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Abstract: The relation between continuous functions and random vectors is revealed in the
paper. The main meaning is described as: for any given continuous function, there must be a
sequence of probability spaces and a sequence of random vectors where every random vector
is defined on one of these probability spaces, such that the sequence of conditional
mathematical expectations formed by the random vectors uniformly converges to the
continuous function. This is a random vector representation of continuous functions, which is
regarded as a bridge to be set up between real function theory and probability theory. By means
of this conclusion, an interesting result about function approximation theory can be obtained.
The random vector representation of continuous functions has important applications in
physics. Based on the conclusion, if a large proportion of certainty phenomena can be described
by continuous functions and random phenomena can also be described by random variables or
vectors, then any certainty phenomenon must be the limit state of a sequence of random
phenomena. Then, in the approximation from a sequence of random vectors to a continuous
function, the base functions are appropriately selected by us, and an important conclusion for
quantum mechanics is deduced: classical mechanics and quantum mechanics are unified.
Particularly, an interesting and very important conclusion is introduced as the fact that the mass
point motion of a macroscopical object possesses a kind of wave characteristic curve, which is
called wave-mass-point duality.

Keywords: continuous functions; random vectors; conditional mathematical expectations;
quantum mechanics; wave-mass-point duality

1. Introduction

From a physical point of view, continuous functions can describe a large
proportion of certain phenomena. For example, the trajectory of a projectile can be
expressed as a continuous function. However, random vectors can describe a lot of
random phenomena in the natural world. So, if we consider the connection between
some certainty phenomena and some random phenomena, we should research the
relation between continuous functions and random vectors.

In the paper, we obtain a conclusion: for any given continuous function f (x) €
C[a, b], there must be a sequence of probability spaces {(2, F, B,)} and a sequence of
random vectors {(&,,1n,)} where every random vector (§,,,7,) is defined on the
probability space (2,F, B,), such that the sequence of conditional mathematical
expectations {E (1,,|1&, = x)} uniformly converges to the continuous function f(x) in
[a, b].

This can be called the random vector representation of continuous functions,
which is like a bridge to be set up between real function theory and probability theory.
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By using this conclusion, we have a result with respect to function approximation: for
any given continuous function f(x) € C[a, b], if {E (|, = x)} is the sequence of
conditional mathematical expectations generated by the continuous function f(x),
then by means of {E (n,,|1&,, = x)} we can make a group of continuous base functions
as follows:

o) = {o” (0, 0" @), ot (1)}
such that the sequence of interpolation functions formed by using {&(n)} as the
following

n
fo(x) = Z oM y™, n=123,-
=0

can uniformly converge to f(x).

Then, in the approximation from a sequence of random vectors to a continuous
function, the base functions are appropriately selected by us, and an important
conclusion for quantum mechanics is deduced: classical mechanics and quantum
mechanics are unified. Particularly, an interesting and very important conclusion is
introduced as the fact that the mass point motion of a macroscopical object possesses
a kind of wave characteristic curve, which should be called wave-mass-point duality.

2. The random vector presentation of continuous functions

Lemma 1. Arbitrarily given m + 1 real numbers agy, aq,*+,ay € R, we denote the
following symbol:
em = max{lai — al-_1||i =12, ,m}
And we make a permutation as the following:
0O 1 - m
7= (ko ky o km)’
such that ay, < ai, < < ay . If we write
dy = max{aki — aki_1|i =1,2, ---,m},
Then we have thatd,,, < e,
Proof. By the definition of d,,,, we can know the following fact:
@ie{12,,mH(d, = Ay, — aki—1)'
If d,,; = 0, then the conclusion of the lemma is clearly true. Now we assume that
d,, > 0. We know that o is a bijection, and then k; # k;_;.
Lets = k;andt = k;_4. So ag — a; = d,,,. We consider two cases: (i) and (ii)
as follows.
(1) s < t.If we pay attention to the total order relation:
Ay S g, S Ay, < Qg S <o <y,
then we can learn the fact:
As, Ast1, Ast2, "5 Ap—1, A & (atv as) = (aki_lr aki)a
which means ag, agy1, As12,*, A1, ar € (—0,a;] U [ag, +0). Let
l=min{i € {s,s +1,-,t}|a; € (—,a;]}.
Clearly | # s;orelse a; = ag € [ag, +0); this will be contradictory with the fact
that a; € (—o, a;]. By the meaning of the subscript [, it is easy to understand that
a;_1 € [ag, +00). Thus, we have the result:
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em = lag—ai_1l = as —a, = dy,.
(i1) t < s. This time we have the following result:
Aty A1, Aey2, 7" As-1, As & (ag, ag) = (aki_l:aki),
which means the following expression is true:
At, A1) Aey, As—1, s € (—0,ac] U [as, +0).
Letl = max{i € {t,t +1,---,s}a; € (—o,a;]}. Clearly [ # s, or else we have
a; = ag € [ag, +00); this will also be contradictory with this expression a; € (—, a;].
So a;;1 € [as, +0). Thus, we have the result:
em = laj41 — il 2 a5 — ag = dpy.
We complete the proof of the lemma.

Theorem 1. For arbitrarily given a continuous function f (x) € Cla, b], there must be
a sequence of probability spaces {(2,F,P,)} and a sequence of random vectors
{(&,nn)}, where every random vector (&,,1,,) is defined on the probability space
(2,F,B,) , such that the sequence of conditional mathematical expectations
{E(Mn|&n = x)} uniformly converges to the continuous function f(x) in [a, b], that is,
for any € > 0, there exists N € N, such that, for anyn € N, ifn > N, then
(vx € [a, bDUEMulén = x) — f(x)] <€),
where
N, ={1,2,3,---}and N ={0,1,2,--- }.
Proof. Case 1. Let f(x) be a strictly monotone functions, and we may as well assume
that f(x) is a strictly monotonically increasing function, as when f(x) a strictly
monotonically decreasing function, the proof is the same as the increasing status.
Step 1. Construct a group of continuous base functions.

Firstly, the interval X = [a, b] is equidistantly partitioned as the following:
a= x(()n) < xin) << x,(ln) =b.
And we write
X(n) = {xi(n)| i = 0,1,---,n},

b—a
h(n) = —,

™ =a+ih(m), i=01-,n

Clearly h(n) - 0 © n — +oo0. Then denote Y = [c,d] = f(X), and put
w7 =f(x), i=01,m,

Y(n) = {yi(n)|i = O,1,--~,n},
c(n) =minY (n),
d(n) =maxY (n)
then c(n) = ¢, d(n) < d. By using two node sets X(n) and Y (n), two groups of
continuous base functions are formed as the following:

An) = {AE”) € C(X)| i = 0,1,---,n},

X

B(n) = {B™ e c(v)|i = 0,1, ,n}

where the definition of Agn) (i =0,1,---,n) are as the following which the figures of
them are shown as Figure 1 [1]:
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(- ™)

™ = 17—y
45" =1 (x0 — <)

0, otherwise,

X € [xén),xin)];

m)
X — X;
(( — (12  x e
- (xin _xi:ll)
A (x) =4 ) i=12,,n—-1, 1
N Cs), e x® L. v
(n) _ mY)’ i 27+l
X Xiv1
\0, otherwise;
_.m
) (—(x xn_l) x €x™ , x™.
4y (x) = (xfln) —xr(lri)l)’ n-1%n
0, otherwise,

As X(n) = {xi(n)|i = O,l,---,n} is an equidistant partition node set, above

m) ,._ . . . .
A;” (i=0,1,--,n) can be simplified as the following:

(xin) _x) m )
Agn)(x) = T(n), X € [xo , X9 ];
0, otherwise,
((._ .M
(=) M ORMON
( ) h(n) ) L_l’ L )
n
A0 =1 ()~ x) oo T 1,2,,n—1,
— ", XEX; X1
h(n) L l
0, otherwise;
(m)
(x - xn—l) M
Agln)(x) — Tn), X € xn_l,xn 5
0, otherwise,
4P I g 45 4
1 \

Figure 1. continuous base functions Agn).

As f(x) being strictly monotonically increasing function, we have
c=cm) =y <y <<y =dm)=d @)

(m ( (m

By means of these nodes: y, * < yln) < - <y, ’, we can construct continuous

base functions denoted by Bl-(n)(i =0,1,---,n), which are defined on Y as follows
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((y-»")
Bén) o) = im y € [yén),yl(n)];

0, otherwise,
((y-y1)
i

o oy Y EYi-u Vi
) n)
(yi - yi—1)
#m@)=<(y_¢m) i=12-,n—1, 3)
_\7 1) y € y(n)y(n) .
( m _ (n))’ i+17
Yi Yit1
0, otherwise;
m
( (y _y"_l) m . m
(n)( )= T Y YEY,_ 1 Vn
Py ()’n - yn—l)
0, otherwise,

So we get a group of continuous base functions B(n) = {Bi(n)l (=01, n}

Step 2. Construct a sequence of probability density functions {p, (x,y)}.

By using A (n) and B(n), we form a group of continuous base functions with
two variables defined on X X Y = [a, b] X [c, d] as follows

c™Mxy) =A™ @) - B )i =01,2,-,n

Write C(n) = {Ci(n)(x, y)l i=0,1, ---,n}, and it is easy to know that C(n) is a
group of linearly independent functions. Then span C(n) is just a n + 1 dimension
linear subspace of C(X X Y).

Next let V= max, which means that for any n + 1 real numbers ag, ay, -, a,,
we have

Vit a; = max{ag, aq, -, a}.

Based on C(n), a continuous function with two variables R,,;: X XY — [0,1] is

formed as follows

Rn(x,y) =Vito €0 (x,) =i, (47 () - B () @)

Then we get a sequence of continuous functions with two variables{R,,(x, y)}.
Then we write

d b
H) = [} [} RaCr,y) dxdy.
Clearly (vn € N,)(H(n) > 0). And we put
_ R,(x,y) _
pn(x,y) = W)(xw(x» yhn=123,- (5)

where yy«y is the indicative function of set X X Y

1, (x,y)eEX XY,
L R2 —
XXxy: R* — {0,1}, (x,y) g XXXY(ny) - {0’ (x’y) e XXY

So, we get a sequence of probability density functions {p,(x,y)} defined
on R? = (—o0, +0)2,

Step 3. Construct a sequence of probability spaces { (2, F, P,) }and a sequence of
random vectors {(,} = {(§,,,n,)} which every random vector {, is defined on
(2,F,PB,). In fact, let

Fn(x: y) = f_xoo f_yoo pn(u, v)dudv;
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Then {E,(x,y)}is a sequence of distribution functions. Take 2 = R? and F =
B,, where B, is a Borel o algebra on R?; and B,is taken as the probability measure
corresponding to F, (x,y). We all know a fact in probability theory that P, must exist
and be unique [2—4]. In this way, we get a sequence of probability spaces as the
following:

{7, Pn)} = {(RZ,BZ, Pn)}-
Then on every probability space (2, F, B,,) we define a random vector as follows:
(n=CGnnm) 2> R?
w = (w1, w2) = (W) = (§p(w), M (W) = (w1, W)
For any (x,y) € R?, by noticing the following expression
{w € 0|y (w) < x} ={w € R|w; < x} ={w € R|w; € (—0,x],w; € (—00,+00)} = (-0, x] X (-0, +x) EB,
=F

We can know that &, (w) is really a random variable defined on (2, F, B,); in the
same way, N, (w) is also really a random variable defined on (12, F, B,). So

{n(w) = (§n(w), N (W) = (w1, w,) = w
is just a random vector defined on({2, F, B,).

Let F; (x,y) be the distribution function of the random vector {,(w). For
any (x,y) € R?, because P, is the probability measure corresponding to F, (x,y), we
have

Fz, (x,y) = P,({w € 21§ () < x,mp(w) < y})
= P,({w € Qlw; < x,0; S ¥))
= P((=90,x] X (=o0,¥]) = Fy (x,7)
i.e., the distribution function Fz (x,y) of the random vector {, (w) is just F,(x,y),
which means
F(n(x: y) = Fn(xJ y)-

So, the sequence of conditional expectations of the sequence of random
vectors  {(n} = {(n, M)} is just {E(mulén =x)} , where EMglén =x) =
L2 ypaCey)dy  [LyRa(xy)dy
o pnGendy — [Ra(xyay |

n=123,--.

Step 4. Prove the fact that the sequence of conditional expectations {E (1, |¢,, =
x)} converges to f (x) everywhere in [a, b]. Firstly, we prove a result as the following:
d
(vn € N,)(Vx € [a,b]) (fc R, (x,y)dy > O).
In fact, for any x € [a, b], clearly (3i € {1,2,---,n}) (x € [xl(ﬂ, xi(n)]). Then for
any y € [c,d], we have
&y mvp |45 BEO)Y (470 B2 0)) v € 2]
n\X,Y) =Vg=0=
0,y € [c.d] - [y, y%1]
It is easy to learn the fact that
(Ely' € (yi(g,yi(fi)) (R, (x,y") > 0).
For this fixed x € [a, b], since R, (x, ¥) is a continuous function with respect to y,
we have

@s > 0) ((y' —5y +8)c (yi(f‘i.yffi))
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(Vye ' =68,y +8)(Rn(x,y) > 0)
By means of mean value theorem of integrals, there exists a point & €

[y’ - g,y’ + g], such that
d
f R G y)dy = j Ru(6y)dy = f Rp(6y)dy = Ry(x,6) -6 > 0
c '-6y'+6) [y -5 +—]

So above result is correct. By this result, for any n € N, , the following
expression

d
J. YRa(x,y)dy

E(Mnlén =x) = a
J. Ra(x,y)dy
is meaningful.

Now we turn to prove the fact that the sequence of unary functions {E(n,, ¢, =

x)} converges to f(x) everywhere in [a, b]. In fact, for any x € [a, b], clearly we have

@i € {12,,np (x € [xT, x™]).

Then we can get the following expression:
(4@ - B ) v (AP @ - B 0)).y € [y 95

0,y € [e.d] - [y 511

By means of the first mean value theorem of integrals, there exists a

Ry(x,y) :V;clzoz

point 1, (x) € [yl(n%,yl +i] such that
(n) (n)
2 YR, (x, y)dy _ f o YR (x My () I ' Bu e y)dy
EMulén =x) = de 4 . = NG = 1 (%)
RGN PR ody P {5 R )dy

i-2

For f(x) being continuous and by noticing that ,,(x) € [yl(n;, Y; +)] based on

the medium value theorem for continuous functions, we have

(3% € [, x]) F@ = na(0)).

Since f(x) € [yl(ni,yl +i] [yl(ng,yl +)] we know that
n— o=y -y - 0= 5,00 = F@ - ) (6)

For x € [a, b] being arbitrary, we get the fact as follows
(Vx € [a,b]) (Lim EGralén = %) = £()).
Step 5. Prove the fact that the sequence of conditional expectations {E (1, |¢,, =
x)} uniformly converges to f(x) in [a, b].
Because f(x) is continuous in [a, b], for any € > 0, there exists N € N, such
that

(vneN,) (n >N>=> max{|Ayi(n)|| i = 1,2,---,n} < %)

By Equation (6), for any x € [a, b], whenn > N, we have
|E(@nlén = 2) = FOO1 = 112 00) — F1 < |y = v < 3max {|ay™|

So far, we have proved the conclusion: for any € > 0, there exists N € N, such
that, for any n € N, if n > N, then

i = 1,2,--~,n} <¢g¢
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(Vx € [a,b)(E Ml = x) — f(x)] <€)
This means that the sequence of conditional expectations {E(1,|&é, = x)}
uniformly converges to f(x) in [a, b].
Case 2. f(x) is not a strictly monotonic function and not a constant function.
This time, the elements in Y (n) are not of monotonic property like as yg < y; <
.- <y, with respect to the subscripts i, which brings some difficulty to construct
continuous base functions B; being shaped like Equation (3); so, we should make a
permutation on the subscript set {0,1, -, n} as the following:
0 1 - n
7= (ko koo kn)'
(vie{0,1,--,n})(k; = a(i))
such that the permutated subscript set K (n) = {kg, k1, -+, k5, } is with the condition:
cm) =yP <y <<y =dn) (7
As Equation (7) is not strictly monotonicity about the subscript, we will deal with
it in two situations.

1) Assumec(n) = y,g:) < y,gl) << y,gz) = d(n). By using these nodes
m M ()
yko ’ykl ’...’ykn

in [c, d], we form continuous base functions B,g_l) (j =0,1,--,n)as follows

(-n)

m ()
(n) — ) ye[yk lyk ];
By, ) i(y’g? _ ylgrll)) 0 1
0, otherwise,
( _.,m
(y y"i—l) m M)
(OO IR
- (ykj _ykj—l)
BV (y) = { _,® j=12,,n-1,
k] (y ykj+1) c (TL) (n) )
(- (n))'y Vij  Vejan?
ykj ykj+1
0, otherwise;
_ oM
w r-v) e y® .
= g kn—1’7kn ’
= b )
0, otherwise,

And we get a sequence of continuous functions with two variables {R,, (x, y)} as
the following

Ru(,7) =Vio 680 (5, ) =V (400 @) B )
Like Case 1, we can get a sequence of probability density

functions {p,(x,y)} defined on the real number field R? = (—o0,+0)? and a
sequence of random vectors {{,,} = {(&,,, 1) }; then we have a sequence of conditional

mathematical expectations {E(n,,|&, = x)}, where
Ll ypnxy)dy _ & yRu(xy)dy

E =X) =7 )

(M lSn = %) 2 onGondy [ RnGry)ay

Now we prove the fact that the sequence of conditional mathematical
expectations {E (1,,|&, = x)} uniformly converges to f(x) in [a, b].

n=12.3,--.
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Firstly, it is easy to know that the fact as the following:
d
(vn € N,)(Vx € [a,b]) (fc R, (x,y)dy > 0).
Here we should stipulate that k_; = kyand k.4 = k,,. For any x € [a, b],
clearly we have
(3s,t € {0,1, ---,n})(x € [xks,xkt]).

Then we get the following expression:
(4 BI0) v (470 8P 0). v e [ m Ju el wl.]
m M m M
0,y €led] - ([yks—1'yks+1] U [ykt—1’ykt+1])

T o ) IR

m S ) ()
max {yks—1' Yoy Yieser? ykt+1}'
n) m M

n) . p(M n) _p(m) ™)
R,(x,y) =V]7-1:0= (Aks () By, (3’)2n\)/ (A(,:) ixj [Bg:) (3’)(1)1)' ])y € [yk5—1’yks+1] v [ykf—l’yktﬂ] )

Ry(x,y) :V]T'l=0=

0! y € [C’ d] - (I:yks—l’ yk5+1 ykt—l, ykl'+1
Let yo = min{ye? v Ve Vo) and v =

max {y,gl_)l,y,gl_)l,ygjl,ylggl}. It assumes that y, = y,gl_)l and y* = ylg?l , and

clearly, we know the fact:
1 — [, M) m M m M
[y*’y ] - [yks—1'ykt+1] - [yks—1'yks+1] U [ykt—l’yktﬂ]'
So above expression can be written as follows:
(4P @ -BP ) v (AP0 - B m), ve [Pyl |,
0.y € le.dl = 7, v
By first means of mean value theorem for integrals, there exists a point 7, (x) €

[y,gl_)l, y,g:)l], such that

Ry (x,y) :V]n=0=

() (m

ykt+1 ykt+1
d " R, (x,y)d X Ry (x,y)d
[ yRaeyay LY n(aY)AY  Tn( )fyis)_l n(x,y)dy

E(nnlfn = x) 7 R p y(n) = y(Tl) =MNn (x)
Je BnCeo)dy  Pheap yydy R0 R y)dy
Vi1 Vies—1

Write d,, = max {Aylgr_l)|j =1,2, ,n} , Where Ay,gl) = y,gl) - y,gl_)l,j =

J
1,2,---,n. We can prove the fact that limd,, = 0. In fact, let

n—-oo
e = max [y )
by means of Lemma 1 we have (Vn € N,)(d,, <e,). By using this result,
because f (x) is uniformly continuous in [a, b], it is true that lime, = 0; so, we

n—oo

i = 12n}

have lim d,, = 0.
n—-oo
And then by above result we have the following expression:

(Ve > 0)@N; € N,)(¥n € N,) (n > Ny = dy, <),
(n) (n)

By noticing the fact that
n— o = x, . —>0:|yks — Yk, =|f(x,(:))—f(x,(:))|—>0

(n _ xl(cn)
We immediately have the result: there exists N, € N, for any n € N, such that




Journal of AppliedMath 2024, 2(1), 382.

m
ykt+1

n>N, > |(n) ykt)|< (8)

Take N = max{N,, N,}, and whenn > N, we get the following expression:

| DU B A b 5 <<=
By this result we know thatl (n) yg)l —>0 so we get
1y “”—nn(x) —0.

By means of Equation (8), we can havel flx)— y,gl)l o, 0. At last, we have

n—-oo
IF ) =@ < |FG0) = 3| + [y = mne)| ——0.
ie., N, (x) T, f(x). So, we get the conclusion:
(Vx € [a,b]) (Lim EGralén = %) = £()).

And then, similar to above proof, we can obtain the conclusion that the sequence
of conditional mathematical expectations {E(1,|&, = x)} uniformly converges
to f(x) in [a, b].

2) Assumec(n) = (n) < y,gl) <--< y(n) = d(n). The elements in the set
Y() = {7,y ey

should be screened firstly. In fact, write K(n) = {ko, ky,**, ky,}, and an equivalent

relation ~ is defined as the following:

(vs,t € {0,1,,n}) (ks ~ k¢t © Yk, = Yi,)-
We can get a quotient set of K(n) as being
K .
O/ = {l]lj = 0.1,--,m),

where [kj] is the equivalence class what k; belongs to. Suppose the elements of

K(n)/ ~ are as the following:

[kjo]’ [kh]’ Y [qu(n)]’
where 0 < q(n) < n, and we stipulate that the representation element k;_is taken as

the least element in [kjs]' Then we have

(m (n) (m
< < <
Vi io y Vi Jatm
By using the nodes y(n),y,gl) : y,gn) in [c,d], a group of continuous base
functions
Bg)' s=01,-,q(n)

are formed as the following:
(n)
(y yk:ll )
(n) S N
By (y) = mn _ .1
(y Jjo ykfl )
0, otherwise,

[ (n)'ykj ] ‘ 9)

10
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( _ .M
(3’ ykjs_l) ENCORNON
™ _ o Y Y Yk Ve
Vs ~ Vijoy
m) _ — -
Bkjs (y) =+ (y _ylgl) ) s=12,-,q(n) -1,
YN OO
(y(n) _ o m )' Kis? Rjsyq’
kj kjs+1
0, otherwise;
(n)
( (y - ykj )
qn)-1 n)
y Y € Vi, Ve
Blgl)(n) ) = (y(") . ) 7o yqu(n)
1 Kigoy " Kigmy-1
0, otherwise,

So at the nodes y,gl), ,E?),---,y,gl) with respect to the representation
o "% a(m)

elements k; , k; , -+, qu ny the group of continuous base functions as follows
m) (m) ... pm™
Bkjo o), Bkjl o), Bqu(n) 6%
has been defined.

And then, we should stipulate: for every equivalence class [kjs]’ all the elements
in [kjs] have been corresponded to the same continuous base function B,E:,l) ).
Therefore, all the nodes in [c, d],

RESORESRE S
, , L My p@M
have been defined their continuous base functions: By, (y),Bk1 ), By, ).

Hence, we can get a sequence of continuous base functions with two
variables{R,, (x, y)}as follows

Ra(,3) =Viso € (63) =V (45 @) - B ) m =123, (10)
Similar to above method we have ever been used, we can have a sequence of
probability density functions {p,, (x,y)} defined on R? = (—c0, +0)? and a sequence

of random vectors {{,,} = {(&,,m,)}; then we immediately get a sequence of
conditional mathematical expectations {E (1,,|¢,, = x)}, where

o0 a
LD yenGondy [ yRa(xy)dy

J20paGady [ Ra(ey)dy
Now we should prove the fact that the sequence of conditional mathematical
expectations {E (1,,|&, = x)} uniformly converges to f(x) in [a, b].
Firstly, it is not difficult to know the fact that

(vn € N,)(Vx € [a,b]) (fcd R, (x,y)dy > O).
For any fixed x € [a, b], (3s,t € {0,1,---,n}) (x € [x,((?,x,(:)]).
Next, we should consider the following two situations.
i)  When B (y) = B{” (¥). we have

(@8 00)v (4057 ). v e[l vl
0,y €cd] - [y, 3|

E(nnlfn = x) n= 112131”'

Rn(x,y) =Vjzo=

11
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ii) When B,gl) ) # B,E? (y), we should have
Ra(x,7) =Vio (457 () - B )
(4@ - BPm) v (4P - BI0)), ve [ u Jup v,
0,y € [e.d]l = ([, 9 | u [ 3 ]).
However, in either case, we can use the method similar to 1) to prove the result:
(¥x € [a,b]) (lim EQralén = ) = F(0)),

and the sequence of conditional mathematical expectations {E (1,,|,, = x)} uniformly

converges to f(x) in [a, b].
Case 3. f(x) is a constant function, i.e., (38 € R)(Vx € [a,b])(f(x) = B).
Clearly this is a kind of degrading situation. So, we should take a distribution function:

— O’ ye (_Oo'ﬁ)'
F"(y)‘{l, y € [, +0)

And we construct a probability space (2, F, P), where P is a probability measure

corresponding to F,(y), 2 = R! and F = B,. Take the random variable as follows
7:02 - RLw e n(w) =w.

It is easy to know that the distribution function of 7 is just K, (y). By noticing the
following expression
P({w € 0ln(w) = f}) = P({w € Dlw = B = K(B) = KB —0)=1-0=1.

We know that E () = B. Hence f(x) = E(n).

Of course, we can also take another random variable ¢ defined on (2, F, P),
which ¢ is required to be independent with 7. So (§,7) can be regarded as a random
vector on (2, F, P). And we have

EMIE=x) =E@m) =B.
Furthermore, we tale a sequence of random vectors {(&,,,7,)}, such that
(Vne N+)((fnr nn) = (5'77))’
then {E (1, |&, = x)} uniformly converges to f(x) in [a, b]. We finish the proof of
Theorem 1.

3. The significance of function approximation of Theorem 1

In above section, we have proved the conclusion: the sequence of conditional
mathematical expectations {E (n,,|&,, = x)} uniformly converges to f(x) € C[a, b] in
[a, b]. Now we reveal the significance of function approximation of {E (n,,|&, = x)}
about continuous function f(x). We only consider the continuous function space

(Y32

Cla, b]. In C[a, b], addition operation “+” and scalar multiplication operation “-” are
defined as the following:
+:Cla,b] X Cla,b] - Cla,b], (f,.g9)~+(f,9)=f+g
(Vx € [a, bDI(f + 9)(x) = f(x) + g(O];
R xC[a,b] - Cla,b], (af)vr (af)=a-f,
(Vx € [a,bD[(a- H(x) = a- f()].
We all know that (C[a, b], +, R,-) forms a linear space, which can be simply
denoted by C[a, b]. In C[a, b], we define a norm operation as follows

12
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I-ll: Cla, b] = [0, +0), f = [IlI() = lIfIl = max |f(x)].

x€[a,b]
Then (C[a, b], ||-|]) is a normed linear space, which can be also denoted by
Cla, b] [5-7].
Clearly CJa, b] is an infinite dimension normed linear space. Suppose f(x) €
Cla, b] is a “complicated” function; for every n € N, we try to find a group of n + 1
linearly independent “simple” functions as following:

o) = {o” (), 0" (), 9P ()} € Cla, b],

and n + 1 real numbers a(()n), agn), IR a,(ln) € R, where there at least exists one real

m

number a; * # 0, such that f (x) can be approximately expressed by @(n), i.e.,

0= aeM )| < e) (n)
i=0

where € > 0 is a kind of approximation accuracy determined in advance. If we put

i@ = Eoa oV ().
then we have a sequence of continuous functions {f;, (x)}y= in C[a, b]. Expression

(Vx € [a, b]) (

(11) means that the sequence of continuous functions {f;, (x)};=, uniformly converges
to f(x) in [a, b], i.e., for any € > 0, there exists N € N, such that
(VvneN)m>N= I, - fll<e).

For some fixed &, whenn > N, (span®(n), ||-||)is a n + 1 dimension normed
linear sunspace of (C[a,b],||]]) , such that, there exist real numbers
a(()n),agn),'--,a;n) € R, such that ||f,, — fIl < &, where span ®(n) means that a
normed linear subspace of C[a, b] generated by @ (n). In other words, on this €, we

can use a kind of linear combination of the base functions in span ®(n) as follows
n
) =) a0
i=1

to take the place of f(x) approximately, or we say that f,, (x) can approximate f(x)
to the approximation accuracy €. This is one of the basic ideas of function
approximation.

Particularly, function interpolation is a kind of function approximation method
commonly used by us [8,9]. Based on this idea, firstly the interval [a, b] is partitioned
as

a= xén) < xin) < <L x,(ln) = b,

where the partition may not be equidistant. Write

X(n) = {xi(n)| i= 0,1,---,n},

yi(n) — f (xi(n))’ [ = 0’1’ -,

Y(n) = {yi(n)| i=01, ,n}
By the use of the node set X(n), a group of base function as the following
o) = {95 @), o @), o (@)}

is made, where every (pi(n) (x) € Cla,b], and (p(()n) (%), (pfn) (%), (p,(ln) (x) are

linearly independent, and they meet Kronecker condition:

13
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R, (x,y) =V71;=

o (A0 BV m)) =

o000 (x™) =6y 1j=01-,n
In f,(x) = 2= Oa(n) .n)(x) if we take ag ) = yl(n) then
f200) = By o (0 = B f (2) 0 ().

This is an interpolation function as it meets interpolation condition:
. m m
MEmlrm@() M@».

Especially we take ¢@; )(x) A( )(x) i=0,1,-,n, where the definition of
Agn) (x), i =0,1,--,n has been expressed in Equation (1). Then

ﬁ@—ZAW@Wn=m&m (12)

is just a sequence of piecewise 1nterpolat10n functions.

All in all, because f,,(x) € span ®(n),f(x) € C[a, b], and span ®(n) is a finite
dimension normed linear subspace of C[a, b], for any given € > 0, there exists an €
N, such that the element f(x) in C[a, b] can be approximated by using an element

fa(x) in span ®(n), ie., [|f — fIl <.

Definition 1. The sequence of conditional mathematical expectations {E(n,|&, = x)}
shown in Theorem 1 is called a sequence of conditional mathematical expectations
generated by the continuous function f(x) [1].

Theorem 2. For any continuous function f(x) € Cla, b], but assuming f(x) not
being constant function, if {E (), |&, = x)} is a sequence of conditional methematical
expectations generated by the continuous function f(x), then by means of
{E(M,|&, = x)} we can construct a group of continuous functions:

o) ={pfP (), oV (), o1 (1))},
where gol(n) (x) € Cla,b],l =0,1,:--,n, such that, by using the sequence of the groups

of base functions {®(n)}, the sequence of interpolation functions constructed as the
following

n
fulx) = Z oM @y™, n=123,
=0

uniformly converges to f(x) in [a, b].
Proof. Case 1. Let f(x) be a strictly monotone functions, and we may as well assume
that f(x) is a strictly monotonically increasing function, as when f(x) is a strictly
monotonically decreasing function, the proof is the same as the increasing status.

For any given x € [a,b], there must exist i € {1,2,---,n}, such that x €

[x(n) (n)] Then we have

ll’
(A7%@ BT v (4P @ BT W), ve [y,

0,y € [e.dl - [yy3)].

Now we consider the limits of Riemann sums corresponding to two integrals

d d
jy&mww.jmwww
C C
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. A yRaey)ay o
in E(y,|&, = x) = 55— as the following:
Je Ra(xy)dy
d m
_ , (m) (m) (m)
fc YRy (x,y)dy = M%‘I{Lo;yl Ry (x. Y )Ayl :

d m
[ RaGuddy = dim > R (3™ a5,
¢ ™=

Ayl(m) — l(m) _ yl(f;), 1=1.2,-,m,

A(Ty) = max {ay(™|1 = 1,2, m},
where T, represents a partition of Y = [c, d] as the following:
c=y " <y <<yl =4,
and in the same time, we should notice the expressions (see step 1 in Theorem 1) as
following:

(m) _ _b-a (m) _ (m) —
™ =a+1hm), hm) ==2y" =f(x™), 1=01-,m.
We also should notice that m and n are different, which n is a temporarily fixed
subscript, but m will tend to infinite.

Because f () is continuous, clearly, we know that A(T;,) = 0 = m — oo, and so
above expressions can be written as

a m
f YR, (x,y)dy = rgl%o Z yz(m) R, (x, yl(m)) A yz(m)»
‘ =1

d .
[ Ru e, y)dy = lim B, Ry (3™ ) 2y,

Let Ayo(m) = Ayl(m), and since R, (x,y) is a bounded function, in fact 0 <
R,(x,y) <1, and f(x) is also a bounded function, we have

(AM(x) > 0)(Vm € N) (|y(§m)Rn (x, yém))| < M(x)).
So, we easily know that

lim [yém)Rn (x, yém)) Ayém)] =0= lim [Rn (x, yém)) Ayém)].

m—oo

Then we have

m m
lim yl(m) R, (x, yl(m)) A yl(m) = lim yém)Rn (x, yém)) A y(gm) + Z yl(m)Rn (x, yl(m)) A yl(m)
m-—-0oo m—oo
1=1 =1
. (m) (m) (m)
= nl}_r)rolo Y, R, (x, 3] ) Ayl ,

=0
Lim Y1 Ry (x,9™) 2y = lim [Ry (x,55™ ) dys™ + 2 Re (2,3 ) 4y =
Tgll_rfgo 2% Rn (x, yl(m)) Ayl(m)~

Therefore, we get

d m
f YRy, y)dy = lim Z VR (x,5™) ay™,
¢ 1=0

d .
[ Ru e, y)dy = lim B, Ry (3™ ) 2y,

Because of the following expressions:
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d
(Vx € [a, b]) <f R,(x,y)dy > O),

d .
[ RuCe,y)dy = lim 31, Ry (3™ ) 4y,
We have the fact that, for any given x € [a, b], there exists N(x) € N, such that
(vm e N,) (m> N = Eto R, (x,9™) 2y™ > 0).
Then when m > N(x), we get

(m)

_ [EyRyyay  lim S0y, R (™ )ay™ Sloy ™ R (y(™)ay™

EMnl&n = x) = M2 = lim =
n fn deRn(x,y)dy nlli_r)réoZ?;o Rn(x,yl(m))Ayl(m) m-oo 271:0 Rn(x.ngm))ﬁy](m)
lim ST Rn(x,yl(M))Ayl(m) . y(m)
mooo SH1=0 DI Rn(x,y](.m))Ay](-m) L
If we let
)y = Pl ™)™
o (%) = oy ¢ = Ob M,
Eio Ra(x;™)a]
then above expression can be expressed as
m
. n m
lim > ¢" @y™ = E(plén = %) (13)
m—-oo
1=0

Write frm (%) = 2%, (pl(n) (x)yl(m) , and we get a sequence with double
subscripts of continuous functions as being {f,;, (x) }m=1. If we put
On(m) = {0 (1), 0 @), -, 01 (0},
then f,(x) = X%, (pl(n) (x)yl(m) is just an interpolation function with base function
group @, (m).
Next, we especially we take m = n, i.e., if we only use the diagonal elements

in {fm (%)} m=1, then we get a sequence only with single subscripts of continuous
functions as being {f;, (x)}n=1, where

n
) = fan() = ) 0Py n =123,
=0

Let
o) = &, (n) = {0 @), 0" @), -, 0" @)},

and then f,(x) =X, (pl(n) (x)yl(n) is an interpolation function based on base
function group @ (n).
For proving that {f;,(x)}y=1 can uniformly converge to f(x) in X = [a, b]. we

firstly consider n + 1 unitary functions R, (x, yl(n)) , L =0,1,-,n, with respect to x.

In fact, since Bi(n) (yl(n)) are of Kronecker character:

™ (™Yo (L =L, _gq .
Bi (yl ) - 611 - {0’ i * l, l,l - 0;1; , .
We easily learn the following expression:
i=0
R (x3) =V (AL@ ) - B™ (yf"))) =A™ ().

And then we get the following expressions:
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n n
> ik (1™ 4y = ) ¥4l sy ™,

1=0 1=0
n n
Z R, (x, yl<n> Aycm 2 A(n)(x) Ay(n),
1=0 1=0
m
T 2 Y U
SR (™) ay ™ A sy ™
j=0 Vi Yj
by these expressions we have
n ) m
A (0)4y,
f@ =) " wa ™ (14)

= ]:oAjgn)(x)ij(n)
Clearly the function group @(n) = {(pl ) (x)l =01, ,n} is linearly
independent and meets the normalizing condition:
(vx € [a,5]) (T 0P () = 1).
And the group is a dimension normed linear subspace of C[a, b]. If @(n) is
regarded as a base function group, then

ful) = 2 o oy (15)

is just a piecewise interpolation funct1on.

At last, we prove that the sequence {f,, (x)}n=, uniformly converges to f(x) in
[a, b].

In fact, for any given x € [a, b], clearly (3i € {1,2,---,n}) (x € [x.(n) xi(n)]),

-1
and then
() = Zio 0P 0y = 0T @y + 0 oy
Because f(x) is continuous, there exist two points fi( ), 771( ) L(n:)l’ ] such
that
FE7) = im0 £(7) = fe0.

[ (n) (n)]

i-1’ Lll

Clearly the following expressions are true:
L€ {01,,m}) (¢ ([a, b]) = [0,1]),
(Vx € L(n:)l’ (n)]) ((pl(ni(x) + (pln) %)= 1)

So we have the result: for any x € [ l(ni, (n)] we have

f(fl(n)) (n) (X)y(n) + (pl(n) (D) < f( (n))

By noticing the facts y. =flx ( (n))andy(n) f (xi(n)), for any point x €

i—-1

[xl(ni, (n)] we have the following inequation:

IF@) = £l = |[f@ = (0™ + oy < £ (n) - £ (6]
Also, for f(x) being uniformly continuous in [a, b], for any given &€ > 0, there
exists 6 > 0, such that
(Vu,v € [a,bD(lu —v| <& = |f(w) - f(W)| <&).
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Now we suppose that h(n) = ? < 6, then |f (ni(n)) - f (fi(n))l < g, and we
have

(vx € [x™,x™]) Af @) - fa@)] < &).
Ash(n) > 0o n - o, s0
(AN eN,)(VneN,)(n >N = h(n) <96);
hence
(Vn €N (n >N = (va € [a,B)(If () — £, (0] < £)).

This means that {f,, (x)}5=,uniformly converges to f(x) in X = [a, b].

Case 2. Assume f(x) be not strictly monotonic. Similar to the method in
Theorem 1, we can have

Ra(6,9) =Vi (407 - B ),
Based on them, we get a sequence of interpolation functions:
n (n) (n) n
Ay, (0)4y,
k K
) = ) Ly ® =N 6Py,
1=0

ST, ALY (0

where
(m (m
) Ay 4V
X)=—=——,1=01,-,n.
o) o Ag, DAy
Then in the same way, we know that {f;, (x)}n=; uniformly converges to f(x) in
X = [a, b]. The proof of the theorem has been finished.

4. Quantum mechanics representation of classic mechanics

As we all know, classic mechanics is the scope of macroscopical physics in which
Newtonian mechanics is its main part. Classic mechanics is very different from
microphysics, especially with quantum mechanics [10,11]. For example, the motions
of microscopic particles have wave-particle duality; but the motion of mass points in
macroscopical physics only has mass point characters and no wave natures; in other
words, there is no wave-mass-point duality in macroscopical physics. However, there
has ever existed a correspondence principle: considering a kind of motion state in
quantum physics, when quantum number n — oo, the limit situation of the motion state
in quantum physics must become a kind of motion state in macroscopical physics. In
other words, the limit situation of the motion law in quantum physics is just some
motion law in macroscopical physics.

Generally, Bohr suggested a generalized correspondence principle: the limited
situation of any new theory must be in line with some old theory.

It is worth noting that the above correspondence principle or generalized
correspondence principle is all of unipolarity: the limit situation of the motion law in
quantum physics is just some motion law in macroscopical physics, but the converse
principle is clearly meaningless.

However, we can consider an important problem: must any one of the motion
states in macroscopical physics be the limit situation of some of the motion states in
quantum physics?
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Apparently, this problem has not been observed, and of course, there is no answer.
For example, we consider the well-known projectile motion. As we all know, a
projectile motion can be expressed by the equation of locus of the projectile motion as
follows:

g
2v¢ cos? a x

2v8 .
x €[0,dy], do= 751112 a,

y(x) =xtana —

where a € (O, g) is a mass ejection angle, dy € (0, +0) is the maximum range of fire,

and the initial velocity is repressed by vy € (0, +0); here the air friction is omitted.

Clearly y(x) € C[0,d,], i.e., a projectile motion can be described by a unary
continuous function. For this continuous function, can we find some microscopic
particles such that the limit of the group behavior of these microscopic particles is just
this continuous function y(x) when quantum number n — co?

In this paper, we will give a positive answer to this problem. It is easy to
understand that almost all laws of classic mechanics are described by continuous
functions. So, we can generalize the above problem as such problem: for any
continuous function f, unary continuous function, or multivariate continuous function,
which should describe some motion law of some mass point in microscopic physics,
can we find some microscopic particles such that the limit of the group behavior of
these microscopic particles is just this continuous function f when quantum number
n — oo?

Now we start to try to solve the problem.

Firstly, we consider the case of unary continuous functions. For any a unary
continuous function f(x) € C[a,b], we can use a linear transformation as the
following:

x—a

b—a

to redefine the continuous function f(x) on the closed interval [0,1], i.e.,
gw)=f((b—a)u+a)€eC[01].

Therefore, without loss of generality, we can only consider such continuous

u:[a,b] = [0,1],x » u = u(x) =

functions as being f(x) € C[0,1]. However, we do not consider constant functions
because constant functions are almost meaningless in physics.
Theorem 3. Given arbitrarily a non-constant function f(x) € C[0,1], there must exist
some microscopic particles such that the limit of the group behavior of these
microscopic particles is just this continuous function f (x) when the quantum number
n — oo.
Proof. Step 1. We consider the wave function of a microscopic particle in infinite
deep square potential well.

As a matter of fact, we take a particle M with quality m, and M moves along Ox

. . . . 1
axis and is of determined momentum p = mv, and determined energy E = Emvf =

2
zp_m where v, is the velocity of M moving along Ox. We take a special infinite deep

square potential well as follows (see Figure 2):
_ (0, xe€[0,1],
V) = {+oo, x € (—0,0) U (1, +00)
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The particle M is completely free inside the potential well; only at two endpoints
x = 0,x = 1, there are infinite forces to impose restrictions on M not to escape.

o0 e8]
V(x)
w(x)=0 w(x)=0
m
o
0 1 x

Figure 2. Particle movement in the infinite deep square potential well.

At outside of the potential well, i.e., x € (—o0,0) U (1, +0), we now notice the

steady state Schrodinger Equation as the following:
[ n? 92

V@)Y = Ep(x).
It is easy to know that 1) (x) = 0; so the probability of finding the particle in the
interval (—oo, 0) U (1, +0) is zero. However inside the potential well, i.e., x € [0,1],
we have V(x) = 0; then the Schrodinger Equation turn into the following form:

U - () ),

dx?
Letk = sz; then we have the following form:

2
L2D 1 k2yp(x) =0,
which is the equation of motion of a simple harmonic oscillation, and its general
solution is as follows:
Y(x) =Asinkx + Bcoskx,
where A, B are two arbitrary constants that can be determined by some boundary
conditions.

Then, what are the boundary conditions? In fact, in quantum mechanics, the
solution of a Schrodinger Equation in three-dimensional space, i.¢., the wave function
Y(x,y,z, t) should satisfy the following established standard conditions:

i) Jpsl?I? dxdydz = 1;

ii) ¥ and its three partial derivatives Z—i’, Z—;’, Z—j are continuous everywhere;
ii1) Y is a single-valued function about coordinates.

By means of the above conditions, when the potential function approaches
infinite, based on the continuity of (x), we can get the result as being Y (0) =
Y (1) = 0, which can make the solution be continuous at both inside and outside of
the potential well. Because of the following expression:

0=9(0)=Asin0+ Bcos0=B8,
we get B = 0; thus we have the following equation:
PY(x) = Asinkx.

And then we take notice of the equation: 0 = (1) = Asink, if A = 0, then
Y (x) = 0 which is a trivial solution and cannot be normalized. Thus we only get the
result: sin k = 0, and we know the following fact:
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k=0, +n, +2m, +3m, -

Clearly k = 0 is meaningless, for this can also make that )(x) = 0. Besides, k
with negative values cannot generate any new solutions because of the fact that sin( —
0) = — sin 6 and we can make the minus signs enter into the coefficient A. Therefore,
we have the result:

k=k,=nm, n=123--
We should notice the fact that, the boundary condition at x = 1 is not used to

determine the coefficient A, but to determine the energy E because of the expression:

_v2zm .
k= T, 1.€.,

_ h*ki  nPmh?

2m 2m

E=E, , n=123, (16)

It is well-known that E; = % is ground state, and others are follows:
E, = 4E,, E; = 9E,, E, = 16E,,--

which means that the energy of a particle can only take discrete values; in other words,
the energy of a particle is quantized. And positive integer n is called the quantum
number of the energy of a particle. So we can learn that the quantization of the energy
of a particle is very natural in quantum mechanics.

Thus the solution of the Schrodinger Equation can be expressed by the quantum
number as the following:

Y,(x) = Asin(nnx), n=1273-- 17)
In order to determine the coefficient A, we can use the normalization condition

folltljn(x)l2 dx =1 to get A =+/2. Then we get the solution of the Schrodinger
Equation inside the potential well as the following:
Y (x) = V2sin(nnx),x € [01], n =123, (18)
Let
a,(x) =sin(nnx), x€][01], n=123,-,
and we have the following form:
Y, (x) =V2a,(x),x €[0,1], n=123, (19)
The function a, (x) is called the essence wave function of the wave function
P (%).
Step 2. Based on an important fact that will be described as follows, we should
consider weakening three standard conditions about the wave function ¥ (x,y, z, t)

mentioned above.

As a matter of fact, we can see that the derived function % of the wave

function 1, (x) = V2 sin(nmx) is not continuous at x = 0,1. For this we only notice
the following implication is true:

Opn(x) _ V2 (01/)71(0):\/5;&0 I (1) _ V2 )

0x nm ’ O0x

= —cos(nmx) = =—cos(nm) #0
0x nm ( ) nm (nm)

It is well known that the movement of a particle in the infinite potential well is a

typical example in quantum mechanics. However, as we have learned above, its wave
v 9w ow

function ¥ and its three partial derivatives %oy on are not continuous at
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o

everywhere (of course, in above case, there is only one partial derivative P in fact
Y ay

— = — here).

ox dx )

We should not forget the fact that wave function ¥ does not represent a physical
wave but only a mathematical wave; in other words, |¥|? is a probability density
function where it should be normalized.

We also know such a fact that, in probability theory, any probability density
function is not required to be continuous everywhere but only required to be almost
everywhere continuous. Thus, we have enough reason to revise the three standard
conditions which the wave function ¥ (x, y, z, t) should satisfy mentioned above to be
as the following:

() fesl?I? dxdydz = 1;

(i) Y and its three partial derivatives Z—i’, Z—i’, Z—j cannot be continuous only at finite
points (clearly the requirement is a little stronger than almost everywhere
continuous);

(i) Y is a single-valued function about coordinates.

Moreover, from the viewpoint of Von Neumann, wave function ¥ is defined in
a Hilbert space £L2(R3), where the operations in quantum mechanics (momentum,
work, and so on) are inner product operations, which may be enlightened by

fR3|‘1’|2 dxdydz = 1 and form a mathematical formalization structure. We all know

the fact that, in a Hilbert space £?(R?), we have no need to require wave function ¥
to be continuous at everywhere but almost everywhere continuous to be enough.
Step 3. We continue to consider the wave function of the particle in the one-
dimension infinite deep potential well. We have known its general solution to be as
Y(x) =Asinkx + Bcoskx,
where A, B are arbitrary constants which can be determined by the boundary

conditions. This time, we suppose algix) be continuous at the boundary points x = 0,1.
We take notice of the following implication:
W) _ 2 oskx—Ssinkx=0=229 24, 4 0.
ox k k ox k

Then we get the following result:
Y(x) =Bcoskx.

And then we pay attention to the equation % =— %Sin k x, so that
0= _ _Egn k.
ox k

Because% # 0, we solve out the values of k as follows:
k=k,=nm, n=123,--
Very similar to the method in Step 1, we have the expression of E again as
follows:
h’ki  n’m’h?
2m  2m
So the solution of the Schrodinger Equation can be expressed by means of

E=E,= , n=123,

quantum numbers as the following:
¢n(x) = Bcos(nnx), n=123,- (20)
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Again by using the normalization condition, we can get that B = v/2. Thus
another solution of the Schrodinger Equation in the potential well is as follows:

@n(x) = V2 cos(nmx),x € [0,1], n=12,3, 21

Let B, (x) = cos(nnx),x € [0,1],n = 1,2,3,-, and we have
Pn(x) =V2B,(x),x €[01], n=123,- (22)
The function f3,,(x) is also called the essence wave function of the wave function

Pn (%)
It is interesting to note that the wave function ¢, (x) = V2 cos(nmx) is not
continuous at boundary points x = 0,1 this time. Besides, since

1 . 1 .
Yn (x + E) =2sin [nn (x + 5)] =2sin (nnx + g) = V2 cos(nmx) = @, (%),
when the quantum number n is very large, the two wave functions i, (x) and ¢, (x)
are almost no different; in other words, ¢,(x) is just the situation that iy, (x)

translates a % phase position to the right side.

For visualization, the function ¥, (x) can be vividly called Adam wave function
and @, (x) be called Eve wave function. In fact, we care more about the function
family of essence wave functions of Adam and Eve wave functions, denoted by
{a, (%), Br(x)}=1, and we can call a,(x) to be Adam essence wave function and
Brn(x) to be Eve essence wave function. Clearly a,, (x) and 8,,(x) are defined on the
unit interval X = [0,1].

Step 4. Supplementary instruction for the revision of the three standard
requirements on the wave function .

It is well known that, in physics, harmonic oscillation is often described by
complex exponential form; for example, the two wave functions that we just get can
be described as the following:

Y(x) = V2e!™) = \2 cos(nmx) + iV2 sin(nmx) = @, (x) + i, (x)  (23)

In classic physics, this kind of expression is said to be more convenient for
operation but with no more physical significance. However, here we can find the

inmx

physical significance of the complex variables function ¥(x) = /2e coming

from quantum mechanics. As its real part of the ¥ (x) = V2™, Eve wave function
as being ¢, (x) = V2 cos(nmx) is determined by the second boundary condition; and

its imaginary part, Adam wave function as being ,(x) = V2 sin(nnx) is
determined by the first boundary condition. These mean that the two boundary
conditions are all useful and we cannot give up any one of them. Therefore, the
revision of the three standard requirements is quite reasonable.

Step 5. The extension of the domain of definition of the wave functions.

For any finite closed interval [a, b], by means of the linear transformation as
follows:

t=MhB-—-a)x+a,

the essence wave function family {sin( nmx), cos(nmx)};-, defined on the interval
[0,1] can be extended to the closed interval [a, b]; we rewrite the variable t to be x,
and we have the following form:

_ _ [ee]
{sin nm(x—a) ,COS nmx a)} ,X € [a,b].
b-a b—a Jp=1
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We can easily know that the mapping as follows

w:[a,b] = [0,1], x v u(x) =

x—a
b—a
is a topological homeomorphism from [a, b] to [0,1]. This means that the essence

wave function family {sin(nmrx), cos(nmx)}y-, and the family of essence wave

functions
(o)

{Sin nr(x — a) n(x — a)}n=1

b—a P h-a
is not essentially different; so they can be regarded the same.
It is worth noting that, for Adam wave function, in the infinite deep square
potential well, it should be written as the following complete form:

Y(x,t) = lpn(x)e_%E"t = \/Esin(nﬂx)e_%E”t,x €[0,1] (24)
where we only write out the expression just as being x € [0,1]. And for Eve wave
function, in the infinite deep square potential well, it should be written as the following
complete form:

Y(x,t) = gon(x)e_%E"t = \/Ecos(nﬂx)e_%E"t,x €[0,1] (25)
where we also only write out the expression just as being x € [0,1].

Based on the statistical interpretation of wave functions, |¥(x, t)|? should be a
kind of probability density function. Then from Equations (24) and (25), we can learn
that 2 sin?(nmx) is a probability density function and 2 cos?(nmx) is a probability
density function too. We have enough reason to call sin®(nmx) and cos?(nmx)
essence probability density function of the probability density functions. So we get the
essence probability density function family of Adam wave functions and Eve functions
as the following:

{sin?(nmx), cos?(nmx)}5-, (26)

It is easy to see that {sin?( nmx), cos?(nmx)}s-, is of two-phase normalization
property:

sin?(nmx) + cos?(nmx) = 1.

Step 6. The construction of the sequence of two-dimension probability density
functions.

Given arbitrarily a continuous function f € C[0,1], clearly f([0,1]) is a closed
interval, denoted by Y = [c,d] = f([0,1]). Let

X(n) = {x € [0,1]|sin(nmx) = 0, cos(nmx) = 0}.

And we can easily know that card(X(n)) =2n+ 1. Hence we have the

following expression:

X(n) = {xi(")u = 0,12, 2n}

i(n) = i, i =0,1,2,---,2n. This expression means that the closed interval

where x
X = [0,1] are equidistantly partitioned as the following:
Axi(n) = xl.(n) — xl(fi = %, i=12,--,2n.

And we let
Y(n) = {yi(n) =f (xi(n))l i=01,2, ---,Zn}.
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For convenience, let m = 2n; but be careful, here m means subscript but not the
quality of some particle. We are going to discuss our problem from the following two
cases.

Case 1. Suppose f(x) is a strict monotonous function. It assumes that f(x) be a
strict monotonous rising function because its proof is not of essence difference when
f(x) is a strict monotonous declining function. Therefore, we have the following
partition:
™ . y(n) < y(n) d.

Then we consider the particle wave functions defined in the following

C=y0n)<y

subintervals one by one:

m () m () m m M
[ M1 ] [ V2 ] [ym 2 Ym-1 [ym 1 Ym ]
Firstly, we treat with it in the closed interval [ (n), yl(n)] And we consider the

movement of a particle in the infinite deep square potential well that the closed interval

[O 2( ) yén))] is just the bottom margin of the potential well. The particle is

denoted by M1( ) which can be regarded as a descendant particle generated by the
Adam wave function and Eve wave function of the original particle M in the case of

energy level being n. The descendant particle M(n) moves along Oy axis with

(m m_ (1)

determined quality m; "~ and determined momentum p(n) =my ‘v, and

determined energy

m)?
R G

n,1
where 173(, )

continuity of the wave function, it is easy to get the solution of the wave function in
[O 2 ( ) yén))] as following:

is the velocity of movement of Min) along Oy axis. By means of the

2 pr

Kl oy o) e o S

Then again, by means of the continuity of the derived function of the wave

function, we can get another solution of the wave function in the closed interval
[O 2 ( ) yén))] as following:

2 pr

R o) T vy

Now we care more for the ground state of l/)(n A (y) and (p(n )(y), i.e., the wave

functions when p = 1 as follows:

D (y) = & i Y, (29)
( =
26 26 )
2 T
n1)
o) = Y (30)
26 —7) 267
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We can omit the amplitudes of the wave and keep the essence wave function and
do squaring operation on the essence wave functions, and get the probability essence

wave functions as the following:
T T

2(5 =) o’ 2 (37 =) Gl

The graphs of the probability essence wave functions in [O () yén)] are

sin?

shown in Figure 3.

2 b/ .2 T
sin V

_ vy S B—
2(}{1”_."‘{}1!)) 2(11(12) J((}“])

cos

) )
0 W -y

Figure 3. The probability essence wave functions in [O y(n) yo(n)].

m

Next, we make a coordinate translation: t =y +y, , and then we have the

following expressions:
s s

(yl(n) yén)) y= sin? —(yl(n) yén) ) (t — y()(n) );

sin?

c0s? —————y = cos> —( y(n))
27— 27— 0
Thus we transfer the probability essence wave functions defined in the closed

interval [0 y(n) y(gn)] into the probability essence wave functions in in closed

[ (m

interval , yln)] And we rewrite the variable t back to y, and then we get the

following expressions:

T s
sin? — s (¥ =), cos? s (v~ 0")
’ 32
2 (yl(n) y(n)) 2 (yl(n) y(n)) (32)
The graphs of the probability essence wave functions in [3’0 A )] are shown in
Figure 4.
P T - » n n
1 -
7
7 e

Figure 4. The probability essence wave functions in [ A n)]
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In that way, we can regard the following expression
sinzﬁ()’ y(n)),
2(3’1 Yo ) 0
as Adam probability essence wave function of the movement of the descendant

Q]

particle M; ™ in [y V1 )] and regard the following expression

2 (m
cos ﬁ Y=Y P
2775 ))( 0 )
as Eve probability essence wave function of the movement of the descendant particle
M(n) in [ (n)’yln)]

In the same way, we can get Adam and Eve probability essence wave functions

of the movement of the descendant particles M, (n) -, M, () in the closed intervals

[ (n), yz(n)] , [y,;n)l, Ym )] respectively as the following:
sin? —(yz(") y(n)) (y yl(")), cos> W (y y1(n)) '

. n) T (m
0 ) o )

We get all these graphs of the probability essence wave functions together in the
following closed intervals:

[ (n)'y1n)] [ (n)'yzn)] [yr(nn)l,y&n)]

and they are shown in Figure 5.

3 T . T . d T

§) z 1, T
0 _‘l‘é’l _1‘}“ J,gaﬁ 4‘.:":‘)2 ‘l | 1(:)

Figure 5. All the probability essence wave functions in [yé ,yln)] [y,(nn)l, y,%n)].

Now we need to summarize the work that we have done as follows:
When x € [x(()n), xin)] from the information of Adam and Eve probability
essence wave functions sin?( nmx) and cos?(nmx) at the nodes as the following:
W= (), P = (=),
we get Adam and Eve probability essence wave functions in [yo ,yl(n)] as follows:

2 T

[ T m) ™
sin W(V—J’o ), coszm(y Yo )

They have some interesting properties: one is that they can have the form of
Adam probability essence wave functions; another is that they can also have the form
of Eve probability essence wave functions; they are all at ground state, and they are
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all regarded as the probability essence wave functions of the descendant particles of

M when the quantum number is the natural number n.

When x € [xin),xgn)] from the information of Adam and Eve probability

essence wave functions sin?( nmx) and cos?(nmx) at the nodes as the following:

(n) =flx ( (n)) M — =flx ( (n)), we can get Adam and Eve probability essence

wave functions in [y , yzn)] as follows:

; T n) T m
) o i)

They also have the properties: one is that they can have the form of Adam
probability essence wave functions; another is that they can also have the form of Eve
probability essence wave functions; they are all at ground state, and they are all
regarded as the probability essence wave functions of the descendant particles of M

when the quantum number is also the natural number n.
m

At last, when x € [xm_l,x,(: )] , from the information of Adam and Eve

probability essence wave functions sin?( nmx) and cos?(nmx) at the nodes: y&n_)l =

f (x(n) ) ) — =flx ( ) we get Adam and Eve probability essence wave functions

in [yr(,:1 )1, yr(,? )] as follows:

sin? m (y _ yr(nn—)l) , cos? m (y — yr(r?—)l)'

They have the same properties: one is that they can have the form of Adam
probability essence wave functions; another is that they can also have the form of Eve
probability essence wave functions; they are all at ground state, and they are all
regarded as the probability essence wave functions of the descendant particles of M
when quantum number isn.

Based on these probability essence wave functions, we try to make some useful
base functions defined respectively on the intervals [0,1] and [c, d] [ (n),ym ]
denoted as follows:

AW, A, AW, B, BV, .. BV

Agn) (x) = )([0 1] (x) cos?(nmx),

Agn) (x) = )([0’%] (x) sin?(nmx),
Agn)(x) = X[ii](x) cos?(nmx)

A® )Z(x) = [m—3 l](x) cos?(nmx),

m '’'m

m

A(n) (0= [m—z ] (x) sin?(nmx),

AW (x) = )([m__1’1] (x) cos?(nmx);

T
B () = x [yé”),yin)](y) cos? W (y Yén))'

Y1 Yo
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(m

Y1 =X Y, =N

B 0D = | O vy (0 =) o) e0s” sy ("),

%&m=q

m
VooV

1]01) sin® 2 ( D) n) )(y - ym—)z) + X[yr(r?zl'yr(:)] () cos* 2 ( m m ) (y N ym—l)’

s w n)

(n

ym—l_ym—z ym _ym—l

BV () = X[y 5] () sin? m (y - y,(,?_)l),

where y 4 is the characteristic function of the set A; for example,

1
1, x€ [O,—].
o 1100 = "
‘m 0’ X € [0,1] [O;_])
) = 1, ye [yén),yl(n)],
Aoy = 0, ye€l[cd]— [yo(n),yl(n)]'

Let us denote two classes of sets as the following:

Am) = {450,477, -, a0}, B = {BS”, B, B},

Clearly, they are just the groups of base functions defined respectively on the
closed intervals X = [0,1] and Y = [c,d]. Clearly A(n) is a linearly independent
group in the continuous function space C[0,1] and B(n) is a linearly independent
group in the continuous function space C[c, d]. Put

Am) - B(n) = {4" - B™|i,j =0,1,,m},
A - B [0,1] x [e,d] - [0,1],

@y = (47 B™) ) = AP0 - B ).
It is easy to know that A(n)-B(n) a linearly independent group in the
continuous function space C([0,1] X [c,d]). Now we take the diagonal elements of
A(n) - B(n) to make a set as follows:

e ={A" - B™|i=01,-,m},
which is clearly a linearly independent group with m + 1 = 2n + 1 dimension in the
continuous function space C([0,1] X [c, d]). By using C(n), we can get a sequence of

binary nonnegative continuous functions as the following:
Hn:[0,1] X [c,d] = [0,1]

5 3) = (6 y) =V, [AP @) - B3], n=123,
where
VI, [A7 @) - B 0)] = max (4P @) - B m).

0<ism
Then this sequence of binary nonnegative continuous functions as being
{1t (x, ¥)}=q are normalized as the following:

Un (X, y)
d
JE 1) tn (2, y) dxdy

Pa(%,¥) = Xjo,11x[c,d) (%, ¥) , n=123,,

where

(1L, (x,y)€[01] X [c,d],
Xioa)x[c,a] (6, Y) = {0’ (x,y) € R? — [0,1] X [c, d]
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Therefore {p,(x,y)}n=1 becomes a sequence of probability density functions
defined on R?, and p,(x,y) is called the probability density function when the
quantum number is just n.

And now by means of the sequence {p,, (x,y)}m=1, We can construct a sequence
of functions of one variable as follows:

+o0
x,v)d
fn(x)=f‘i°ooyp"( ) Y123 33)
I pa(x,y) dy

Apparently, {f,(x)}n=1 is just the sequence of conditional mathematical
expectations formed by {p,, (x, y)}r=1.
Case 2. Suppose f: X = Y be not strict monotonous function and not constant

function.

Because the elements of the set Y(n) may not always satisfy the monotonicity
about the subscript i as like as yy < y; < - <y, it is of a little difficulty to make
the continuous base functions as follows:

Bi(n)(y), i=01,--,m

So we have to make a permutation on the subscript set {0,1,:--,m} as the

following:

0 1 = m . .
o= & o k) (Vi€ OL - mpk = 0 (D)
such that the subscript set after the permutation is denoted by the following symbol:

Km) = {ko, k1, km}
and satisfies the following condition:

cm) =yP <y <<y =dn) (34)
Since Equation (34) shows that the inequahtles may not be strict, we have to
consider the following two situations.

1) Assume that c(n) = n) < y(n) << y,gn) d(n). Based on these nodes
ylgg),y,gl), ,ylgn) in [C, d] and doing in imitation of Case 1, we can get the

continuous base functions B,gl)as the following:

My = T Q)
B’ (y) = X[y;(c?ry;(c?](y) cos® m (y Viy )

ko

B™ : id () id ()
Y = x|y (2)%&?]@) sin® m(y = Yy ) + X[yxﬁ?'y;(f;)](y) cos? W(Y Vi, )

j:10)

km1

) = X[y ym ](Y)Sin ((n) ) )(3’ Yim- 2)

2
k4 ko ykz ky

T m

km—2 m-—1 ykm ) km_z

+X[ - (n)](y)cos ((n)” o )(y ylgln)l)

2 Yk,

km-1

B;E’Q(y): [(n) (n)](y)sm W(y ylgrnll)l)

km-1’ km Y km—1

Then we easily make a sequence of binary nonnegative continuous functions
defined on X X Y = [0,1] X [c, d] as follows:
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() =Vt [400 G0 - B )] n = 1,23, (35)

2) Assume c(n) = y,gl) < y,gl) << y,g:l) = d(n). Firstly we do a kind of screen

work on the elements in the following node set:
vim) = [y® @ . m
(M) = Wiy Vi, 0 Ve §-

In fact, let K(n) = {ko, kq, -+, ki }. We 1deﬁne an equivalence relation on the set
K (n) as being “~” as follows:
(vs,t € (0,1, m) (ks ~ ke &y = y ).
Then we get the quotient set of K(n) as the following:
O/ = (gl = 0, m),

where [kj] is the equivalence class in which k; belongs.

Let all the elements of the quotient set K(n)/ ~ be the following:

[kjo]’ [kh]’ Y [qu(m)]’
where 0 < g(m) < m, and stipulate the representative element k;_be the smallest

element in [kjs]' Thus we have the following inequalities:

(m) o _ . (m)
ykjo < ykjl < < yqu(m)‘

Based on the nodes y,gl), y,g,l), ST y,gl) in [c, d], we make the continuous base
0 1 q(m

)
functions B,g_l) (s =0,1,---,q(m)) as follows:

MWy — . 2 T m
By () = X[y (V) sin® —————(y — ¥,
0O = Ao Oy )
M N _ . 2 T (n) 2 T (n)
B, "W =X[.y m@)sin®———— V=V, )t X[ v m()cos* ——————(y—¥." )
Jj1 [ykjo'ykh] 2 (y’gll) _ ’glo)) ( ]0) [ykjl’yka] 2 (y’glz) _ y’gll)) ( ]1)
B =y () sin? i (y—y(") )
Kiqamy—1 [y,ﬁ'f) y ] 2 (™ _y® K iqam-2
Jqm)-2  “q(m)-1 qu(m)_l qu(m)_z

k : Vi .
Jqamy-1" “lq(m) Yijqamy Y Kigum—1

A
+ cos? ( —y )»
X[y(") y ](y) 2( m ) Y yqu(m)—l

Jq(m) [yk ; Yk, ] 2<y(71) _y,(cn) > Jq(m)-1
Tqm)-1 “Jq(m) Jq(m) Jqm)-1

Hence for the nodes ylgn) ) .

-, y,gl) which correspond to the representative
q(m)

jo 7 Kjy’
elements:
kjo’ kj1’ T qu(m)

we have made the

coming from these equivalence classes [kjo], [kjl],---, [qu(m)],

continuous base functions as follows:
) ) )
Byjy 00 By ), By ()-

Kiqam
For any s € {0,1,::-,q(m)} and we can define the continuous base functions
corresponding to the elements in [kjs] - {kjs} as following:
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(vz € k] = {k.)) (B0 = BE 00).

So for all the nodes y,g)l) < y,gl) < < y,E:l) in [c,d], we have got the

corresponding continuous base functions as follows:
B,EZ) o) B,E'f) ), B,E’,f o).
By using these continuous base functions, we get a sequence of binary
nonnegative continuous functions defined on X X Y = [0,1] X [c, d] as the following:

i y) =V [400 () - B )| m = 1,23, (36)
Based on above two cases, we have got the sequence of binary nonnegative
continuous functions defined on X X Y = [0,1] X [c, d] as being {u,, (x, ¥) };=1. Now

we normalize {u,, (x, y)}me as follows:
Hn (X, Y)

d 1
Je Iy mn () dxdy

Pn(%,Y) = X[0,11x[c,a1 (%, ) =123,

where
1, (x,y)€[0,1] X [c,d],
Xioaixlea)(®:y) = {o, (x,y) € R? — [0,1] X [c,d]

Therefore, {p,,(x, ¥)}n=1 becomes a sequence of probability density functions
defined on R?, and p,,(x,y) is also called the probability density function when the
quantum number is just n. And by means of {p,(x,y)}n=1, We can construct a
sequence of functions of one variable defined on [0,1] as follows:

+00
I ypn(x,y) dy

+00 ’
e Pn(x,y) dy
Apparently, {f,(x)}n=1 is just the sequence of conditional mathematical

fn(x) = x €[0,1],n =123, (37)

expectations formed by {p,(x,y)}n=, . Besides, it is not under the following
expression:

152y (x, ) dy

+oo ’
Lo b, y) dy
Step 7. Similar to the proof of Theorem 1, we know that the sequence of

fa(x) =

x€[0,1], n=1.23,-

conditional mathematical expectations {f;, (x)}n=1 can uniformly converge to f(x) on
the closed interval [0,1].

Paying attention to the process of the theorem, when the quantum number is n,
the set of the descendant particles generated by the particle M is the following:

_ m) 5,0 )
M, = {M1 oMy, e, My }’
when n — oo, the set of all descendant particles generated by the particle M is M =
Upe1 M. Clearly the cardinal number of the set is as being: card(M) = R; i.e., we

all use countable infinite particles. These particles can be expressed as the following
expression:
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fM:El)’ Mgl);
Ml(Z)’Méz)’MéZ)’M‘EZ);
n=1,2,3,-
Mo 5T IME MP MP,MP, M, M

where only the particle M moves along Ox axis, but all the descendant particles
Ml(l),Mél), Ml(n), M- move along Oy axis.

2n
This means that the motion curve of a mass point in classic physics y = f(x) can
be constructed by an infinite sequence of microscopic particles wave functions. In
other words, this motion curve of a mass point y = f(x) has been quantization, which
is the limit state of these microscopic particles wave functions when n — co. Clearly
this fact meets the Bohr’s correspondence principle.
We finally end the proof of the theorem.
Example 1. Suppose we cast an object B with quality my, which is regarded as a mass

point. So the movement of B can be described by its equation of locus as follows:

g v .
y = f(x) =xtana —WXZ, X € [O,do], dy = ?OSanOC,

where a € (0, g) is a mass ejection angle, dy € (0, +00) is the maximum range of fire,
and vy € (0,400) is the initial velocity; here the air friction is omitted. Clearly

y(x) € C[0,dy], which means that the projectile motion is expressed by a unary
continuous function.
Now if we take a = %,UO = \/E , then dy = 1; then we have the following
equation:
y=f(x)=x—x%=x(1—x).
When the quantum number n = 5,10,20, the approximation situations of the
sequence of conditional mathematical expectations f,,(x) to f(x) are respectively

shown in Figures 6-8, where red curve means f,, (x), and blue curve indicates f (x).
0.25 . — . ]

02t /-
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01
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Figure 6. Approximation of f5(x) to f(x).
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Figure 7. Approximation of f;(x) to f(x).
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Figure 8. Approximation of f54(x) to f(x).

5. Duality of mass point motion

We first review the projectile motion in Example 1. The property of mass point
motion is shown as its momentum p = myv, and its energy as the following:

E=E,= %movg.
Actually, more straightway, its property of mass point should be described by its

equation of locus as the following:
y=f(x)= xtana—wgcﬁ 2

In other words, the property of a mass point can be described by its momentum
and energy or by its equation of locus; these two methods are equivalent.

Then we ask an interesting and important problem: is there wave nature on mass
point motion in classic physics? Alternatively, we can ask the question: is there wave
mass point duality in classic physics?

For answering this problem, we firstly review the particle nature and wave nature
in quantum mechanics. As we all know, a microscopic particle has no determinate
movement locus so that it has no an equation describing its movement locus. Thus, its

nature of particle can only be described by its momentum p = mv and its energy E =
%mvz. Based on the viewpoint of de Broglie, an object particle is of wave-particle

duality, which means the particle also has its nature of wave. The nature of wave
should be shown by its wave function ¥, and the wave function ¥ should be the
solution of Schrodinger Equation. The wave as being the solution of Schrodinger
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Equation is called de Broglie wave. Then Born gave Schrodinger Equation the
statistical interpretation of de Broglie wave, which means that |¥|? should be a kind
of probability density function. So |[¥|? is often called probability wave. In fact, in
quantum mechanics, the probability wave |¥|? is much more important than the wave
function ¥ itself.

Again, we consider the movement of the particle in the infinite deep square
potential well as we have discussed in Step 1 in Theorem 1, where the wave function
is as following:

Y (x) = V2 sin(nmx), x€[0,1], n=1.23,-

Then, its probability wave is [, (x)|? = 2 sin?(nmx), which figure is shown in
Figure 9.

It is worth noting that, the probability wave |, (x)|? describes the probability
density that the particle M appears at x in [0,1] when the quantum number is n.
Because the particle M does one-dimension motion along Ox axis, |1, (x)|? is a
curve on two-dimension plane.

........................................................................

n=1 n=1

0 1 0 1

Figure 9. The nature of waves of 1, (x) and [, (x)|?.

It is well-known that the wave nature of simple harmonic wave is constructed by
its frequency v and its wave length . When the quantum number is n, its energy

2252
. . n“mh . .
expression is £, = , and the wave frequency is as following:
yo =Lt _kn_mnm_n_ ymbn
noT, 2m 2m 2 A2mh®

Based on the definition of wave length, we know the wave length is A,, = % SO

that
1 = 2 _ V2mh
nTn T JmE,

This just gives the result that v,, - 4,, = 1, which means that the relation between
the wave nature and the particle nature can be established by using Planck number A.

Now we return to continue to discuss the motion of a projectile. Its mass point
nature is reflected in its equation of locus.

Especially, when a = %, Vg = \/E, the equation of locus is as follows:

y=f(x)=x—-x*=x(1-x), x€][01].
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Because this sequence of conditional mathematical expectations as being
{f,(@)};=1 uniformly converges to y = f(x) in [0,1], for arbitrarily given a & > 0,
there must exist a natural number N € N_, such that

(vneN )M >N = |f, - fll <e),
where ||| is a kind of norm in the linear normed space (C[0,1],]|-]|) and defined as
the following:

vf € cloaD (IFll = max IF 1)
For € > 0 is small enough, that || f;, — f|| < & means that the difference between
fn and f is very small so that f,, can be replaced by f approximately.
We now take notice of the following important expression:
N [ ypaGendy  f) ypaCey)dy
f@) = fa@) = [FonGendy o pnGey)ay’

for above the motion of projectile where ¢ = 0,d = 1, where p,,(x,y) is a binary

probability density function.
When the quantum number n = 5,10, 15, the graphs of the probability density
function p,, (x, y) are respectively shown in Figures 10-12.

0.4 !
06 0.8 9

Figure 10. Graph of p5(x, y).
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Figure 11. Graph of p1(x, y).
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Figure 12. Graph of p;5(x, y).

Apparently, the probability density function p,,(x,y) shows up waviness. We
observe the motion curve of the projectile, and suppose some mass point B moves in
the rectangle as in Figure 13, and the probability density function that B falls into the
set of graphs of f(x) as follows

Gr ={(x,y) € [0,1] X [0,0.25]]y = f(x)} (38)
is just p, (x, y).

It is worth noting that, since the mass point B moves in a two-dimension region,
the probability density function p, (x,y) is a wave surface in three-dimension space.
From Figure 8, we can learn that, since the particle M moves in [0,1] on Ox axis, the
probability wave [, (x)|? mainly roots in [0,1]; while from Figure 11, we also can
learn that, since the mass point B moves in Gy on x — y plane, the probability wave

Pn(x,y) ToOts in Gf.

y=Jf(x)=x(1-x)

0

Figure 13. Graph of the motion of projectile.

Above discussion reveals an important conclusion: the motion of mass point in
classic mechanics is surely of waviness so that the motion of mass point in classic
mechanics also has wave mass point duality, which is very same with wave-particle
duality in quantum mechanics.

Furthermore, the relationship between the wave nature and particle nature is
established by means of Schrodinger Equation and the energy of the particle £ and the
momentum of the particle p can be respectively expressed by the frequency v and the

wavelength A of the particle as the following:

E =2mhv, p= zTnh
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While in classic mechanics, the relation between the mass point nature and
waviness of motion of mass point is related by means of the following integral
equation:

d
J. ypCe,y)dy

d

J. p(x,y)dy
where p(x,y) € C([a,b] X [c,d]) is an unknown binary function satisfying the
following conditions:

D (V(xy) € [a,b] X [ dD(p(xy) = 0%
2) (vx € [ab) ([ PG y)dy > 0).

d cb
) [ peoy)drdy = 1.
Because y = f(x) is the equation of locus of motion of the mass point, it

=f),  (xy) €lab]x[cd] (39)

completely represents the mass point nature of motion of the mass point; while p(x, y)
is the probability density function which is the probability wave of itself so that p(x, y)
itself represents the waviness of motion of the mass point. The relation between the
mass point nature and the wave nature is related by means of the integral Equation
(39). This adequately explains that the motion of a mass point in classic mechanics
has the duality of wave mass point, or written by wave-mass-point duality.

Here we need to explain that to solve the integral Equation (39) is not an easy
thing; however, we have given a kind of approximate method to do it; actually,
{pn(x,v)}m=q is a sequence of approximate solutions of the integral equation because
if we write

fcd yon(x,y)dy
x) = ——
fn () [ pu(xy)dy

then we have lim||f,, — f|| = 0 based on Theorem 1.
n—oo

6. Conclusions

Firstly from the physical world, we can receive a point of view: continuous
functions can describe a large proportion of certainty phenomena; for example, the
trajectory of a projectile motion is just described as a continuous function. And random
variables or vectors should describe random phenomena. So if we want to consider the
connection between some certainty phenomena and some random phenomena, we
should or must research the relation between continuous functions and random
vectors. Theorem 1 shows us an interesting conclusion:

For arbitrarily given a continuous function f(x) € C[a, b], there must be a
sequenc of probability spaces {(2,F,PB,)} and a sequence of random vectors

{(&,., 1)}, where every random vector (fn, n, ) (é,, M) is defined on the probability

space (2, F, B,), such that the sequence of conditional mathematical expectations
{E (|, = x)} converges uniformly to the continuous function f(x) in [a, b].

This is a random vector representation of continuous functions, which is like a
bridge to be set up between real function theory and probability theory. By using this
conclusion, we have a result with respect to function approximation which has been
shown by Theorem 2:
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For any continuous function f(x) € C[a,b], but assuming f(x) not being
constant function, if {E (n,,|é, = x)} is called a sequence of conditional methematical
expectations generated by the continuous function f(x), then by means of
{E(M,|&, = x)} we can construct a group of continuous functions:

o) = {0, 0" @), 0P @)},
where (pl(n)(x) € C[a, b], such that, by using the sequence of the groups of base

functions {®(n)}, the sequence of interpolation functions constructed as the following

n
@ =) o™ n =123,
=0

uniformly converges to f(x) in [a, b].

And then, in approximation from a sequence of random vectors to a continuous
function, the base functions are appropriately selected by us, an important conclusion
for quantum mechanics is deduced: classical mechanics and quantum mechanics is
unified. This is the content of Theorem 3:

Given arbitrarily a non-constant function f(x) € C[0,1], there must exist some
microscopic particles such that the limit of the group behavior of these microscopic
particles is just this continuous function f (x) when the quantum number n — oo.

Particularly, an interesting and very important conclusion is introduced as the fact
that the mass point motion of a macroscopical object possesses a kind of wave
characteristic curve, which is called wave-mass-point duality.

In this paper, we reveal an important problem: the unified theory of classic
mechanics and quantum mechanics. The so-called unified theory here means almost
every motion of a mass point in classic mechanics can be represented by the motions
of an infinite sequence of particles in quantum mechanics, where limit operation plays
an important role in the unified theory. Clearly, this situation is just according to
Bohr’s Correspondence Principle.

It is worth noting that this kind of correspondence relation between classic
mechanics and quantum mechanics cannot be expressed by the relationship between
the mass point nature in classic mechanics and the particle nature in quantum
mechanics because of Heisenberg’s Uncertainty Principle (see Figure 14). As we all
know, in classic mechanics, the motion of a mass point has no uncertainty so we can
use continuous functions to describe the movement locus of the mass point. However,
in quantum mechanics, the motion of a particle has surely uncertainty so we cannot
use continuous functions to describe the movement locus of the particle. By now, we
know that the position and momentum of a particle are all random and they are related
by the Planck constant A, i.e.,

h
O0x0p 2 >
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Figure 14. Unified frame of two kinds of mechanics.

Fortunately, we have pointed out that the motion of a mass point in classic
mechanics Fortunately, we have pointed out that the motion of a mass point in classic
mechanics also has waviness in Section 5. The wave function of the motion of a mass
point has surely no uncertainty. On the other hand, although the motion of a particle
surely has uncertainty, the wave function of the particle must have no uncertainty.
Thus, we can consider the relation between the wave function of a mass point in classic
mechanics and the wave functions of some particles in quantum mechanics. As we
discussed in Section 4, we have revealed the relation by means of Theorem 3. In other
words, by using wave functions of both classic mechanics and quantum mechanics,
classic mechanics and quantum mechanics are unified, which is the significance of our
unified theory about the two kinds of mechanics.

We need to emphasize our new important and interesting conclusion: The motion
of a mass point also has so-called duality: wave-mass-point duality, which is very
similar to the case of the motion of a particle in quantum mechanics and is an important
support to our unified theory on classic mechanics and quantum mechanics. It is not
difficult to understand that Theorem 3 should be the most important in physics.

Prigogine pointed out his conclusion through many experiments: the world is
random not certain [12]. In fact, Theorem 1 just proves his idea, because, as we all
know, a large part of physical phenomenon can be described by some kind of
continuous functions, and based on Theorem 1, any one of these continuous functions
must be the limit of the sequence of conditional mathematical expectations of a
sequence of random vectors.

At last, we should state the fact that the results in this paper can be easily extended
to the cases of multivariate continuous functions based on the methods in Section 2.

has x waviness in Section 5. The wave function of the motion of a mass point has
surely no uncertainty. On the other hand, although the motion of a particle has surely
uncertainty, the wave function of the particle must have no uncertainty. Thus, we can
consider the relation between the wave function of a mass point in classic mechanics
and the wave functions of some particles in quantum mechanics. As we discussed in
Section 4, we have revealed the relation by means of Theorem 3. In other words, by
using wave functions of both classic mechanics and quantum mechanics, classic
mechanics and quantum mechanics are unified, which is the significance of our unified
theory about the two kinds of mechanics.

40



Journal of AppliedMath 2024, 2(1), 382.

References

We need to emphasize our new important and interesting conclusion: The motion
of a mass point has also so-called duality: wave-mass-point duality, which is very
similar to the case of the motion of a particle in quantum mechanics and is an important
support to our unified theory on classic mechanics and quantum mechanics. It is not
difficult to understand that Theorem 3 should be the most important in physics.

Prigogine pointed out his conclusion through many experiments: the world is
random not certain [12]. In fact, Theorem 1 just proves his idea, because, as we all
know, a large part of physical phenomenon can be described by some kind of
continuous functions, and based on Theorem 1, any one of these continuous functions
must be the limit of the sequence of conditional mathematical expectations of a
sequence of random vectors.

At last, we should state the fact that the results in this paper can be easily extended
to the cases of multivariate continuous functions based on the methods in Section 2.

Author contributions: Conceptualization, HXL; methodology, HXL; software, WZ;
validation, HXL, WZ and HHM; formal analysis, HXL; investigation, HXL and
HHM; resources, HXL and WZ; data curation, WZ; writing—original draft
preparation, HXL; writing—review and editing, WZ; visualization, WZ; supervision,
HXL; project administration, HXL; funding acquisition, HXL. All authors have read
and agreed to the published version of the manuscript.

Conflict of interest: The authors declare that they have no conflict of interest.

1. Li H. Probability representations of fuzzy systems. Science in China Series F. 2006; 49(3): 339-363. doi: 10.1007/s11432-

006-0339-9

Loeve M. Probability Theory, 4th ed. Springer-Verlag; 1977.

Halmos PR. Measure Theory. Springer New York; 1950. doi: 10.1007/978-1-4684-9440-2
de Barra G. Measure Theory and Integration. D. Halsled Press; 1981.

Browder A. Mathematical Analysis, An Introduction. Springer-Verlag; 1996.

Graves LM. Theory of Functions of Real Variables. McGraw-Hill; 1946.

Bohnenblust HF. Theory of Functions of Real Variables. Princeton University Press; 1937.
Kress R. Numerical Analysis. Springer New York, 1998. doi: 10.1007/978-1-4612-0599-9
Davis GG. Interpolation and Approximation. Blaisdell Publishing; 1963.

David JG. Introduction to Quantum Mechanics, 2nd ed. Prentice-Hall, Inc; 2005.

Zeng JY. Quantum Mechanics, 5th ed. Science Press; 2015.

Prigogine L. The End of Certainty. Free Press; 1997.

e Al

—_ = =
N - o

41



