
 Journal of AppliedMath 2023; 1(1): 42.
Communication

1

Novel learning for control of nonlinear spacecraft dynamics

Bo-Ruei Huang1, Timothy Sands2*
1 Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
2 Department of Mechanical Engineering (SCPD), Stanford University, Stanford 94305, USA. E-mail: dr.timsands@alumni.
stanford.edu

ARTICLE INFO

Received: 10 February 2023
Accepted: 4 March 2023
Available online: 12 April 2023

http://dx.doi.org/10.59400/jam.v1i1.42

Copyright © 2023 Author(s).

Journal of AppliedMath is published by Ac-
ademic Publishing Pte. Ltd. This article is
licensed under the Creative Commons
Attribution-NonCommercial 4.0 Interna-
tional License (CC BY-NC 4.0).
https://creativecommons.org/licenses/by-
nc/4.0/

ABSTRACT: With accurate dynamic system parameters (embodied in

self-awareness statements), a controller can provide precise signals for

tracking desired state trajectories. If dynamic system parameters are ini-

tially guessed inaccurately, a learning method may be used to find the ac-

curate parameters. In the deterministic artificial intelligence method,

self-awareness statements are formed as mathematical expressions of the

governing physics. When the nonlinear, coupled expressions are precisely

parameterized as the product of known matrix components and unknown

vectrix (i.e., an intermediate between a dyadic and a matrix in regression

form) tracking errors may be projected onto the known matrix to update

the unknown vectrix in an optimal form (in a two-norm sense). In this

work, a modified learning method is proposed and proved to have global

convergence of both state error and parameter estimation error. The mod-

ified learning method is compared with those in the prequels using simu-

lation experiments of three-dimensional rigid body dynamic rotation mo-

tion. The achieved state error convergence using the modified approach is

two magnitudes better than using the methods in the prequels.

KEYWORDS: nonlinear systems; mechanics; spacecraft attitude control;

deterministic artificial intelligence; regression; learning

1. Introduction

 (a) (b)

Figure 1. (a) The International Space Station’s Canadarm2 and Dextre carry the RapidScat instrument assembly after removing
it from the trunk of the SpaceX Dragon cargo ship (upper right), which is docked at the nadir port of the Harmony node. (b)
NASA Gateway would support a growing space economy photos taken from [1] and [2] respectively in compliance with
NASA’s image use policy[3].

Consider intricate robotic operations in
low-earth orbit near the space station as dis-
played in Figure 1, where considerable human

intervention is available. Next, contemplate the
requirements to autonomously do such opera-
tions in far distant cis-lunar orbits. The latter sys-

Journal of AppliedMath 2023; 1(1): 42.

2

tem must be able to learn in real-time dynamic
changes that occur when the space robot grasps
and grapples targeted spacecraft. Dynamics and
control issues associated with rendezvous in
Cis-lunar space near rectilinear halo orbits were
investigated in [4], where a fully-safe, automatic
rendezvous strategy was developed between a
passive vehicle and an active one orbiting around
the Earth-Moon L2 Lagrangian point. Bando et
al.[4] proposed a chattering attenuation sliding
mode control utilizing the eigen structure of the
linearized flow around a libration point of the
Earth-Moon circular restricted three-body prob-
lem, and this novel article serves as a reminder of
the prevalence of linearization when dealing with
multiple, coupled nonlinear equations. In 2021,
Colombia presented a guidance, navigation and
control framework for 6 degrees of freedom
(6DOF) coupled Cislunar rendezvous and dock-
ing, and the article highlighted the importance of
dealing with full, coupled translational-rotational
dynamics of multi-body (i.e., highly flexible) dy-
namics seeking guaranteed coupled-state estima-
tion[5]. Immediately that same year[6], new tech-
niques for highly flexible multi-body space
robotics were proposed as a competing narrative
to the just-proposed “whiplash compensation” of
flexible space robotics[7] establishing a thread of
research offered by Cornell University. China
now has two robotic arms attached to its space
station[8], where a large robotic arm can “crawl”
along the outside of the spacecraft[9].

An alternative thread of research is offered
by Massachusetts Institute of Technology[10–16].
Noting that ubiquitous approaches rely on either
simplifying assumptions in the dynamical model
or on abundant computational resources, Lafarge
et al.[10] proposed reinforcement learning for
closed-loop control of onboard low-thrust guid-
ance. Albee et al.[11] studied active interception of
targets for autonomous repair and deorbiting
must account for the tumbling motion of targets,
which is oftentimes not known a priori. A model
reference adaptive algorithmic approach was
proposed to identify the state of the target’s tum-

ble. In a more typical manner, Mehta et al.[12]
proposed a quasi-physical dynamic reduced-order
model that used a linear approximation of the
underlying dynamics and effect of the drivers
where data assimilation and model calibration
utilized estimation of the model coefficients that
represent the model parameters. One sequel arti-
cle about autonomous docking with rotating tar-
gets via reinforcement learning was offered by
Oestreich et al.[13] proposing learning policies.
Following the initial target search[14], analytical
closed expressions to compute the minimum dis-
tance between any two satellites (at the same al-
titude in circular orbits), Avendaño et al. pro-
posed “flower constellations” to produce give an
efficient method to compute the minimum angu-
lar distance between satellites. Reversing the
method, Arnas et al.[15] proposed two-dimensional
lattice flower constellations to design a low earth
orbit slotting system to avoid collisions between
compliant satellites (rather than intercept). Oes-
treich et al.[16] also highlighted dependence on
on-orbit inspection (i.e., relative navigation and
inertial properties estimation) to intercept tum-
bling debris objects or defunct satellites. In a late
proposal following the M.I.T. approach, the
master’s thesis by Roberts[17] continued to devel-
op the stochastic artificial intelligence approach
embodied in supervised learning. Ekal et al.[18]
highlight key parametric uncertainties are mass
and moment of inertia, and the Cornell line of
research also adopts this premise.

Another line of work is presented by Stan-
ford University[19–21]. Cassinis et al.[19] introduced
an adaptive convolutional neural network–based
unscented Kalman filter for the pose estimation
of uncooperative spacecraft. Park et al.[20] fol-
lowed the same approach using a shared mul-
ti-scale feature encoder and multiple prediction
heads that perform different tasks on a shared
feature output, while Park et al.[21] also followed a
comparative line similar to the Cornell approach
presented in this manuscript, where the (to be
proposed) deterministic approach is supple-

Journal of AppliedMath 2023; 1(1): 42.

3

mented by an adaptive neural network-based un-
scented Kalman filter.

Cornell’s Zhang et al. proposed an adaptive
control strategy based on the full, nonlinear
equations accounting for modeling uncertainties
using an adaptive neural network amidst external
disturbances[22], where the Cornell approach
stems from naval approaches proposed in 2020,
called deterministic artificial intelligence[23],
which stated that the system dynamics constitute
a feedforward control when paired with analytic
trajectories; and when the dynamics are ex-
pressed in a canonical regression form, optimal
feedback (in the two-norm sense) can aid control
of spacecraft attitude. The method stems from the
incremental development of a common nonlinear
adaptive scheme offered by Slotine[24] for space-
craft attitude control, where elements of classical
feedback were eliminated in 2020 and foremost
applied to unmanned underwater robotics[25]. The
burgeoning lineage of research continued in 2022
when Sandberg et al.[26] compared several trajec-
tory-generation schemes and a nominal learning
method based on the regression model, where
applied torque is estimated by an enhanced Lu-
enberger observer. Very shortly afterwards, Rai-
goza[27] augmented Sandberg’s trajectory genera-
tors with autonomous collision avoidance. In
November 2022, Wilt examined efficacy in the
face of simulated craft damage and environmen-
tal disturbances[28]. This sequel substantiates a
short communication presenting significant find-
ings that are part of the larger study of Slotine,
Sands, Smeresky/Rizzo, Sandberg, Raigoza, and
Wilt.

In prequel works[23–28], the error convergence
property is obtained using the proper design of
the trajectory generation process. However, if the
external disturbance makes the current state de-
viate from the trajectory, even if the system pa-
rameter is already converged to an accurate value,
the trajectory will need to be re-calculated to fit
the current state, so that the deterministic artifi-
cial intelligence can continue to drive the system
using an optimal feedforward control signal.

As a result, provided the initial error be-
tween the current state and the current desired
trajectory as well as inaccurate initial parameter
value, the goal of the modified learning approach
proposed in this manuscript is to guarantee the
convergence to zero of both parameter error and
the state error. This work focuses on the rotation
rate control problem of a spacecraft and provided
2 ways of modification to the learning phase of
the deterministic artificial intelligence algorithm
and compared them with the original determinis-
tic artificial intelligence using simulation in
MATLAB®. Moreover, the modified method can
be proved to make the error converge to zero us-
ing a similar way as how Slotine and Li[24] proved
the stability of the non-linear system controlled
by some specific feed-forward/feed-back control-
lers. That is, the Lyapunov candidate function is
provided, and the time derivative of the candi-
date function can be proved to be negative with
the proposed modified learning method.

Main contribution of the study. This paper
provides 2 novel unknown parameter learning
methods, that is, the time derivative of the vector
of unknown, which are able to not just bound the
error in parameter estimations but also the dif-
ference between the current system state and the
desired state with respect to the planned trajectory.
For the second method proposed, we will further
show the convergence of parameter estimation
error, as well as how this leads to the convergence
of the state tracking error. The paper also dis-
cussed how the provided methods may fail to
converge under certain conditions.

2. Materials and methods

2.1 Spacecraft rotation rate control

The spacecraft rotation rate control problem
focuses on applying torque so that the rotation
rate of a spacecraft converges to the desired value.
The dynamic can be described by the Euler equa-
tion (displayed in equation (1)). Euler’s moment
equations can be parameterized in canonical re-
gression form. This full form of the coupled,

Journal of AppliedMath 2023; 1(1): 42.

4

nonlinear equations whose importance was high- lighted by the research cited in the Introduction.

𝜏 = 𝐼�̇� + 𝜔 × 𝐼𝜔 = ൦ �̇�௫ �̇�௬ − 𝜔௫𝜔௭ �̇�௭ + 𝜔௫𝜔௬ −𝜔௬𝜔௭ 𝜔௬ଶ − 𝜔௭ଶ 𝜔௬𝜔௭𝜔௫𝜔௭ �̇�௫ + 𝜔௬𝜔௭ 𝜔௭ଶ − 𝜔௫ଶ−𝜔௫𝜔௬ 𝜔௫ଶ − 𝜔௬ଶ �̇�௫ − 𝜔௬𝜔௭ �̇�௬ �̇�௭ − 𝜔௫𝜔௬ −𝜔௫𝜔௭𝜔௫𝜔௬ �̇�௬ + 𝜔௫𝜔௭ �̇�௭ ൪ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥః ⎩⎪⎪⎨
⎪⎪⎧𝐼௫௫𝐼௫௬𝐼௫௭𝐼௬௬𝐼௬௭𝐼௭௭ ⎭⎪⎪⎬

⎪⎪⎫
ᇣᇤᇥ௵

(1)
The matrix Φ is the matrix of known, which

is composed of the current state and the rate of the
state (ω and dω/dt). The matrix Θ is the vector of
the unknown, which is composed of system pa-
rameters, in this case, the moment of inertia. The
way of formulation shows that it is possible to
estimate the moment of inertia with the accurate
measurement of the current state.

2.2 Original deterministic artificial intelli-
gence control

The idea of deterministic artificial intelli-
gence is that if the matrix of the unknown can be
estimated and the desired trajectory of the state is
given, the optimal control signal will be multi-
plying the desired matrix of known (Φd), which

includes the information of the current desired
state, with the best guess of the parameter (𝛩).
This turns the system dynamic to equation (2). 𝜏 = 𝛷𝛩 → 𝜏ௗ ≡ 𝛷ௗ𝛩

(2)
However, the 𝛩 can be inaccurate or

changed in the middle of the operation. Therefore,
a learning approach should be provided so that
the vector of the unknown can converge to an
accurate value. The original learning approach in
the space rotation rate control problem is de-
scribed in equation (3-a) and (3-b), which is pro-
vided by Smeresky et al.[12] and is equation (12) in
his publication.

𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑑 ≡ 𝛩 − 𝛩 = 𝛷ு൫𝜏ௗ − 𝛷𝛩൯
(3-a) 𝑑Θ𝑑𝑡 = 𝑎 ∗ 𝑑

(3-b)
Where 𝜏ௗ is the controller torque

output, and the capital H means the pseudo in-
verse of a non-square matrix. In short, this pro-
vided a way to turn the difference between the
applied torque and the expected torque into the

parameter error 𝑑, which should be a minimal
square error estimation using the information in
the current time stamp. Concerning the stability
of the parameter estimation, the learning of the
parameter is applied incrementally, and this can
be done using a first order low pass filter to
smoothen the learned difference.

Table 1. Symbols used in section 2.2
Variable Physical meaning Variable Physical meaning 𝛩 Vector of unknown 𝐼 Moment of inertia 𝛩 Estimation on the unknown 𝜔 Angular speed vector 𝛷ௗ Matrix of known made by trajectory 𝑑 Learned difference 𝛷 Matrix of known 𝑎 Filter time constant 𝜏 Applied torque

Additionally, deterministic artificial intelli-
gence requires a trajectory generation process to
produce a trajectory that leads from the current
state to the desired state. If the current state devi-

ates undesirably from the trajectory, it is better to
update the trajectory, or the error of the state may
accumulate. Please be aware that the desired state
of the trajectory generation is not the desired state

Journal of AppliedMath 2023; 1(1): 42.

5

of the controller, which follows the output of the
trajectory generator by making the trajectory the
desired state of the controller should follow. In
this manuscript, all the “desired states” men-
tioned are the desired state for the controller, if
not specifically noted.

The overall deterministic artificial intelli-
gence can be expressed with the combination of
control feedforward based on a desired trajectory
as well as the current best estimation on the vector

of unknown and a “learning” mechanism that
updates the vector of unknown until it goes to the
actual value. Figure 2 presents the deterministic
artificial intelligence as a block diagram and
shows the relationship between each component.
In sections 2.3 and 2.4, the discussion focuses on
the learning part of deterministic artificial intelli-
gence and the goal is to learn the vector of un-
known and decrease the tracking error at the same
time.

Figure 2. The block diagram for the deterministic artificial intelligence.

2.3 Modified learning method, a general
version

The target of the modification is that if the
learning approach can also guarantee to decrease
the error in the current state when doing the pa-
rameter estimation, the chance of regenerating
trajectory can be decreased because the error is
kept from growing, which increases the robust-
ness. In a general version of the modification, we
consider all the systems that can be expressed in

the regression form, as in equation (2), where the
information of the current state is provided in the
matrix of known. To study the error of the pa-
rameters and state, the error between the desired
matrix of known and the current matrix of known
is noted as 𝜙, and the error of the unknown vec-
tor is noted as 𝜃. Equation (2) can therefore be
turned into equation (4). In this case, the goal
becomes keeping both 𝜙 and 𝜃 bounded sim-
ultaneously using a modified learning method.𝛷𝜃 + 𝜙𝛩 = 0 𝑤ℎ𝑒𝑟𝑒 𝜙 = 𝛷ௗ − 𝛷 𝑎𝑛𝑑 𝜃 = 𝛩 − 𝛩

(4)
Considering the Lyapunov candidate func-

tion described in equation (5), the function value
must decrease to 0 if both 𝜙 and 𝜃 go to 0. If
there is a parameter update approach �̇� that
makes the candidate function globally stable, it is
very likely that the error of the state 𝜙 goes to 0
together with 𝜃. Equation (7) shows that if �̇� is
taken in the form of equation (6), and considering

equation (4) and the time derivative of equation
(4), the time derivative of the Lyapunov function
will be negative semidefinite and leads to the
global boundedness of the system as long as the
matrix G is positive definitive. 𝑉 = 𝛩்𝜙்𝜙𝛩 + 𝜃்𝜃

(5)

 �̇�் = − 𝑑Θ்𝑑𝑡 = −𝛩்𝜙்((𝛷�̇�ு)(𝛷ு + 𝛷்)ு + (𝛷ு + 𝛷்)்𝐺)

(6)

Journal of AppliedMath 2023; 1(1): 42.

6

�̇�2 = ൣ𝛩்𝜙்𝛷�̇�ு + �̇�்𝛷ு + �̇�்𝛷்൧𝜙𝛩 = −𝛩்𝜙்(𝛷ு + 𝛷்)்𝐺(𝛷ு + 𝛷்)𝜙𝛩 ≤ 0

(7)
However, this candidate function only pro-

vided the boundedness of 𝜙𝛩 and 𝜃, and the
derivation of equation (7) requires the matrix of
known to be full rank. Furthermore, the conver-
gence of 𝜙𝛩, even if it happens, is not equivalent
to the convergence of the state even if the matrix
of known is full rank. For example, for the target
application in this manuscript (equation (1)), the
rank of the matrix of known is at most 3, while
the parameter number in the vector of unknown
is 6, this makes the learning method provided
unable to guarantee convergence. It is possible
that when the unknown parameter converges to
an accurate value and the state error still exists at
the same time, the state error will not be going to
be zero. This can be seen in equation (2) that
when 𝛩 = 𝛩 , the term 𝛩்𝜙் = 𝛩்(𝛷ௗ − 𝛷)்

will always be 0. When 𝜙 has a smaller rank
than the number of unknowns, it is possible that 𝛩்𝜙் = 0 when 𝜙 is not zero.

Another concern of using this method is that
the calculation of �̇� is prone to noises and will
cause latency in the real-time calculation because
it requires the knowledge of the double derivative
of the rotation rate, which generally requires spe-
cial treatments like the smoothing process.

All in all, this version of modification will
not guarantee the convergence of the state track-
ing error, so a closer inspection of the system
dynamic, rather than a generalized “matrix of
known times vector of unknown” formulation,
may be necessary, and will be shown in section
2.4.

Table 2. Symbols used in section 2.3
Variable Physical meaning Variable Physical meaning 𝜙 Error in matrix of known 𝑉 Lyapunov candidate function 𝜃 Error in vector of unknown 𝐺 Arbitrary positive definite matrix

2.4 Modified learning method, a specific
version

To avoid the problem mentioned in section
2.3, a specific version of the modified learning
method is provided for the rotation rate control-
ler. The non-regression form of the system dy-
namic is considered in equation (8), and the
modified learning method is provided in equation
(10) which utilizes both the state error as well as
parameter error. Also, the character “i” means

the error in the inertia matrix in a 3 × 3 form ra-
ther than in a 1 × 6 unknown vector. The torque
input to the system is slightly modified from 𝜔ௗ × 𝐼መ𝜔ௗ to 𝜔ௗ × 𝐼መ𝜔, which improves the glob-
al stability but won’t affect the feed forward op-
timality in the deterministic artificial intelligence
much when the state is very close to the desired
value. (Or defined as applied torque (equation (8)
in [12])).

𝐼�̇� + 𝜔 × 𝐼𝜔 = 𝜏ௗ → 𝜏ௗ ≡ 𝐼መ�̇�ௗ + 𝜔ௗ × 𝐼መ𝜔 𝐴𝑙𝑠𝑜, 𝑑𝑒𝑓𝑖𝑛𝑒 𝑖 = 𝐼 − 𝐼መ 𝑎𝑛𝑑 𝜔ᇱ = 𝜔ௗ − 𝜔
(8) 𝐼�̇�ᇱ = −(𝜔ᇱ × 𝐼𝜔ௗ − 𝜔ᇱ × 𝐼𝜔ᇱ) + (𝑖�̇�ௗ + 𝜔ௗ × 𝑖𝜔ௗ − 𝜔ௗ × 𝑖𝜔ᇱ) = 𝜔ᇱ × 𝐶 + 𝐾𝜃
(9) �̇� = − 𝑑Θ𝑑𝑡 = −𝑄𝜔ᇱ − 𝑅𝜃

(10)
The equation (8) is rearranged to equation

(9), and the 𝜃, again, means the inertia in an
unknown vector form. To prove the global con-

vergence of both state error 𝜔′ and parameter
error 𝜃 , another Lyaponuv function (equation
(11)) is provided, which has a physical meaning

Journal of AppliedMath 2023; 1(1): 42.

7

close to the square error of the whole system,
where the state square error is weighted by the
inertia. If the Q term in equation (10) is the
transpose of the K term in equation (9), and the R
term in equation (10) is positive definite, the
Lyapunov function will be bounded globally, as
shown in equation (12). About the parameter
vector 𝜃, it is chosen based on equation (13),
which is the least square estimation same as the
equation (3-a), and the value is used for the mod-
ified learning method in equation (10).

Finally, the parameter vector 𝜃 can be
shown to converge in this case by applying Bar-
balat’s lemma. Since the candidate function V is
bounded, by equation (12) both tracking and es-
timation error is bounded, the desired trajectory
has to be bounded, and K is a continuous func-
tion of 𝜔ᇱ, 𝜔ௗ , 𝑎𝑛𝑑 �̇�ௗ, it can be concluded that ସ̈ is bounded, which makes �̇� converges. As a
result, the estimation error is convergence. 𝑉(𝜔ᇱ, 𝜃) = 𝜔ᇱ்𝐼𝜔ᇱ + 𝜃்𝜃

(11) �̇�2 = 𝜔ᇱ்𝐼𝜔ᇱ̇ + 𝜃்�̇� = 𝜔ᇱ்(𝜔ᇱ × 𝐶) + 𝜃்(𝐾் − 𝑄)𝜔ᇱ − 𝜃்𝑅𝜃 = 𝜃்(𝐾் − 𝑄)𝜔ᇱ − 𝜃்𝑅𝜃 = −𝜃்𝑅𝜃 ≤ 0
(12) 𝜃 = 𝛷ு(𝜏ௗ − 𝛷𝛩)
(13) 𝑉4̈ = 𝜃்𝑅𝐾்(𝜔ᇱ, 𝜔ௗ , �̇�ௗ)𝜔ᇱ + 𝜃்𝑅ଶ𝜃

(14)
The discussion of convergence of tracking

error can be based on the time integral of equa-
tion (10), as shown in equation (15). Since 𝜃 is
proven to be convergence, the right-hand side is
now a constant and both terms at the right-hand
side have finite value. As a result, it can be said
that the term 𝐾்𝜔ᇱ goes to zero as time goes
infinity, and the tracking error 𝜔ᇱ will be con-
vergence as long as 𝐾் always has a rank of 3.

−𝜃(0) = න �̇�ஶ
 𝑑𝑡 = − න 𝐾்𝜔ᇱஶ

 𝑑𝑡 − න 𝑅𝜃ஶ
 𝑑𝑡

(15)
The conclusion on the Lyapunov candidate

is still based on the fact that the matrix of known
has to be full rank, due to equation (13). Provided
a full rank matrix of known, the candidate func-
tion will be driven to zero from any positive val-
ue. When the candidate function is zero, the
tracking error and unknown vector estimation
error will have to be zero as well.

Table 3. Symbols used in section 2.4
Variable Physical meaning Variable Physical meaning 𝑖 Error of inertia matrix 𝐶 A term for simplifying equation (9) 𝜔ᇱ Error of angular velocity 𝐾 A term for simplifying equation (9) 𝑄 Learning matrix for angular velocity error 𝑅 Learning matrix for parameter estimation error

2.5 Simulation

The trajectory tracking of the rotation rate
controller will be simulated. In the simulation,
the trajectory is generated using arbitrary test
torque, as shown in equation (16). The controller
does not possess the test torque value, but instead
receives a stream of desired rotation rate and the
time derivative of the rotation rate. The idea is

that if the deterministic artificial intelligence can
track the test trajectory, it should also be able to
track any trajectory generated by another trajec-
tory planner. 𝐼�̇�ௗ + 𝜔ௗ × 𝐼𝜔ௗ = 𝜏௧௦௧

(16)
Two types of performance matrices are con-

sidered: norm ratio of the state error, and the

Journal of AppliedMath 2023; 1(1): 42.

8

norm ratio of the parameter error, in equation
(17). The result is plotted in section 3. 𝑆𝑡𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑛𝑜𝑟𝑚 𝑟𝑎𝑡𝑖𝑜 = ቆ ||𝜔′||ଶଶ||𝜔ௗ||ଶଶቇ

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑟𝑟𝑜𝑟 𝑛𝑜𝑟𝑚 𝑟𝑎𝑡𝑖𝑜 = 𝑙𝑛(||𝜃′||ଶଶ||𝛩||ଶଶ)

(17)

3. Results
In this section, simulation results of the rota-

tion rate problem (section 2.1) under different
conditions are presented, and the performance of
both types of modification (general version in
section 2.3 and specific version in 2.4) is com-
pared with the original deterministic artificial
intelligence (section 2.2) learning approach.

3.1 Performance comparison without the
product of inertia

This case aims at testing the learning meth-
od when there is no product of inertia value in
both the system’s true parameter and the initial
estimation of the unknown vector, which can be
seen as an indication of control design vulnera-
bility to coupling effects in governing equation. If
the products of inertia have to be zero, then in
equation (1), the size of the matrix of known will
be reduced from 3 × 6 to 3 × 3, and the size of
the vector of unknown will become 3 × 1. Intui-
tively speaking, we can have 3 equations and 3
unknowns in this case, making the unknown
solvable using only the current information, as
long as the matrix of known is full rank. The ini-
tial condition and the system parameters are
listed in Table 4. The norm ratio of the state error
and parameter error is shown in Figure 3. Also,
the G in equation (7) and the R in equation (10)
will be a scaler “r” multiplied by a 3 × 3 identity
matrix, and this form of G and R will be used in
all the cases presented in this manuscript.

Table 4. Initial condition for the simulation in section 3.1
Variable Value Variable Value Variable Value 𝐼௫௫ 1 𝐼௬௬ 2 𝐼௭௭ 3 𝐼௫௬ 0.2 𝐼௫௭ 0.3 𝐼௬௭ 0.4 𝜔௧,௫ 0.02 𝜔௧,௬ 0.03 𝜔௧,௭ 0.01 𝜏௧௦௧,௫ 5 𝜏௧௦௧,௬ 2 𝜏௧௦௧,௭ –2

r (specific) 3 r (general) 15 a 3

(a) (b)
Figure 3. The convergence of the parameter error and state error. (a) Parameter error norm ratio on the ordinant versus time in
seconds on the abscissa. (b) State error norm ratio on the ordinant versus time in seconds on the abscissa.

Table 5. Performance of inertia estimation and tracking errors
Figure of merit Original method (prequels) Proposed version general Proposed version specific

Parameter error mean 0.0029 0.0058 0.0059
Parameter error deviation 0.0020 0.0038 0.0036

Mean tracking error 0.1709 0.0390 0.0076
Tracking error deviation 0.0862 0.0186 0.0083

Journal of AppliedMath 2023; 1(1): 42.

9

3.2 Performance comparison with the
product of inertia

This case is similar to section 3.1, but the
product of inertia values in both the system’s true
parameter and the initial estimation of the un-

known vector is not zero. The initial condition
and the system parameters are listed in Table 6.
The norm ratio of the state error and parameter
error is shown in Figure 4.

Table 6. Initial condition for the simulation in section 3.2
Variable Value Variable Value Variable Value 𝐼௫௫ 1 𝐼௬௬ 2 𝐼௭௭ 1 𝐼௫௬ 0.2 𝐼௫௭ 0.3 𝐼௬௭ 0.4 𝐼መ௫௫,௧ 1.06 𝐼መ௬௬,௧ 1.90 𝐼መ௭௭,௧ 1.15 𝐼መ௫௬,௧ 0.21 𝐼መ௫௭,௧ 0.31 𝐼መ௬௭,௧ 0.41 𝜔௧,௫ 0.02 𝜔௧,௬ 0.03 𝜔௧,௭ 0.01 𝜏௧௦௧,௫ 5 𝜏௧௦௧,௬ 2 𝜏௧௦௧,௭ –2

r 3

(a) (b)

Figure 4. The convergence of the parameter error and state error. (a) Parameter error norm ratio on the ordinant versus time in
seconds on the abscissa. (b) State error norm ratio on the ordinant versus time in seconds on the abscissa.

3.3 Performance comparison with different
r value

This case shows for the modified learning
method (Specific Version) how the r value, which
can be seen as the “magnitude” of the G in equa-

tion (7) and the R in equation (10), affects the final
result. The initial condition and parameters used
in this case are identical to case 3.2 and can be
checked in Table 6, except for the r value.

(a) (b)
Figure 5. The convergence of the parameter error and state error. Original deterministic artificial intelligence is displayed by a
thick, solid green line, dashed purple line displays 𝑟 = 0.5, thin solid black line displays 𝑟 = 1, dotted blue line displays 𝑟 = 2,
dot-dashed red line displays 𝑟 = 4. (a) Parameter error norm ratio on the ordinant versus time in seconds on the abscissa. (b)
State error norm ratio on the ordinant versus time in seconds on the abscissa.

Journal of AppliedMath 2023; 1(1): 42.

10

Table 7. Convergence of inertia estimation and tracking errors
Figure of merit Original method

(prequels)
Modified with 𝒓 = 𝟎. 𝟓

Modified with 𝒓 = 𝟏
Modified with 𝒓 = 𝟐

Modified with 𝒓 = 𝟒

Parameter error mean 0.0247 0.0351 0.0348 0.0345 0.0341
Parameter error deviation 0.0124 0.0306 0.0272 0.0239 0.0217

Mean tracking error –0.0401 –0.0033 –0.0033 –0.0033 –0.0034
Tracking error deviation 0.1761 0.0296 0.0246 0.0189 0.0143

4. Discussion
In sections 3.1 and 3.2, the modified learning

method yields better state error convergence than
the original method. For the specific version of
the modified method, the final state error norm
ratio is about 2 magnitudes smaller (rough order × 𝑒–଼ compared with × 𝑒–ଷ) than the original
learning method, due to the data shown in both
Figures 3 and 4.

 In section 3.1, all the learning methods are
able to make the parameter error converge to zero.
This fits the expectation because in section 3.1
there is only 3 unknowns instead of 6. However,
when the moment of inertia matric contains the
nonzero product of inertia, as has been done in
section 3.2, the left part of Figure 4 shows that the
modified methods are not better than the original
method.

Table 8. Percent performance enhancement: Convergence of inertia estimation and tracking errors
Figure of merit Original method (prequels) Proposed version general Proposed version specific

Parameter error mean 0% 42% 53%
Parameter error deviation 0% 16% 100%

Mean tracking error 0% –77% –99%
Tracking error deviation 0% –91% –96%

In section 3.3, Figure 5 shows that when the
magnitude of R in equation (10) goes bigger, the
convergence rate also increases. Because equation
(12) states that the convergence rate of the Lya-

punov function (equation (11)) is only determined
by the size of R and 𝜃, the result in section 3.3 is
reasonable.

Table 9. Percent performance enhancement: Convergence of inertia estimation and tracking errors
Figure of merit Original method

(prequels)
Modified

with 𝒓 = 𝟎. 𝟓
Modified

with 𝒓 = 𝟏
Modified

with 𝒓 = 𝟐
Modified

with 𝒓 = 𝟒
Parameter error mean 0.00% –42.11% –40.89% –39.68% –38.06%

Parameter error deviation 0.00% –146.77% –119.35% –92.74% –75.00%
Mean tracking error 0.00% 91.77% 91.77% 91.77% 91.52%

Tracking error deviation 0.00% 83.19% 86.03% 89.27% 91.88%

From the convergence condition of errors in
Figures 3 and 4, it can be concluded that the
convergence trajectories of the specific version of
the modified learning method are “bumpier” and
contains more jitters and oscillations. This phe-
nomenon may result from the way of 𝜃 value
determination provided in equation (13), which
only consider the data in the current time stamp,
and the indeterminate nature of equation (13),
when the matrix of known is not full rank, makes
the estimation of 𝜃 very unstable.

It can be concluded that the specific version
of the modified learning method can achieve the
convergence of both parameter error and state
error in the simulation done in this manuscript,
especially when the matrix of known is full rank,
which can increase the robustness of the rotation
rate controller.

4.1 Recommended future work

From the parameter error data of the specific
version of the modified method in Figures 4 and 5,
the increasing jitters can be observed. The reason

Journal of AppliedMath 2023; 1(1): 42.

11

for such instability after the convergence is un-
clear. It could result from the numerical instability
of the chosen ODE solver and the options given to
it, or the indeterminate way used for determining 𝜃 value in equation (13).

Moreover, the property of the “general ver-
sion of modified learning method” hasn’t been
explored carefully because it is not suitable in this
case by nature. Also, a better way of estimating 𝜃
may improve the result of the modified learning
method as well. Finally, a better way of choosing
the G in equation (7) and the R in equation (10) is
also an interesting topic.

Conflict of interest
The authors declare no conflict of interest.

References
1. Johnson M. Space station robotic arms have a

long reach [Internet]. Washington, DC: National
Aeronautics and Space Administration; 2019
[updated 2022 Aug 13]. Available from:
https://www.nasa.gov/mission_pages/station/re
search/news/b4h-3rd/hh-robotic-arms-reach.

2. Mahoney E. NASA seeks ideas for commercial
uses of gateway [Internet]. Washington, DC: Na-
tional Aeronautics and Space Administration;
2018 [updated 2018 Aug 25]. Available from:
https://www.nasa.gov/feature/nasa-seeks-ideas-
for-commercial-uses-of-gateway.

3. NASA Image Use Policy [Internet]. Washington,
DC: National Aeronautics and Space Admin-
istration. Available from:
https://gpm.nasa.gov/image-use-policy.

4. Bucchioni G, Innocenti M. Rendezvous in
cis-lunar space near rectilinear halo orbit: Dy-
namics and control issues. Aerospace 2021; 8(3):
68. doi: 10.3390/aerospace8030068.

5. Bando M, Namati H, Akiyama Y, Hokamoto S.
Formation flying along libration point orbits using
chattering attenuation sliding mode control.
Frontiers in Space Technologies 2022; 3: 919932.
doi: 10.3389/frspt.2022.919932.

6. Colombi F, Colagrossi A, Lavagna M. Charac-
terization of 6DOF natural and controlled relative
dynamics in cislunar space. Acta Astronautica
2022; 196: 369–379. doi:
10.1016/j.actaastro.2021.01.017.

7. Sands T. Flattening the curve of flexible space

robotics. Applied Sciences 2022; 12(6): 2992. doi:
10.3390/app12062992.

8. Sands T. Optimization provenance of whiplash
compensation for flexible space robotics. Aero-
space 2019; 6(9): 93. doi:
10.3390/aerospace6090093.

9. Jones A. Chinese space station robot arm
tests bring amazing views from orbit [Internet].
New York: Space.com; 2022 [updated 2022 Aug
9]. Available from:
https://www.space.com/china-space-station-wen
tian-robot-arm-test.

10. Jones A. See a large robotic arm “crawl” across
China’s space station [Internet]. New York:
Space.com; 2022 [published 2022 Feb 16].
Available from:
https://www.space.com/china-space-station-rob
ot-arm-video.

11. Lafarge N, Miller D, Howell K, Linares R. Au-
tonomous closed-loop guidance using reinforce-
ment learning in a low-thrust, multi-body dy-
namical environment. Acta Astronautica 2021;
186: 1–23. doi: 10.1016/j.actaastro.2021.05.014.

12. Albee K, Oestreich C, Specht C, et al. A robust
observation, planning, and control pipeline for
autonomous rendezvous with tumbling targets.
Frontiers in Robotics and AI 2021; 8. doi:
10.3389/frobt.2021.641338.

13. Mehta PM, Linares R. A new transformative
framework for data assimilation and calibration
of physical ionosphere-thermosphere models.
Space Weather 2018; 16(18): 1086–1100. doi:
10.1029/2018SW001875.

14. Oestreich CE, Linares R, Gondhalekar R. Au-
tonomous six-degree-of-freedom spacecraft
docking with rotating targets via reinforcement
learning. Journal of Aerospace Information Sys-
tems 2021; 18(7): 417–428. doi:
10.2514/1.1010914.

15. Avendaño M, Arnas D, Linares R, Lifson M.
Efficient search of optimal flower constellations.
Acta Astronautica 2021; 179: 290–295. doi:
10.1016/j.actaastro.2020.10.026.

16. Arnas D, Lifson M, Linares R, Avendaño M.
Definition of low earth orbit slotting architectures
using 2D lattice flower constellations. Advances
in Space Research 2021; 67(11): 3696–3711. doi:
10.1016/j.asr.2020.04.021.

17. Oestreich C, Espinoza A, Todd J, et al. On-orbit
inspection of an unknown, tumbling target using
NASA’s Astrobee robotic free-flyers. In: 2021
IEEE/CVF Conference on Computer Vision and

Journal of AppliedMath 2023; 1(1): 42.

12

Pattern Recognition Workshops (CVPRW); 2021
Jun 20–25; Nashville. New York: Institute of
Electrical and Electronics Engineers (IEEE);
2021. p. 2039–2047.

18. Roberts TG. Geosynchronous satellite maneuver
classification and orbital pattern anomaly detec-
tion via supervised machine learning [Master’s
thesis]. Massachusetts (MA): Massachusetts In-
stitute of Technology; 2021.

19. Ekal M, Albee K, Coltin B, et al. Online infor-
mation-aware motion planning with inertial pa-
rameter learning for robotic free-flyers. In: 2021
IEEE/RSJ International Conference on Intelli-
gent Robots and Systems; 2021 Sep 27–Oct 1;
Prague. New York: Institute of Electrical and
Electronics Engineers (IEEE); 2021. p. 8766–
8773. doi: 10.1109/IROS51168.2021.9636325.

20. Cassinis LP, Park TH, Stacey N, et al. Leveraging
neural network uncertainty in adaptive unscented
Kalman Filter for spacecraft pose estimation.
Advances in Space Research 2023; 71(12): 5061–
5082. doi: 10.1016/j.asr.2023.02.021.

21. Park TH, D’Amico S. Robust multi-task learning
and online refinement for spacecraft pose estima-
tion across domain gap. Advances in Space Re-
search 2023. In Press. doi:
10.1016/j.asr.2023.03.036.

22. Park TH, D’Amico S. Adaptive neural net-
work-based unscented Kalman Filter for robust
pose tracking of noncooperative spacecraft. New
York: arXiv; 2022. doi:
10.48550/arXiv.2206.03796.

23. Zhang K, Pan B. Control design of spacecraft
autonomous rendezvous using nonlinear models
with uncertainty. Journal of Zhejiang University
(Engineering Science) 2022; 56(4): 833–842. doi:
10.3785/j.issn.1008-973X.2022.04.024.

24. Smeresky B, Rizzo A, Sands T. Optimal learning
and self-awareness versus PDI. Algorithms 2020;
13(1): 23. doi: 10.3390/a13010023.

25. Slotine J, Li W. Applied nonlinear control. Wil-
mington, DE: Prentice-Hall, Inc.; 1991. p. 392–
436.

26. Sands T. Development of deterministic artificial
intelligence for unmanned underwater vehicles
(UUV). Journal of Marine Science and Engi-
neering 2020; 8(8): 578. doi:
10.3390/jmse8080578.

27. Sandberg A, Sands T. Autonomous trajectory
generation algorithms for spacecraft slew ma-
neuvers. Aerospace 2022; 9(3): 135. doi:
10.3390/aerospace9030135.

28. Raigoza K, Sands T. Autonomous trajectory
generation comparison for de-orbiting with mul-
tiple collision avoidance. Sensors 2022;
22(18): 7066. doi: 10.3390/s22187066.

29. Wilt E, Sands T. Microsatellite uncertainty con-
trol using deterministic artificial intelligence.
Sensors 2022; 22(22): 8723. doi:
10.3390/s22228723.

Journal of AppliedMath 2023; 1(1): 42.

13

Appendix A
The MATLAB® code used in this manuscript is pasted below. The program utilizes the ode45 solver

to simulate the response of the overall system combining the controller and the controlled system.

clc; clear; close all
%% DAI Matrix Derivation
% ===================
% Derive the matrix of known w.r.t. vector of nuknown using symbolic
toolbox,
% and turn it into a matlab function.
% P is the matrix of known.
% th := [Ixx Ixy Ixz Iyy Iyz Izz]' is the vector of unknown.
% ===================
syms fwx(t) fwy(t) fwz(t)
syms Ixx Ixy Ixz Iyy Iyz Izz real
syms wx wy wz dwx dwy dwz ddwx ddwy ddwz real
w = [fwx;fwy;fwz];
wT = [fwx fwy fwz];
dw = diff(w,t);
ddw = diff(dw,t);
I = [Ixx Ixy Ixz; Ixy Iyy Iyz; Ixz Iyz Izz];
PhTh = I*dw + cross(w,I*w);
Peq = PhTh == 0;
[P, ~] = equationsToMatrix(Peq, [Ixx Ixy Ixz Iyy Iyz Izz]);
dP = diff(P,t);
sP = subs(P, [diff(diff(wT,t),t) diff(wT,t) fwx fwy fwz], [ddwx ddwy ddwz dwx
dwy dwz wx wy wz]);
sdP = subs(dP, [diff(diff(wT,t),t) diff(wT,t) fwx fwy fwz], [ddwx ddwy ddwz
dwx dwy dwz wx wy wz]);
sfP = symfun(sP, [wx wy wz dwx dwy dwz ddwx ddwy ddwz]);
sfdP = symfun(sdP, [wx wy wz dwx dwy dwz ddwx ddwy ddwz]);

%% Derive matrix K for the modified learning --- specific
% ===================
% Derive the K matrix, mentioned in equation 9, used in specific learning,
% and turn it into a matlab function.
% i is the unknown vector error, i := I_real - I_estimate.
% w is the state error, w := w_desired - w_real.
% ===================
syms wdx wdy wdz dwdx dwdy dwdz real
syms ixx ixy ixz iyy iyz izz real
w = [wx;wy;wz];
wd = [wdx;wdy;wdz];
dwd = [dwdx dwdy dwdz]';
i = [ixx ixy ixz; ixy iyy iyz; ixz iyz izz];

Journal of AppliedMath 2023; 1(1): 42.

14

Ki = i'*dwd + cross(wd,i*wd) - cross(wd,i*w);
Keq = Ki == [0;0;0];
[K, sbz] = equationsToMatrix(Keq, [ixx ixy ixz iyy iyz izz]);
fK = symfun(K, [wx wy wz wdx wdy wdz dwdx dwdy dwdz]);

%% Simulation: ODE45
% ===================
% Define simulation parameters and simulate
% ===================
%
% ===== <Parameter definition> =====
p.J = [1 0.2 0.3; 0.2 2 0.4; 0.3 0.4 1]; % Example in section 3_2
p.dwd = [1 1 1]';
p.P = matlabFunction(sfP);
p.dP = matlabFunction(sfdP);
p.K = matlabFunction(fK);
p.G = 3*eye(6);
p.pinvTol = 1e-3;
Jt = [p.J(1,1);p.J(1,2);p.J(1,3);p.J(2,2);p.J(2,3);p.J(3,3)];
%
% ===== <Simulation time> =====
deltat = 0.01;
tfinal = 3;
t = 0:deltat:tfinal;% for evaluating solution
%
% ===== <Simulation: ODE45> =====
z0 = [1 0 0 0 0 0 0 0.02 0.03 0.01 1.06 0.21 0.31 1.90 0.41 1.15]'; % 3_2 0.08
0.08 004
options = odeset('absTol',1e-10,'relTol',1e-10);
% The simulation for the general version of modified learning method
[t_dai, z_dai] = ode45(@(t,z)DAI_modified_general(t,z,p), t, z0, options);
% The simulation for the specific version of modified learning method
[t_dmd, z_dmd] = ode45(@(t,z)DAI_modified_specific(t,z,p), t, z0, options);
% The simulation for the original version of learning method
[t_dor, z_dor] = ode45(@(t,z)DAI_original(t,z,p), t, z0, options);

%% Plot parameter estimations and state trajectories
figure()
plot(t_dai, z_dai(:,11),t_dai, z_dai(:,14),t_dai, z_dai(:,16))
legend('Ixx', 'Iyy', 'Izz');
title('Vector of unknown Estimation of DAI Modification General Version');
figure()
plot(t_dmd, z_dmd(:,11),t_dmd, z_dmd(:,14),t_dmd, z_dmd(:,16))
legend('Ixx', 'Iyy', 'Izz');
title('Vector of unknown Estimation of DAI Modification Specific Version');

Journal of AppliedMath 2023; 1(1): 42.

15

figure()
plot(t_dor, z_dor(:,11),t_dor, z_dor(:,14),t_dor, z_dor(:,16))
legend('Ixx', 'Iyy', 'Izz');
title('Vector of unknown Estimation of Original DAI');
figure()
plot(t_dai, z_dai(:,7),t_dor, z_dor(:,7),t_dmd, z_dmd(:,7),t_dai, z_dai(:,10))
legend('Modified 1', 'Original', 'Modified 2', 'Desired');
title('Angular Velocity Tracking of DAI Modification General Version');
figure()
plot(t_dai, z_dai(:,6),t_dor, z_dor(:,6),t_dmd, z_dmd(:,6),t_dai, z_dai(:,9))
legend('Modified 1', 'Original', 'Modified 2', 'Desired');
title('Angular Velocity Tracking of DAI Modification Specific Version');
figure()
plot(t_dai, z_dai(:,5),t_dor, z_dor(:,5),t_dmd, z_dmd(:,5),t_dai, z_dai(:,8))
legend('Modified 1', 'Original', 'Modified 2', 'Desired');
title('Angular Velocity Tracking of Original DAI');

%% Analysis the norm rates
% inertia norm ratio: Equation 15
J_dai = z_dai(:,11:16);
J_dmd = z_dmd(:,11:16);
J_dor = z_dor(:,11:16);
n = length(t_dai);
nJ_dai = vecnorm(J_dai'-Jt*ones(1,n))/norm(Jt);
nJ_dmd = vecnorm(J_dmd'-Jt*ones(1,n))/norm(Jt);
nJ_dor = vecnorm(J_dor'-Jt*ones(1,n))/norm(Jt);
figure()
plot(t_dai, nJ_dai, t_dmd, nJ_dmd, t_dor, nJ_dor);
legend('DAI modified General Version', 'DAI modified Specific Version', 'DAI
original');
title('Convergence of the parameter error norm ratio');
xlabel('time (s)');
ylabel('Parameter error norm ratio');
% state error norm ratio: Equation 15
dw_dai = z_dai(:,5:7)-z_dai(:,8:10);
nw_dai = vecnorm(dw_dai')./vecnorm(z_dai(:,8:10)');
dw_dmd = z_dmd(:,5:7)-z_dmd(:,8:10);
nw_dmd = vecnorm(dw_dmd')./vecnorm(z_dmd(:,8:10)');
dw_dor = z_dor(:,5:7)-z_dor(:,8:10);
nw_dor = vecnorm(dw_dor')./vecnorm(z_dor(:,8:10)');
figure()
plot(t_dai, log(nw_dai), t_dmd, log(nw_dmd), t_dor, log(nw_dor));
legend('DAI modified General Version', 'DAI modified Specific Version', 'DAI
original');
title('Convergence of the state error norm ratio');

Journal of AppliedMath 2023; 1(1): 42.

16

xlabel('time (s)');
ylabel('State error norm ratio');

%% mean and deviation: Table 4
clc
% DAI modified General Version
ParamErrorMeanGeneral = mean(mean(J_dai-(Jt*ones(1,length(J_dai)))'))
ParamErrorStdrGeneral = mean(std(J_dai-(Jt*ones(1,length(J_dai)))'))
StateErrorMeanGeneral = mean(mean(dw_dai))
StateErrorStdrGeneral = mean(std(dw_dai))
% DAI modified Specific Version
ParamErrorMeanSpecific = mean(mean(J_dmd-(Jt*ones(1,length(J_dmd)))'))
ParamErrorStdrSpecific = mean(std(J_dmd-(Jt*ones(1,length(J_dmd)))'))
StateErrorMeanSpecific = mean(mean(dw_dmd))
StateErrorStdrSpecific = mean(std(dw_dmd))
% DAI Original
ParamErrorMeanOriginal = mean(mean(J_dor-(Jt*ones(1,length(J_dor)))'))
ParamErrorStdrOriginal = mean(std(J_dor-(Jt*ones(1,length(J_dor)))'))
StateErrorMeanOriginal = mean(mean(dw_dor))
StateErrorStdrOriginal = mean(std(dw_dor))

%% Test the performance of Specific Version Modified DAI in different G
% G = 0.5
p.G = 0.5*eye(6);
[t_dmd_h, z_dmd_h] = ode45(@(t,z)DAI_modified_specific(t,z,p), t, z0, op-
tions);
n = length(t_dmd_h);
J_dmd_h = z_dmd_h(:,11:16);
nJ_dmd_h = vecnorm(J_dmd_h'-Jt*ones(1,n))/norm(Jt);
dw_dmd_h = z_dmd_h(:,5:7)-z_dmd_h(:,8:10);
nw_dmd_h = vecnorm(dw_dmd_h')./vecnorm(z_dmd_h(:,8:10)');
% G = 1
p.G = 1*eye(6);
[t_dmd_1, z_dmd_1] = ode45(@(t,z)DAI_modified_specific(t,z,p), t, z0, op-
tions);
J_dmd_1 = z_dmd_1(:,11:16);
nJ_dmd_1 = vecnorm(J_dmd_1'-Jt*ones(1,n))/norm(Jt);
dw_dmd_1 = z_dmd_1(:,5:7)-z_dmd_1(:,8:10);
nw_dmd_1 = vecnorm(dw_dmd_1')./vecnorm(z_dmd_1(:,8:10)');
% G = 2
p.G = 2*eye(6);
[t_dmd_2, z_dmd_2] = ode45(@(t,z)DAI_modified_specific(t,z,p), t, z0, op-
tions);
J_dmd_2 = z_dmd_2(:,11:16);
nJ_dmd_2 = vecnorm(J_dmd_2'-Jt*ones(1,n))/norm(Jt);

Journal of AppliedMath 2023; 1(1): 42.

17

dw_dmd_2 = z_dmd_2(:,5:7)-z_dmd_2(:,8:10);
nw_dmd_2 = vecnorm(dw_dmd_2')./vecnorm(z_dmd_2(:,8:10)');
% G = 4
p.G = 4*eye(6);
[t_dmd_4, z_dmd_4] = ode45(@(t,z)DAI_modified_specific(t,z,p), t, z0, op-
tions);
J_dmd_4 = z_dmd_4(:,11:16);
nJ_dmd_4 = vecnorm(J_dmd_4'-Jt*ones(1,n))/norm(Jt);
dw_dmd_4 = z_dmd_4(:,5:7)-z_dmd_4(:,8:10);
nw_dmd_4 = vecnorm(dw_dmd_4')./vecnorm(z_dmd_4(:,8:10)');
% Original
[t_dor, z_dor] = ode45(@(t,z)DAI_original(t,z,p), t, z0, options);
J_dor = z_dor(:,11:16);
nJ_dor = vecnorm(J_dor'-Jt*ones(1,n))/norm(Jt);
dw_dor = z_dor(:,5:7)-z_dor(:,8:10);
nw_dor = vecnorm(dw_dor')./vecnorm(z_dor(:,8:10)');
%
% Plot the result
rnge = 200;
figure();
plot(t_dmd_h(1:rnge), nJ_dmd_h(1:rnge),...
 t_dmd_1(1:rnge), nJ_dmd_1(1:rnge),...
 t_dmd_2(1:rnge), nJ_dmd_2(1:rnge),...
 t_dmd_4(1:rnge), nJ_dmd_4(1:rnge),...
 t_dor(1:rnge), nJ_dor(1:rnge));
legend('DAI modified r = 0.5',...
 'DAI modified r = 1',...
 'DAI modified r = 2',...
 'DAI modified r = 4',...
 'DAI original');
title('Convergence of the parameter error norm ratio');
xlabel('time (s)');
ylabel('Parameter error norm ratio');
figure();
plot(t_dmd_h(1:rnge), log(nw_dmd_h(1:rnge)), ...
 t_dmd_1(1:rnge), log(nw_dmd_1(1:rnge)), ...
 t_dmd_2(1:rnge), log(nw_dmd_2(1:rnge)), ...
 t_dmd_4(1:rnge), log(nw_dmd_4(1:rnge)), ...
 t_dor(1:rnge), log(nw_dor(1:rnge)));
legend('DAI modified r = 0.5',...
 'DAI modified r = 1',...
 'DAI modified r = 2',...
 'DAI modified r = 4',...
 'DAI original');
title('Convergence of the state error norm ratio');

Journal of AppliedMath 2023; 1(1): 42.

18

xlabel('time (s)');
ylabel('State error norm ratio');

%% mean and deviation: Table 6
% G = 0.5
ParamErrorMeanGHlf = mean(mean(J_dmd_h(1:rnge,:)-(Jt*ones(1,rnge))'))
ParamErrorStdrGHlf = mean(std(J_dmd_h(1:rnge,:)-(Jt*ones(1,rnge))'))
StateErrorMeanGHlf = mean(mean(dw_dmd_h(1:rnge,:)))
StateErrorStdrGHlf = mean(std(dw_dmd_h(1:rnge,:)))
% G = 1
ParamErrorMeanGOne = mean(mean(J_dmd_1(1:rnge,:)-(Jt*ones(1,rnge))'))
ParamErrorStdrGOne = mean(std(J_dmd_1(1:rnge,:)-(Jt*ones(1,rnge))'))
StateErrorMeanGOne = mean(mean(dw_dmd_1(1:rnge,:)))
StateErrorStdrGOne = mean(std(dw_dmd_1(1:rnge,:)))
% G = 2
ParamErrorMeanGTwo = mean(mean(J_dmd_2(1:rnge,:)-(Jt*ones(1,rnge))'))
ParamErrorStdrGTwo = mean(std(J_dmd_2(1:rnge,:)-(Jt*ones(1,rnge))'))
StateErrorMeanGTwo = mean(mean(dw_dmd_2(1:rnge,:)))
StateErrorStdrGTwo = mean(std(dw_dmd_2(1:rnge,:)))
% G = 4
ParamErrorMeanGFor = mean(mean(J_dmd_4(1:rnge,:)-(Jt*ones(1,rnge))'))
ParamErrorStdrGFor = mean(std(J_dmd_4(1:rnge,:)-(Jt*ones(1,rnge))'))
StateErrorMeanGFor = mean(mean(dw_dmd_4(1:rnge,:)))
StateErrorStdrGFor = mean(std(dw_dmd_4(1:rnge,:)))
% Original DAI
ParamErrorMeanOrig = mean(mean(J_dor(1:rnge,:)-(Jt*ones(1,rnge))'))
ParamErrorStdrOrig = mean(std(J_dor(1:rnge,:)-(Jt*ones(1,rnge))'))
StateErrorMeanOrig = mean(mean(dw_dor(1:rnge,:)))
StateErrorStdrOrig = mean(std(dw_dor(1:rnge,:)))

%% Function
function zdot = DAI_modified_general(t, z, p)
 % Orientation of the rigid body as quaternion
 q = z(1:4);
 % Angular velocity
 w = z(5:7);
 % Desired velocity
 wd = z(8:10);
 % Vector of unknown: Inertia
 th = z(11:16); % theta hat
 Jh = [th(1) th(2) th(3); th(2) th(4) th(5); th(3) th(5) th(6)];
 % Generate trajectory to be followed
 [sdwd,sddwd] = traj_gen(t,wd,p);
 % Generate feed forward control torque
 tau = Jh*sdwd + cross(wd', Jh*wd)';

Journal of AppliedMath 2023; 1(1): 42.

19

 % Update the dynamic of the system
 dw = p.J\(tau-cross(w', p.J*w)');
 dq = 0.5*quatmultiply([0 w'],q');
 % Update the parameter estimation
 ddw = [0;0;0];
 % Matrix of known w.r.t. desired angular velocity
 Pd =
p.P(wd(1),wd(2),wd(3),sdwd(1),sdwd(2),sdwd(3),sddwd(1),sddwd(2),sddwd(3));
 % Matrix of known w.r.t. actual angular velocity
 P = p.P(w(1),w(2),w(3),dw(1),dw(2),dw(3),0,0,0);
 % Time derivative of the Matrix of known w.r.t. actual angular velocity
 dP = p.dP(w(1),w(2),w(3),dw(1),dw(2),dw(3),ddw(1),ddw(2),ddw(3));
 % Equation 6: General version of modified learning in DAI
 ph = Pd-P;
 A = dP*pinv(P,p.pinvTol)*pinv(P' + pinv(P,p.pinvTol),p.pinvTol);
 B = (P' + pinv(P,p.pinvTol))'*p.G;
 dth = (th'*ph'*(A+B))';
 % Print simulation time every 1 second
 if abs(t-round(t)) < 0.001
 disp(t)
 end
 zdot = [dq';dw;sdwd;dth];
end

function zdot = DAI_modified_specific(t, z, p)
 % Orientation of the rigid body as quaternion
 q = z(1:4);
 % Angular velocity
 w = z(5:7);
 % Desired velocity
 wd = z(8:10);
 % Vector of unknown: Inertia
 th = z(11:16); % theta hat
 Jh = [th(1) th(2) th(3); th(2) th(4) th(5); th(3) th(5) th(6)];
 % Generate trajectory to be followed
 [sdwd,~] = traj_gen(t,wd,p);
 % Generate feed forward control torque: Equation 8
 tau = Jh*sdwd + cross(wd', Jh*w)';
 % Update the dynamic of the system
 dw = p.J\(tau-cross(w', p.J*w)');
 dq = 0.5*quatmultiply([0 w'],q');
 % Update the parameter estimation
 P = p.P(w(1),w(2),w(3),dw(1),dw(2),dw(3),0,0,0);
 % Equation 9/12: Specific version of modified learning in DAI
 ew = wd-w;

Journal of AppliedMath 2023; 1(1): 42.

20

 K = p.K(ew(1),ew(2),ew(3),wd(1),wd(2),wd(3),sdwd(1),sdwd(2),sdwd(3));
 Dth = pinv(P,p.pinvTol)*(tau-P*th);
 dth = K'*ew+p.G*Dth;
 % Monitor the Lyapunov Candidate function to see if it is decreasing
 % TDth = [p.J(1,1);p.J(1,2);p.J(1,3);p.J(2,2);p.J(2,3);p.J(3,3)]-th;
 % V = ew'*p.J*ew+TDth'*TDth
 zdot = [dq';dw;sdwd;dth];
end

function zdot = DAI_original(t, z, p)
 % Orientation of the rigid body as quaternion
 q = z(1:4);
 % Angular velocity
 w = z(5:7);
 % Desired velocity
 wd = z(8:10);
 % Vector of unknown: Inertia
 th = z(11:16); % theta hat
 Jh = [th(1) th(2) th(3); th(2) th(4) th(5); th(3) th(5) th(6)];
 % Generate trajectory to be followed
 [sdwd,~] = traj_gen(t,wd,p);
 % Generate feed forward control torque
 tau = Jh*sdwd + cross(wd', Jh*wd)';
 % Update the dynamic of the system
 dw = p.J\(tau-cross(w', p.J*w)');
 dq = 0.5*quatmultiply([0 w'],q');
 % Update the parameter estimation: Equation 3-a, 3-b
 P = p.P(w(1),w(2),w(3),dw(1),dw(2),dw(3),0,0,0);
 dth = 1.5*pinv(P,p.pinvTol)*(tau-P*th);
 zdot = [dq';dw;sdwd;dth];
end

function [dwd,ddwd] = traj_gen(t,wd,p)
 tau = [5;2;-2];
 if t>7
 tau = [0;0;0];
 end
 dwd = p.J\(tau-cross(wd', p.J*wd)');
 ddwd = [0;0;0];
end

