dock-
ing, and the article highlighted the importance of 
dealing with full, coupled translational-rotational 
dynamics of multi-body (i.e., highly flexible) dy-
namics seeking guaranteed coupled-state estima-
tion[5]. Immediately that same year[6], new tech-
niques for highly flexible multi-body space 
robotics were proposed as a competing narrative 
to the just-proposed “whiplash compensation” of 
flexible space robotics[7] establishing a thread of 
research offered by Cornell University. China 
now has two robotic arms attached to its space 
station[8], where a large robotic arm can “crawl” 
along the outside of the spacecraft[9]. 

An alternative thread of research is offered 
by Massachusetts Institute of Technology[10–16]. 
Noting that ubiquitous approaches rely on either 
simplifying assumptions in the dynamical model 
or on abundant computational resources, Lafarge 
et al.[10] proposed reinforcement learning for 
closed-loop control of onboard low-thrust guid-
ance. Albee et al.[11] studied active interception of 
targets for autonomous repair and deorbiting 
must account for the tumbling motion of targets, 
which is oftentimes not known a priori. A model 
reference adaptive algorithmic approach was 
proposed to identify the state of the target’s tum-

ble. In a more typical manner, Mehta et al.[12] 
proposed a quasi-physical dynamic reduced-order 
model that used a linear approximation of the 
underlying dynamics and effect of the drivers 
where data assimilation and model calibration 
utilized estimation of the model coefficients that 
represent the model parameters. One sequel arti-
cle about autonomous docking with rotating tar-
gets via reinforcement learning was offered by 
Oestreich et al.[13] proposing learning policies. 
Following the initial target search[14], analytical 
closed expressions to compute the minimum dis-
tance between any two satellites (at the same al-
titude in circular orbits), Avendaño et al. pro-
posed “flower constellations” to produce give an 
efficient method to compute the minimum angu-
lar distance between satellites. Reversing the 
method, Arnas et al.[15] proposed two-dimensional 
lattice flower constellations to design a low earth 
orbit slotting system to avoid collisions between 
compliant satellites (rather than intercept). Oes-
treich et al.[16] also highlighted dependence on 
on-orbit inspection (i.e., relative navigation and 
inertial properties estimation) to intercept tum-
bling debris objects or defunct satellites. In a late 
proposal following the M.I.T. approach, the 
master’s thesis by Roberts[17] continued to devel-
op the stochastic artificial intelligence approach 
embodied in supervised learning. Ekal et al.[18] 
highlight key parametric uncertainties are mass 
and moment of inertia, and the Cornell line of 
research also adopts this premise. 

Another line of work is presented by Stan-
ford University[19–21]. Cassinis et al.[19] introduced 
an adaptive convolutional neural network–based 
unscented Kalman filter for the pose estimation 
of uncooperative spacecraft. Park et al.[20] fol-
lowed the same approach using a shared mul-
ti-scale feature encoder and multiple prediction 
heads that perform different tasks on a shared 
feature output, while Park et al.[21] also followed a 
comparative line similar to the Cornell approach 
presented in this manuscript, where the (to be 
proposed) deterministic approach is supple-
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mented by an adaptive neural network-based un-
scented Kalman filter. 

Cornell’s Zhang et al. proposed an adaptive 
control strategy based on the full, nonlinear 
equations accounting for modeling uncertainties 
using an adaptive neural network amidst external 
disturbances[22], where the Cornell approach 
stems from naval approaches proposed in 2020, 
called deterministic artificial intelligence[23], 
which stated that the system dynamics constitute 
a feedforward control when paired with analytic 
trajectories; and when the dynamics are ex-
pressed in a canonical regression form, optimal 
feedback (in the two-norm sense) can aid control 
of spacecraft attitude. The method stems from the 
incremental development of a common nonlinear 
adaptive scheme offered by Slotine[24] for space-
craft attitude control, where elements of classical 
feedback were eliminated in 2020 and foremost 
applied to unmanned underwater robotics[25]. The 
burgeoning lineage of research continued in 2022 
when Sandberg et al.[26] compared several trajec-
tory-generation schemes and a nominal learning 
method based on the regression model, where 
applied torque is estimated by an enhanced Lu-
enberger observer. Very shortly afterwards, Rai-
goza[27] augmented Sandberg’s trajectory genera-
tors with autonomous collision avoidance. In 
November 2022, Wilt examined efficacy in the 
face of simulated craft damage and environmen-
tal disturbances[28]. This sequel substantiates a 
short communication presenting significant find-
ings that are part of the larger study of Slotine, 
Sands, Smeresky/Rizzo, Sandberg, Raigoza, and 
Wilt. 

In prequel works[23–28], the error convergence 
property is obtained using the proper design of 
the trajectory generation process. However, if the 
external disturbance makes the current state de-
viate from the trajectory, even if the system pa-
rameter is already converged to an accurate value, 
the trajectory will need to be re-calculated to fit 
the current state, so that the deterministic artifi-
cial intelligence can continue to drive the system 
using an optimal feedforward control signal. 

As a result, provided the initial error be-
tween the current state and the current desired 
trajectory as well as inaccurate initial parameter 
value, the goal of the modified learning approach 
proposed in this manuscript is to guarantee the 
convergence to zero of both parameter error and 
the state error. This work focuses on the rotation 
rate control problem of a spacecraft and provided 
2 ways of modification to the learning phase of 
the deterministic artificial intelligence algorithm 
and compared them with the original determinis-
tic artificial intelligence using simulation in 
MATLAB®. Moreover, the modified method can 
be proved to make the error converge to zero us-
ing a similar way as how Slotine and Li[24] proved 
the stability of the non-linear system controlled 
by some specific feed-forward/feed-back control-
lers. That is, the Lyapunov candidate function is 
provided, and the time derivative of the candi-
date function can be proved to be negative with 
the proposed modified learning method. 

Main contribution of the study. This paper 
provides 2 novel unknown parameter learning 
methods, that is, the time derivative of the vector 
of unknown, which are able to not just bound the 
error in parameter estimations but also the dif-
ference between the current system state and the 
desired state with respect to the planned trajectory. 
For the second method proposed, we will further 
show the convergence of parameter estimation 
error, as well as how this leads to the convergence 
of the state tracking error. The paper also dis-
cussed how the provided methods may fail to 
converge under certain conditions. 

2. Materials and methods 

2.1 Spacecraft rotation rate control 

The spacecraft rotation rate control problem 
focuses on applying torque so that the rotation 
rate of a spacecraft converges to the desired value. 
The dynamic can be described by the Euler equa-
tion (displayed in equation (1)). Euler’s moment 
equations can be parameterized in canonical re-
gression form. This full form of the coupled, 
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nonlinear equations whose importance was high- lighted by the research cited in the Introduction. 

𝜏 = 𝐼𝜔̇ + 𝜔 × 𝐼𝜔 = ൦ 𝜔̇௫ 𝜔̇௬ − 𝜔௫𝜔௭ 𝜔̇௭ + 𝜔௫𝜔௬ −𝜔௬𝜔௭ 𝜔௬ଶ − 𝜔௭ଶ 𝜔௬𝜔௭𝜔௫𝜔௭ 𝜔̇௫ + 𝜔௬𝜔௭ 𝜔௭ଶ − 𝜔௫ଶ−𝜔௫𝜔௬ 𝜔௫ଶ − 𝜔௬ଶ 𝜔̇௫ − 𝜔௬𝜔௭ 𝜔̇௬ 𝜔̇௭ − 𝜔௫𝜔௬ −𝜔௫𝜔௭𝜔௫𝜔௬ 𝜔̇௬ + 𝜔௫𝜔௭ 𝜔̇௭ ൪ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥః ⎩⎪⎪⎨
⎪⎪⎧𝐼௫௫𝐼௫௬𝐼௫௭𝐼௬௬𝐼௬௭𝐼௭௭ ⎭⎪⎪⎬

⎪⎪⎫
ᇣᇤᇥ௵

  

(1) 
The matrix Φ is the matrix of known, which 

is composed of the current state and the rate of the 
state (ω and dω/dt). The matrix Θ is the vector of 
the unknown, which is composed of system pa-
rameters, in this case, the moment of inertia. The 
way of formulation shows that it is possible to 
estimate the moment of inertia with the accurate 
measurement of the current state. 

2.2 Original deterministic artificial intelli-
gence control 

The idea of deterministic artificial intelli-
gence is that if the matrix of the unknown can be 
estimated and the desired trajectory of the state is 
given, the optimal control signal will be multi-
plying the desired matrix of known (Φd), which 

includes the information of the current desired 
state, with the best guess of the parameter (𝛩෠ ). 
This turns the system dynamic to equation (2).  𝜏 = 𝛷𝛩 → 𝜏௔௣௣௟௜௘ௗ ≡  𝛷ௗ𝛩෠  

(2) 
However, the 𝛩෠  can be inaccurate or 

changed in the middle of the operation. Therefore, 
a learning approach should be provided so that 
the vector of the unknown can converge to an 
accurate value. The original learning approach in 
the space rotation rate control problem is de-
scribed in equation (3-a) and (3-b), which is pro-
vided by Smeresky et al.[12] and is equation (12) in 
his publication. 

𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑑 ≡ 𝛩 − 𝛩෠ =  𝛷ு൫𝜏௔௣௣௟௜௘ௗ  −  𝛷𝛩෠൯ 
(3-a) 𝑑Θ෡𝑑𝑡 = 𝑎 ∗ 𝑑 

(3-b) 
Where 𝜏௔௣௣௟௜௘ௗ  is the controller torque 

output, and the capital H means the pseudo in-
verse of a non-square matrix. In short, this pro-
vided a way to turn the difference between the 
applied torque and the expected torque into the 

parameter error 𝑑, which should be a minimal 
square error estimation using the information in 
the current time stamp. Concerning the stability 
of the parameter estimation, the learning of the 
parameter is applied incrementally, and this can 
be done using a first order low pass filter to 
smoothen the learned difference. 

Table 1. Symbols used in section 2.2 
Variable Physical meaning Variable Physical meaning 𝛩 Vector of unknown 𝐼 Moment of inertia 𝛩෠  Estimation on the unknown 𝜔 Angular speed vector 𝛷ௗ Matrix of known made by trajectory 𝑑 Learned difference 𝛷 Matrix of known 𝑎 Filter time constant 𝜏 Applied torque   

    

Additionally, deterministic artificial intelli-
gence requires a trajectory generation process to 
produce a trajectory that leads from the current 
state to the desired state. If the current state devi-

ates undesirably from the trajectory, it is better to 
update the trajectory, or the error of the state may 
accumulate. Please be aware that the desired state 
of the trajectory generation is not the desired state 
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of the controller, which follows the output of the 
trajectory generator by making the trajectory the 
desired state of the controller should follow. In 
this manuscript, all the “desired states” men-
tioned are the desired state for the controller, if 
not specifically noted. 

The overall deterministic artificial intelli-
gence can be expressed with the combination of 
control feedforward based on a desired trajectory 
as well as the current best estimation on the vector 

of unknown and a “learning” mechanism that 
updates the vector of unknown until it goes to the 
actual value. Figure 2 presents the deterministic 
artificial intelligence as a block diagram and 
shows the relationship between each component. 
In sections 2.3 and 2.4, the discussion focuses on 
the learning part of deterministic artificial intelli-
gence and the goal is to learn the vector of un-
known and decrease the tracking error at the same 
time. 

  
Figure 2. The block diagram for the deterministic artificial intelligence. 

2.3 Modified learning method, a general 
version 

The target of the modification is that if the 
learning approach can also guarantee to decrease 
the error in the current state when doing the pa-
rameter estimation, the chance of regenerating 
trajectory can be decreased because the error is 
kept from growing, which increases the robust-
ness. In a general version of the modification, we 
consider all the systems that can be expressed in 

the regression form, as in equation (2), where the 
information of the current state is provided in the 
matrix of known. To study the error of the pa-
rameters and state, the error between the desired 
matrix of known and the current matrix of known 
is noted as 𝜙, and the error of the unknown vec-
tor is noted as 𝜃. Equation (2) can therefore be 
turned into equation (4). In this case, the goal 
becomes keeping both 𝜙 and 𝜃 bounded sim-
ultaneously using a modified learning method.𝛷𝜃 + 𝜙𝛩෠ = 0 𝑤ℎ𝑒𝑟𝑒 𝜙 = 𝛷ௗ − 𝛷 𝑎𝑛𝑑 𝜃 = 𝛩 − 𝛩෠  

(4) 
Considering the Lyapunov candidate func-

tion described in equation (5), the function value 
must decrease to 0 if both 𝜙 and 𝜃 go to 0. If 
there is a parameter update approach 𝜃̇  that 
makes the candidate function globally stable, it is 
very likely that the error of the state 𝜙 goes to 0 
together with 𝜃. Equation (7) shows that if 𝜃̇ is 
taken in the form of equation (6), and considering 

equation (4) and the time derivative of equation 
(4), the time derivative of the Lyapunov function 
will be negative semidefinite and leads to the 
global boundedness of the system as long as the 
matrix G is positive definitive. 𝑉 =  𝛩෠்𝜙்𝜙𝛩෠ + 𝜃்𝜃 

(5) 

 𝜃்̇ = − 𝑑Θ෡்𝑑𝑡 = −𝛩෠்𝜙்((𝛷𝛷̇ு)(𝛷ு + 𝛷்)ு + (𝛷ு + 𝛷்)்𝐺) 

(6) 
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𝑉̇2 = ൣ𝛩෠்𝜙்𝛷𝛷̇ு + 𝜃்̇𝛷ு + 𝜃்̇𝛷்൧𝜙𝛩෠ = −𝛩෠்𝜙்(𝛷ு + 𝛷்)்𝐺(𝛷ு + 𝛷்)𝜙𝛩෠ ≤ 0 

(7) 
However, this candidate function only pro-

vided the boundedness of 𝜙𝛩෠  and 𝜃, and the 
derivation of  equation (7) requires the matrix of  
known to be full rank. Furthermore, the conver-
gence of  𝜙𝛩෠, even if  it happens, is not equivalent 
to the convergence of  the state even if  the matrix 
of  known is full rank. For example, for the target 
application in this manuscript (equation (1)), the 
rank of the matrix of known is at most 3, while 
the parameter number in the vector of unknown 
is 6, this makes the learning method provided 
unable to guarantee convergence. It is possible 
that when the unknown parameter converges to 
an accurate value and the state error still exists at 
the same time, the state error will not be going to 
be zero. This can be seen in equation (2) that 
when 𝛩෠ = 𝛩 , the term 𝛩෠்𝜙் = 𝛩෠்(𝛷ௗ − 𝛷)் 

will always be 0. When 𝜙 has a smaller rank 
than the number of unknowns, it is possible that 𝛩෠்𝜙் = 0 when 𝜙 is not zero. 

Another concern of using this method is that 
the calculation of 𝛷̇ is prone to noises and will 
cause latency in the real-time calculation because 
it requires the knowledge of the double derivative 
of the rotation rate, which generally requires spe-
cial treatments like the smoothing process. 

All in all, this version of modification will 
not guarantee the convergence of the state track-
ing error, so a closer inspection of the system 
dynamic, rather than a generalized “matrix of 
known times vector of unknown” formulation, 
may be necessary, and will be shown in section 
2.4. 

Table 2. Symbols used in section 2.3 
Variable Physical meaning Variable Physical meaning 𝜙 Error in matrix of known 𝑉 Lyapunov candidate function 𝜃 Error in vector of unknown 𝐺 Arbitrary positive definite matrix 

    

2.4 Modified learning method, a specific 
version 

To avoid the problem mentioned in section 
2.3, a specific version of the modified learning 
method is provided for the rotation rate control-
ler. The non-regression form of the system dy-
namic is considered in equation (8), and the 
modified learning method is provided in equation 
(10) which utilizes both the state error as well as 
parameter error. Also, the character “i” means 

the error in the inertia matrix in a 3 × 3 form ra-
ther than in a 1 × 6 unknown vector. The torque 
input to the system is slightly modified from 𝜔ௗ × 𝐼መ𝜔ௗ to 𝜔ௗ × 𝐼መ𝜔, which improves the glob-
al stability but won’t affect the feed forward op-
timality in the deterministic artificial intelligence 
much when the state is very close to the desired 
value. (Or defined as applied torque (equation (8) 
in [12])). 

𝐼𝜔̇ + 𝜔 × 𝐼𝜔 = 𝜏௔௣௣௟௜௘ௗ  → 𝜏௔௣௣௟௜௘ௗ ≡ 𝐼መ𝜔̇ௗ + 𝜔ௗ × 𝐼መ𝜔 𝐴𝑙𝑠𝑜, 𝑑𝑒𝑓𝑖𝑛𝑒 𝑖 = 𝐼 − 𝐼መ 𝑎𝑛𝑑 𝜔ᇱ = 𝜔ௗ − 𝜔 
(8) 𝐼𝜔̇ᇱ = −(𝜔ᇱ × 𝐼𝜔ௗ − 𝜔ᇱ × 𝐼𝜔ᇱ) + (𝑖𝜔̇ௗ + 𝜔ௗ × 𝑖𝜔ௗ − 𝜔ௗ × 𝑖𝜔ᇱ) = 𝜔ᇱ × 𝐶 + 𝐾𝜃 
(9) 𝜃̇ = − 𝑑Θ෡𝑑𝑡 = −𝑄𝜔ᇱ − 𝑅𝜃 

(10) 
The equation (8) is rearranged to equation 

(9), and the 𝜃, again, means the inertia in an 
unknown vector form. To prove the global con-

vergence of both state error 𝜔′ and parameter 
error 𝜃 , another Lyaponuv function (equation 
(11)) is provided, which has a physical meaning 
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close to the square error of the whole system, 
where the state square error is weighted by the 
inertia. If the Q term in equation (10) is the 
transpose of the K term in equation (9), and the R 
term in equation (10) is positive definite, the 
Lyapunov function will be bounded globally, as 
shown in equation (12). About the parameter 
vector 𝜃, it is chosen based on equation (13), 
which is the least square estimation same as the 
equation (3-a), and the value is used for the mod-
ified learning method in equation (10). 

Finally, the parameter vector 𝜃  can be 
shown to converge in this case by applying Bar-
balat’s lemma. Since the candidate function V is 
bounded, by equation (12) both tracking and es-
timation error is bounded, the desired trajectory 
has to be bounded, and K is a continuous func-
tion of 𝜔ᇱ, 𝜔ௗ , 𝑎𝑛𝑑 𝜔̇ௗ, it can be concluded that ௏ସ̈ is bounded, which makes 𝑉̇ converges. As a 
result, the estimation error is convergence. 𝑉(𝜔ᇱ, 𝜃) = 𝜔ᇱ்𝐼𝜔ᇱ + 𝜃்𝜃 

(11) 𝑉̇2 =  𝜔ᇱ்𝐼𝜔ᇱ̇ + 𝜃்𝜃̇ = 𝜔ᇱ்(𝜔ᇱ × 𝐶) + 𝜃்(𝐾் − 𝑄)𝜔ᇱ − 𝜃்𝑅𝜃 = 𝜃்(𝐾் − 𝑄)𝜔ᇱ − 𝜃்𝑅𝜃 = −𝜃்𝑅𝜃 ≤ 0  
(12) 𝜃 = 𝛷ு(𝜏௔௣௣௟௜௘ௗ − 𝛷𝛩෠) 
(13) 𝑉4̈ = 𝜃்𝑅𝐾்(𝜔ᇱ, 𝜔ௗ , 𝜔̇ௗ)𝜔ᇱ + 𝜃்𝑅ଶ𝜃 

(14) 
The discussion of convergence of tracking 

error can be based on the time integral of equa-
tion (10), as shown in equation (15). Since 𝜃 is 
proven to be convergence, the right-hand side is 
now a constant and both terms at the right-hand 
side have finite value. As a result, it can be said 
that the term 𝐾்𝜔ᇱ goes to zero as time goes 
infinity, and the tracking error 𝜔ᇱ will be con-
vergence as long as 𝐾் always has a rank of 3. 

 

−𝜃(0) = න 𝜃̇ஶ
଴ 𝑑𝑡 = − න 𝐾்𝜔ᇱஶ

଴ 𝑑𝑡 − න 𝑅𝜃ஶ
଴ 𝑑𝑡 

(15) 
The conclusion on the Lyapunov candidate 

is still based on the fact that the matrix of known 
has to be full rank, due to equation (13). Provided 
a full rank matrix of known, the candidate func-
tion will be driven to zero from any positive val-
ue. When the candidate function is zero, the 
tracking error and unknown vector estimation 
error will have to be zero as well. 

Table 3. Symbols used in section 2.4 
Variable Physical meaning Variable Physical meaning 𝑖 Error of inertia matrix 𝐶 A term for simplifying equation (9) 𝜔ᇱ Error of angular velocity 𝐾 A term for simplifying equation (9) 𝑄 Learning matrix for angular velocity error 𝑅 Learning matrix for parameter estimation error 

    

2.5 Simulation 

The trajectory tracking of the rotation rate 
controller will be simulated. In the simulation, 
the trajectory is generated using arbitrary test 
torque, as shown in equation (16). The controller 
does not possess the test torque value, but instead 
receives a stream of desired rotation rate and the 
time derivative of the rotation rate. The idea is 

that if the deterministic artificial intelligence can 
track the test trajectory, it should also be able to 
track any trajectory generated by another trajec-
tory planner. 𝐼𝜔̇ௗ + 𝜔ௗ × 𝐼𝜔ௗ = 𝜏௧௘௦௧ 

(16) 
Two types of performance matrices are con-

sidered: norm ratio of the state error, and the 



Journal of  AppliedMath 2023; 1(1): 42. 

8 

norm ratio of the parameter error, in equation 
(17). The result is plotted in section 3. 𝑆𝑡𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑛𝑜𝑟𝑚 𝑟𝑎𝑡𝑖𝑜 = ቆ ||𝜔′||ଶଶ||𝜔ௗ||ଶଶቇ 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑟𝑟𝑜𝑟 𝑛𝑜𝑟𝑚 𝑟𝑎𝑡𝑖𝑜 = 𝑙𝑛(||𝜃′||ଶଶ||𝛩||ଶଶ ) 

(17) 

3. Results 
In this section, simulation results of the rota-

tion rate problem (section 2.1) under different 
conditions are presented, and the performance of 
both types of modification (general version in 
section 2.3 and specific version in 2.4) is com-
pared with the original deterministic artificial 
intelligence (section 2.2) learning approach. 

3.1 Performance comparison without the 
product of inertia 

This case aims at testing the learning meth-
od when there is no product of inertia value in 
both the system’s true parameter and the initial 
estimation of the unknown vector, which can be 
seen as an indication of control design vulnera-
bility to coupling effects in governing equation. If 
the products of inertia have to be zero, then in 
equation (1), the size of the matrix of known will 
be reduced from 3 × 6 to 3 × 3, and the size of 
the vector of unknown will become 3 × 1. Intui-
tively speaking, we can have 3 equations and 3 
unknowns in this case, making the unknown 
solvable using only the current information, as 
long as the matrix of known is full rank. The ini-
tial condition and the system parameters are 
listed in Table 4. The norm ratio of the state error 
and parameter error is shown in Figure 3. Also, 
the G in equation (7) and the R in equation (10) 
will be a scaler “r” multiplied by a 3 × 3 identity 
matrix, and this form of G and R will be used in 
all the cases presented in this manuscript. 

Table 4. Initial condition for the simulation in section 3.1 
Variable Value Variable Value Variable Value 𝐼௫௫ 1 𝐼௬௬ 2 𝐼௭௭ 3 𝐼௫௬ 0.2 𝐼௫௭ 0.3 𝐼௬௭ 0.4 𝜔௜௡௜௧,௫ 0.02 𝜔௜௡௜௧,௬ 0.03 𝜔௜௡௜௧,௭ 0.01 𝜏௧௘௦௧,௫ 5 𝜏௧௘௦௧,௬ 2 𝜏௧௘௦௧,௭ –2 

r (specific) 3 r (general) 15 a 3 
 

(a) (b) 
Figure 3. The convergence of the parameter error and state error. (a) Parameter error norm ratio on the ordinant versus time in 
seconds on the abscissa. (b) State error norm ratio on the ordinant versus time in seconds on the abscissa. 

Table 5. Performance of inertia estimation and tracking errors 
Figure of merit Original method (prequels) Proposed version general Proposed version specific 

Parameter error mean 0.0029 0.0058 0.0059 
Parameter error deviation 0.0020 0.0038 0.0036 

Mean tracking error 0.1709 0.0390 0.0076 
Tracking error deviation 0.0862 0.0186 0.0083 
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3.2 Performance comparison with the 
product of inertia 

This case is similar to section 3.1, but the 
product of inertia values in both the system’s true 
parameter and the initial estimation of the un-

known vector is not zero. The initial condition 
and the system parameters are listed in Table 6. 
The norm ratio of the state error and parameter 
error is shown in Figure 4. 

Table 6. Initial condition for the simulation in section 3.2 
Variable Value Variable Value Variable Value 𝐼௫௫ 1 𝐼௬௬ 2 𝐼௭௭ 1 𝐼௫௬ 0.2 𝐼௫௭ 0.3 𝐼௬௭ 0.4 𝐼መ௫௫,௜௡௜௧ 1.06 𝐼መ௬௬,௜௡௜௧ 1.90 𝐼መ௭௭,௜௡௜௧ 1.15 𝐼መ௫௬,௜௡௜௧ 0.21 𝐼መ௫௭,௜௡௜௧ 0.31 𝐼መ௬௭,௜௡௜௧ 0.41 𝜔௜௡௜௧,௫ 0.02 𝜔௜௡௜௧,௬ 0.03 𝜔௜௡௜௧,௭ 0.01 𝜏௧௘௦௧,௫ 5 𝜏௧௘௦௧,௬ 2 𝜏௧௘௦௧,௭ –2 

r 3     
      

  
(a) (b) 

Figure 4. The convergence of the parameter error and state error. (a) Parameter error norm ratio on the ordinant versus time in 
seconds on the abscissa. (b) State error norm ratio on the ordinant versus time in seconds on the abscissa. 

3.3 Performance comparison with different 
r value 

This case shows for the modified learning 
method (Specific Version) how the r value, which 
can be seen as the “magnitude” of the G in equa-

tion (7) and the R in equation (10), affects the final 
result. The initial condition and parameters used 
in this case are identical to case 3.2 and can be 
checked in Table 6, except for the r value. 

(a) (b) 
Figure 5. The convergence of the parameter error and state error. Original deterministic artificial intelligence is displayed by a 
thick, solid green line, dashed purple line displays 𝑟 = 0.5, thin solid black line displays 𝑟 = 1, dotted blue line displays 𝑟 = 2, 
dot-dashed red line displays 𝑟 = 4. (a) Parameter error norm ratio on the ordinant versus time in seconds on the abscissa. (b) 
State error norm ratio on the ordinant versus time in seconds on the abscissa. 
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Table 7. Convergence of inertia estimation and tracking errors 
Figure of merit Original method 

(prequels) 
Modified with  𝒓 = 𝟎. 𝟓 

Modified with 𝒓 = 𝟏 
Modified with 𝒓 = 𝟐 

Modified with 𝒓 = 𝟒 

Parameter error mean 0.0247 0.0351 0.0348 0.0345 0.0341 
Parameter error deviation 0.0124 0.0306 0.0272 0.0239 0.0217 

Mean tracking error –0.0401 –0.0033 –0.0033 –0.0033 –0.0034 
Tracking error deviation 0.1761 0.0296 0.0246 0.0189 0.0143 

      

4. Discussion 
In sections 3.1 and 3.2, the modified learning 

method yields better state error convergence than 
the original method. For the specific version of 
the modified method, the final state error norm 
ratio is about 2 magnitudes smaller (rough order ×  𝑒–଼  compared with ×  𝑒–ଷ) than the original 
learning method, due to the data shown in both 
Figures 3 and 4. 

 In section 3.1, all the learning methods are 
able to make the parameter error converge to zero. 
This fits the expectation because in section 3.1 
there is only 3 unknowns instead of 6. However, 
when the moment of inertia matric contains the 
nonzero product of inertia, as has been done in 
section 3.2, the left part of Figure 4 shows that the 
modified methods are not better than the original 
method. 

Table 8. Percent performance enhancement: Convergence of inertia estimation and tracking errors 
Figure of merit Original method (prequels) Proposed version general Proposed version specific 

Parameter error mean 0% 42% 53% 
Parameter error deviation 0% 16% 100% 

Mean tracking error 0% –77% –99% 
Tracking error deviation 0% –91% –96% 

    

In section 3.3, Figure 5 shows that when the 
magnitude of R in equation (10) goes bigger, the 
convergence rate also increases. Because equation 
(12) states that the convergence rate of the Lya-

punov function (equation (11)) is only determined 
by the size of R and 𝜃, the result in section 3.3 is 
reasonable. 

Table 9. Percent performance enhancement: Convergence of inertia estimation and tracking errors 
Figure of merit Original method 

(prequels) 
Modified  

with 𝒓 = 𝟎. 𝟓 
Modified  

with 𝒓 = 𝟏 
Modified  

with 𝒓 = 𝟐 
Modified  

with 𝒓 = 𝟒 
Parameter error mean 0.00% –42.11% –40.89% –39.68% –38.06% 

Parameter error deviation 0.00% –146.77% –119.35% –92.74% –75.00% 
Mean tracking error 0.00% 91.77% 91.77% 91.77% 91.52% 

Tracking error deviation 0.00% 83.19% 86.03% 89.27% 91.88% 
      

From the convergence condition of errors in 
Figures 3 and 4, it can be concluded that the 
convergence trajectories of the specific version of 
the modified learning method are “bumpier” and 
contains more jitters and oscillations. This phe-
nomenon may result from the way of 𝜃  value 
determination provided in equation (13), which 
only consider the data in the current time stamp, 
and the indeterminate nature of equation (13), 
when the matrix of known is not full rank, makes 
the estimation of 𝜃 very unstable. 

It can be concluded that the specific version 
of the modified learning method can achieve the 
convergence of both parameter error and state 
error in the simulation done in this manuscript, 
especially when the matrix of known is full rank, 
which can increase the robustness of the rotation 
rate controller. 

4.1 Recommended future work 

From the parameter error data of the specific 
version of the modified method in Figures 4 and 5, 
the increasing jitters can be observed. The reason 
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for such instability after the convergence is un-
clear. It could result from the numerical instability 
of the chosen ODE solver and the options given to 
it, or the indeterminate way used for determining 𝜃 value in equation (13). 

Moreover, the property of the “general ver-
sion of modified learning method” hasn’t been 
explored carefully because it is not suitable in this 
case by nature. Also, a better way of estimating 𝜃 
may improve the result of the modified learning 
method as well. Finally, a better way of choosing 
the G in equation (7) and the R in equation (10) is 
also an interesting topic. 
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Appendix A 
The MATLAB® code used in this manuscript is pasted below. The program utilizes the ode45 solver 

to simulate the response of the overall system combining the controller and the controlled system. 
 

clc; clear; close all 
%% DAI Matrix Derivation 
% =================== 
% Derive the matrix of  known w.r.t. vector of  nuknown using symbolic 
toolbox, 
% and turn it into a matlab function. 
% P is the matrix of  known. 
% th := [Ixx Ixy Ixz Iyy Iyz Izz]' is the vector of  unknown. 
% =================== 
syms fwx(t) fwy(t) fwz(t) 
syms Ixx Ixy Ixz Iyy Iyz Izz real 
syms wx wy wz dwx dwy dwz ddwx ddwy ddwz real 
w = [fwx;fwy;fwz]; 
wT = [fwx fwy fwz]; 
dw = diff(w,t); 
ddw = diff(dw,t); 
I = [Ixx Ixy Ixz; Ixy Iyy Iyz; Ixz Iyz Izz]; 
PhTh = I*dw + cross(w,I*w); 
Peq = PhTh == 0; 
[P, ~] = equationsToMatrix(Peq, [Ixx Ixy Ixz Iyy Iyz Izz]); 
dP = diff(P,t); 
sP = subs(P, [diff(diff(wT,t),t) diff(wT,t) fwx fwy fwz], [ddwx ddwy ddwz dwx 
dwy dwz wx wy wz]); 
sdP = subs(dP, [diff(diff(wT,t),t) diff(wT,t) fwx fwy fwz], [ddwx ddwy ddwz 
dwx dwy dwz wx wy wz]); 
sfP = symfun(sP, [wx wy wz dwx dwy dwz ddwx ddwy ddwz]); 
sfdP = symfun(sdP, [wx wy wz dwx dwy dwz ddwx ddwy ddwz]); 
 
%% Derive matrix K for the modified learning --- specific 
% =================== 
% Derive the K matrix, mentioned in equation 9, used in specific learning, 
% and turn it into a matlab function. 
% i is the unknown vector error, i := I_real - I_estimate. 
% w is the state error, w := w_desired - w_real. 
% =================== 
syms wdx wdy wdz dwdx dwdy dwdz real 
syms ixx ixy ixz iyy iyz izz real 
w = [wx;wy;wz]; 
wd = [wdx;wdy;wdz]; 
dwd = [dwdx dwdy dwdz]'; 
i = [ixx ixy ixz; ixy iyy iyz; ixz iyz izz]; 
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Ki = i'*dwd + cross(wd,i*wd) - cross(wd,i*w); 
Keq = Ki == [0;0;0]; 
[K, sbz] = equationsToMatrix(Keq, [ixx ixy ixz iyy iyz izz]); 
fK = symfun(K, [wx wy wz wdx wdy wdz dwdx dwdy dwdz]); 
 
%% Simulation: ODE45 
% =================== 
% Define simulation parameters and simulate 
% =================== 
%  
% ===== <Parameter definition> ===== 
p.J = [1 0.2 0.3; 0.2 2 0.4; 0.3 0.4 1]; % Example in section 3_2 
p.dwd = [1 1 1]'; 
p.P = matlabFunction(sfP); 
p.dP = matlabFunction(sfdP); 
p.K = matlabFunction(fK); 
p.G = 3*eye(6); 
p.pinvTol = 1e-3; 
Jt = [p.J(1,1);p.J(1,2);p.J(1,3);p.J(2,2);p.J(2,3);p.J(3,3)]; 
%  
% ===== <Simulation time> ===== 
deltat = 0.01; 
tfinal = 3; 
t = 0:deltat:tfinal;% for evaluating solution 
%  
% ===== <Simulation: ODE45> ===== 
z0 = [1 0 0 0 0 0 0 0.02 0.03 0.01 1.06 0.21 0.31 1.90 0.41 1.15]'; % 3_2 0.08 
0.08 004 
options = odeset('absTol',1e-10,'relTol',1e-10); 
% The simulation for the general version of  modified learning method 
[t_dai, z_dai] = ode45(@(t,z)DAI_modified_general(t,z,p), t, z0, options); 
% The simulation for the specific version of  modified learning method 
[t_dmd, z_dmd] = ode45(@(t,z)DAI_modified_specific(t,z,p), t, z0, options); 
% The simulation for the original version of  learning method 
[t_dor, z_dor] = ode45(@(t,z)DAI_original(t,z,p), t, z0, options); 
 
%% Plot parameter estimations and state trajectories 
figure() 
plot(t_dai, z_dai(:,11),t_dai, z_dai(:,14),t_dai, z_dai(:,16)) 
legend('Ixx', 'Iyy', 'Izz'); 
title('Vector of  unknown Estimation of  DAI Modification General Version'); 
figure() 
plot(t_dmd, z_dmd(:,11),t_dmd, z_dmd(:,14),t_dmd, z_dmd(:,16)) 
legend('Ixx', 'Iyy', 'Izz'); 
title('Vector of  unknown Estimation of  DAI Modification Specific Version'); 
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figure() 
plot(t_dor, z_dor(:,11),t_dor, z_dor(:,14),t_dor, z_dor(:,16)) 
legend('Ixx', 'Iyy', 'Izz'); 
title('Vector of  unknown Estimation of  Original DAI'); 
figure() 
plot(t_dai, z_dai(:,7),t_dor, z_dor(:,7),t_dmd, z_dmd(:,7),t_dai, z_dai(:,10)) 
legend('Modified 1', 'Original', 'Modified 2', 'Desired'); 
title('Angular Velocity Tracking of  DAI Modification General Version'); 
figure() 
plot(t_dai, z_dai(:,6),t_dor, z_dor(:,6),t_dmd, z_dmd(:,6),t_dai, z_dai(:,9)) 
legend('Modified 1', 'Original', 'Modified 2', 'Desired'); 
title('Angular Velocity Tracking of  DAI Modification Specific Version'); 
figure() 
plot(t_dai, z_dai(:,5),t_dor, z_dor(:,5),t_dmd, z_dmd(:,5),t_dai, z_dai(:,8)) 
legend('Modified 1', 'Original', 'Modified 2', 'Desired'); 
title('Angular Velocity Tracking of  Original DAI'); 
 
%% Analysis the norm rates 
% inertia norm ratio: Equation 15 
J_dai = z_dai(:,11:16); 
J_dmd = z_dmd(:,11:16); 
J_dor = z_dor(:,11:16); 
n = length(t_dai); 
nJ_dai = vecnorm(J_dai'-Jt*ones(1,n))/norm(Jt); 
nJ_dmd = vecnorm(J_dmd'-Jt*ones(1,n))/norm(Jt); 
nJ_dor = vecnorm(J_dor'-Jt*ones(1,n))/norm(Jt); 
figure() 
plot(t_dai, nJ_dai, t_dmd, nJ_dmd, t_dor, nJ_dor); 
legend('DAI modified General Version', 'DAI modified Specific Version', 'DAI 
original'); 
title('Convergence of  the parameter error norm ratio'); 
xlabel('time (s)'); 
ylabel('Parameter error norm ratio'); 
% state error norm ratio: Equation 15 
dw_dai = z_dai(:,5:7)-z_dai(:,8:10); 
nw_dai = vecnorm(dw_dai')./vecnorm(z_dai(:,8:10)'); 
dw_dmd = z_dmd(:,5:7)-z_dmd(:,8:10); 
nw_dmd = vecnorm(dw_dmd')./vecnorm(z_dmd(:,8:10)'); 
dw_dor = z_dor(:,5:7)-z_dor(:,8:10); 
nw_dor = vecnorm(dw_dor')./vecnorm(z_dor(:,8:10)'); 
figure() 
plot(t_dai, log(nw_dai), t_dmd, log(nw_dmd), t_dor, log(nw_dor)); 
legend('DAI modified General Version', 'DAI modified Specific Version', 'DAI 
original'); 
title('Convergence of  the state error norm ratio'); 
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xlabel('time (s)'); 
ylabel('State error norm ratio'); 
 
%% mean and deviation: Table 4 
clc 
% DAI modified General Version 
ParamErrorMeanGeneral = mean(mean(J_dai-(Jt*ones(1,length(J_dai)))')) 
ParamErrorStdrGeneral = mean(std(J_dai-(Jt*ones(1,length(J_dai)))')) 
StateErrorMeanGeneral = mean(mean(dw_dai)) 
StateErrorStdrGeneral = mean(std(dw_dai)) 
% DAI modified Specific Version 
ParamErrorMeanSpecific = mean(mean(J_dmd-(Jt*ones(1,length(J_dmd)))')) 
ParamErrorStdrSpecific = mean(std(J_dmd-(Jt*ones(1,length(J_dmd)))')) 
StateErrorMeanSpecific = mean(mean(dw_dmd)) 
StateErrorStdrSpecific = mean(std(dw_dmd)) 
% DAI Original 
ParamErrorMeanOriginal = mean(mean(J_dor-(Jt*ones(1,length(J_dor)))')) 
ParamErrorStdrOriginal = mean(std(J_dor-(Jt*ones(1,length(J_dor)))')) 
StateErrorMeanOriginal = mean(mean(dw_dor)) 
StateErrorStdrOriginal = mean(std(dw_dor)) 
 
%% Test the performance of  Specific Version Modified DAI in different G 
% G = 0.5 
p.G = 0.5*eye(6); 
[t_dmd_h, z_dmd_h] = ode45(@(t,z)DAI_modified_specific(t,z,p), t, z0, op-
tions); 
n = length(t_dmd_h); 
J_dmd_h = z_dmd_h(:,11:16); 
nJ_dmd_h = vecnorm(J_dmd_h'-Jt*ones(1,n))/norm(Jt); 
dw_dmd_h = z_dmd_h(:,5:7)-z_dmd_h(:,8:10); 
nw_dmd_h = vecnorm(dw_dmd_h')./vecnorm(z_dmd_h(:,8:10)'); 
% G = 1 
p.G = 1*eye(6); 
[t_dmd_1, z_dmd_1] = ode45(@(t,z)DAI_modified_specific(t,z,p), t, z0, op-
tions); 
J_dmd_1 = z_dmd_1(:,11:16); 
nJ_dmd_1 = vecnorm(J_dmd_1'-Jt*ones(1,n))/norm(Jt); 
dw_dmd_1 = z_dmd_1(:,5:7)-z_dmd_1(:,8:10); 
nw_dmd_1 = vecnorm(dw_dmd_1')./vecnorm(z_dmd_1(:,8:10)'); 
% G = 2 
p.G = 2*eye(6); 
[t_dmd_2, z_dmd_2] = ode45(@(t,z)DAI_modified_specific(t,z,p), t, z0, op-
tions); 
J_dmd_2 = z_dmd_2(:,11:16); 
nJ_dmd_2 = vecnorm(J_dmd_2'-Jt*ones(1,n))/norm(Jt); 
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dw_dmd_2 = z_dmd_2(:,5:7)-z_dmd_2(:,8:10); 
nw_dmd_2 = vecnorm(dw_dmd_2')./vecnorm(z_dmd_2(:,8:10)'); 
% G = 4 
p.G = 4*eye(6); 
[t_dmd_4, z_dmd_4] = ode45(@(t,z)DAI_modified_specific(t,z,p), t, z0, op-
tions); 
J_dmd_4 = z_dmd_4(:,11:16); 
nJ_dmd_4 = vecnorm(J_dmd_4'-Jt*ones(1,n))/norm(Jt); 
dw_dmd_4 = z_dmd_4(:,5:7)-z_dmd_4(:,8:10); 
nw_dmd_4 = vecnorm(dw_dmd_4')./vecnorm(z_dmd_4(:,8:10)'); 
% Original 
[t_dor, z_dor] = ode45(@(t,z)DAI_original(t,z,p), t, z0, options); 
J_dor = z_dor(:,11:16); 
nJ_dor = vecnorm(J_dor'-Jt*ones(1,n))/norm(Jt); 
dw_dor = z_dor(:,5:7)-z_dor(:,8:10); 
nw_dor = vecnorm(dw_dor')./vecnorm(z_dor(:,8:10)'); 
% 
% Plot the result 
rnge = 200; 
figure(); 
plot(t_dmd_h(1:rnge), nJ_dmd_h(1:rnge),... 
     t_dmd_1(1:rnge), nJ_dmd_1(1:rnge),... 
     t_dmd_2(1:rnge), nJ_dmd_2(1:rnge),... 
     t_dmd_4(1:rnge), nJ_dmd_4(1:rnge),... 
     t_dor(1:rnge), nJ_dor(1:rnge)); 
legend('DAI modified r = 0.5',... 
       'DAI modified r = 1',... 
       'DAI modified r = 2',... 
       'DAI modified r = 4',... 
       'DAI original'); 
title('Convergence of  the parameter error norm ratio'); 
xlabel('time (s)'); 
ylabel('Parameter error norm ratio'); 
figure(); 
plot(t_dmd_h(1:rnge), log(nw_dmd_h(1:rnge)), ... 
     t_dmd_1(1:rnge), log(nw_dmd_1(1:rnge)), ... 
     t_dmd_2(1:rnge), log(nw_dmd_2(1:rnge)), ... 
     t_dmd_4(1:rnge), log(nw_dmd_4(1:rnge)), ... 
     t_dor(1:rnge), log(nw_dor(1:rnge))); 
legend('DAI modified r = 0.5',... 
       'DAI modified r = 1',... 
       'DAI modified r = 2',... 
       'DAI modified r = 4',... 
       'DAI original'); 
title('Convergence of  the state error norm ratio'); 
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xlabel('time (s)'); 
ylabel('State error norm ratio'); 
 
%% mean and deviation: Table 6 
% G = 0.5 
ParamErrorMeanGHlf  = mean(mean(J_dmd_h(1:rnge,:)-(Jt*ones(1,rnge))')) 
ParamErrorStdrGHlf  = mean(std(J_dmd_h(1:rnge,:)-(Jt*ones(1,rnge))')) 
StateErrorMeanGHlf  = mean(mean(dw_dmd_h(1:rnge,:))) 
StateErrorStdrGHlf  = mean(std(dw_dmd_h(1:rnge,:))) 
% G = 1 
ParamErrorMeanGOne = mean(mean(J_dmd_1(1:rnge,:)-(Jt*ones(1,rnge))')) 
ParamErrorStdrGOne = mean(std(J_dmd_1(1:rnge,:)-(Jt*ones(1,rnge))')) 
StateErrorMeanGOne = mean(mean(dw_dmd_1(1:rnge,:))) 
StateErrorStdrGOne = mean(std(dw_dmd_1(1:rnge,:))) 
% G = 2 
ParamErrorMeanGTwo = mean(mean(J_dmd_2(1:rnge,:)-(Jt*ones(1,rnge))')) 
ParamErrorStdrGTwo = mean(std(J_dmd_2(1:rnge,:)-(Jt*ones(1,rnge))')) 
StateErrorMeanGTwo = mean(mean(dw_dmd_2(1:rnge,:))) 
StateErrorStdrGTwo = mean(std(dw_dmd_2(1:rnge,:))) 
% G = 4 
ParamErrorMeanGFor = mean(mean(J_dmd_4(1:rnge,:)-(Jt*ones(1,rnge))')) 
ParamErrorStdrGFor = mean(std(J_dmd_4(1:rnge,:)-(Jt*ones(1,rnge))')) 
StateErrorMeanGFor = mean(mean(dw_dmd_4(1:rnge,:))) 
StateErrorStdrGFor = mean(std(dw_dmd_4(1:rnge,:))) 
% Original DAI 
ParamErrorMeanOrig = mean(mean(J_dor(1:rnge,:)-(Jt*ones(1,rnge))')) 
ParamErrorStdrOrig = mean(std(J_dor(1:rnge,:)-(Jt*ones(1,rnge))')) 
StateErrorMeanOrig = mean(mean(dw_dor(1:rnge,:))) 
StateErrorStdrOrig = mean(std(dw_dor(1:rnge,:))) 
 
%% Function 
function zdot = DAI_modified_general(t, z, p) 
    % Orientation of  the rigid body as quaternion 
    q = z(1:4); 
    % Angular velocity 
    w = z(5:7); 
    % Desired velocity 
    wd = z(8:10); 
    % Vector of  unknown: Inertia 
    th = z(11:16); % theta hat 
    Jh = [th(1) th(2) th(3); th(2) th(4) th(5); th(3) th(5) th(6)]; 
    % Generate trajectory to be followed 
    [sdwd,sddwd] = traj_gen(t,wd,p); 
    % Generate feed forward control torque 
    tau = Jh*sdwd + cross(wd', Jh*wd)'; 
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    % Update the dynamic of  the system 
    dw = p.J\(tau-cross(w', p.J*w)'); 
    dq = 0.5*quatmultiply([0 w'],q'); 
    % Update the parameter estimation 
    ddw = [0;0;0]; 
    % Matrix of  known w.r.t. desired angular velocity 
    Pd = 
p.P(wd(1),wd(2),wd(3),sdwd(1),sdwd(2),sdwd(3),sddwd(1),sddwd(2),sddwd(3)); 
    % Matrix of  known w.r.t. actual angular velocity 
    P = p.P(w(1),w(2),w(3),dw(1),dw(2),dw(3),0,0,0); 
    % Time derivative of  the Matrix of  known w.r.t. actual angular velocity 
    dP = p.dP(w(1),w(2),w(3),dw(1),dw(2),dw(3),ddw(1),ddw(2),ddw(3)); 
    % Equation 6: General version of  modified learning in DAI 
    ph = Pd-P; 
    A = dP*pinv(P,p.pinvTol)*pinv(P' + pinv(P,p.pinvTol),p.pinvTol); 
    B = (P' + pinv(P,p.pinvTol))'*p.G; 
    dth = (th'*ph'*(A+B))'; 
    % Print simulation time every 1 second 
    if  abs(t-round(t)) < 0.001 
        disp(t) 
    end 
    zdot = [dq';dw;sdwd;dth]; 
end 
 
function zdot = DAI_modified_specific(t, z, p) 
    % Orientation of  the rigid body as quaternion 
    q = z(1:4); 
    % Angular velocity 
    w = z(5:7); 
    % Desired velocity 
    wd = z(8:10); 
    % Vector of  unknown: Inertia 
    th = z(11:16); % theta hat 
    Jh = [th(1) th(2) th(3); th(2) th(4) th(5); th(3) th(5) th(6)]; 
    % Generate trajectory to be followed 
    [sdwd,~] = traj_gen(t,wd,p); 
    % Generate feed forward control torque: Equation 8 
    tau = Jh*sdwd + cross(wd', Jh*w)'; 
    % Update the dynamic of  the system 
    dw = p.J\(tau-cross(w', p.J*w)'); 
    dq = 0.5*quatmultiply([0 w'],q'); 
    % Update the parameter estimation 
    P = p.P(w(1),w(2),w(3),dw(1),dw(2),dw(3),0,0,0); 
    % Equation 9/12: Specific version of  modified learning in DAI 
    ew = wd-w; 
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    K = p.K(ew(1),ew(2),ew(3),wd(1),wd(2),wd(3),sdwd(1),sdwd(2),sdwd(3)); 
    Dth = pinv(P,p.pinvTol)*(tau-P*th); 
    dth = K'*ew+p.G*Dth; 
    % Monitor the Lyapunov Candidate function to see if  it is decreasing 
    % TDth = [p.J(1,1);p.J(1,2);p.J(1,3);p.J(2,2);p.J(2,3);p.J(3,3)]-th; 
    % V = ew'*p.J*ew+TDth'*TDth 
    zdot = [dq';dw;sdwd;dth]; 
end 
 
function zdot = DAI_original(t, z, p) 
    % Orientation of  the rigid body as quaternion 
    q = z(1:4); 
    % Angular velocity 
    w = z(5:7); 
    % Desired velocity 
    wd = z(8:10); 
    % Vector of  unknown: Inertia 
    th = z(11:16); % theta hat 
    Jh = [th(1) th(2) th(3); th(2) th(4) th(5); th(3) th(5) th(6)]; 
    % Generate trajectory to be followed 
    [sdwd,~] = traj_gen(t,wd,p); 
    % Generate feed forward control torque 
    tau = Jh*sdwd + cross(wd', Jh*wd)'; 
    % Update the dynamic of  the system 
    dw = p.J\(tau-cross(w', p.J*w)'); 
    dq = 0.5*quatmultiply([0 w'],q'); 
    % Update the parameter estimation: Equation 3-a, 3-b 
    P = p.P(w(1),w(2),w(3),dw(1),dw(2),dw(3),0,0,0); 
    dth = 1.5*pinv(P,p.pinvTol)*(tau-P*th); 
    zdot = [dq';dw;sdwd;dth]; 
end 
 
function [dwd,ddwd] = traj_gen(t,wd,p) 
    tau = [5;2;-2]; 
    if  t>7 
        tau = [0;0;0]; 
    end 
    dwd = p.J\(tau-cross(wd', p.J*wd)'); 
    ddwd = [0;0;0]; 
end 
 

 
 
 

 

 


