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Abstract: The relation between continuous functions and random vectors is revealed in the 

paper. The main meaning is described as: for any given continuous function, there must be a 

sequence of probability spaces and a sequence of random vectors where every random vector 

is defined on one of these probability spaces, such that the sequence of conditional 

mathematical expectations formed by the random vectors uniformly converges to the 

continuous function. This is a random vector representation of continuous functions, which is 

regarded as a bridge to be set up between real function theory and probability theory. By means 

of this conclusion, an interesting result about function approximation theory can be obtained. 

The random vector representation of continuous functions has important applications in 

physics. Based on the conclusion, if a large proportion of certainty phenomena can be described 

by continuous functions and random phenomena can also be described by random variables or 

vectors, then any certainty phenomenon must be the limit state of a sequence of random 

phenomena. Then, in the approximation from a sequence of random vectors to a continuous 

function, the base functions are appropriately selected by us, and an important conclusion for 

quantum mechanics is deduced: classical mechanics and quantum mechanics are unified. 

Particularly, an interesting and very important conclusion is introduced as the fact that the mass 

point motion of a macroscopical object possesses a kind of wave characteristic curve, which is 

called wave-mass-point duality. 
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1. Introduction 

From a physical point of view, continuous functions can describe a large 
proportion of certain phenomena. For example, the trajectory of a projectile can be 
expressed as a continuous function. However, random vectors can describe a lot of 
random phenomena in the natural world. So, if we consider the connection between 
some certainty phenomena and some random phenomena, we should research the 
relation between continuous functions and random vectors. 

In the paper, we obtain a conclusion: for any given continuous function 𝑓(𝑥) ∈

𝐶[𝑎, 𝑏], there must be a sequence of probability spaces {(𝛺, ℱ, 𝑃 )} and a sequence of 

random vectors {(𝜉 , 𝜂 )}  where every random vector (𝜉 , 𝜂 )  is defined on the 

probability space (𝛺, ℱ, 𝑃 ) , such that the sequence of conditional mathematical 

expectations {𝐸(𝜂 |𝜉 = 𝑥)} uniformly converges to the continuous function 𝑓(𝑥) in 

[𝑎, 𝑏]. 
This can be called the random vector representation of continuous functions, 

which is like a bridge to be set up between real function theory and probability theory. 
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By using this conclusion, we have a result with respect to function approximation: for 

any given continuous function 𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏], if {𝐸(𝜂 |𝜉 = 𝑥)} is the sequence of 

conditional mathematical expectations generated by the continuous function 𝑓(𝑥), 

then by means of {𝐸(𝜂 |𝜉 = 𝑥)} we can make a group of continuous base functions 
as follows: 

𝛷(𝑛) = 𝜑
( )

(𝑥), 𝜑
( )

(𝑥), ⋯ , 𝜑
( )

(𝑥)  

such that the sequence of interpolation functions formed by using {𝛷(𝑛)}  as the 
following 

𝑓 (𝑥) = 𝜑
( )

(𝑥)𝑦
( )

,  𝑛 = 1,2,3, ⋯ 

can uniformly converge to 𝑓(𝑥). 
Then, in the approximation from a sequence of random vectors to a continuous 

function, the base functions are appropriately selected by us, and an important 
conclusion for quantum mechanics is deduced: classical mechanics and quantum 
mechanics are unified. Particularly, an interesting and very important conclusion is 
introduced as the fact that the mass point motion of a macroscopical object possesses 
a kind of wave characteristic curve, which should be called wave-mass-point duality. 

2. The random vector presentation of continuous functions 

Lemma 1. Arbitrarily given 𝑚 + 1 real numbers 𝑎 , 𝑎 , ⋯ , 𝑎 ∈ ℝ, we denote the 
following symbol: 

𝑒 = 𝑚𝑎𝑥 |𝑎 − 𝑎 | 𝑖 = 1,2, ⋯ , 𝑚 . 

And we make a permutation as the following: 

𝜎 =
0 1 ⋯ 𝑚

𝑘 𝑘 ⋯ 𝑘
, 

such that 𝑎 ≤ 𝑎 ≤ ⋯ ≤ 𝑎 . If we write 

𝑑 = 𝑚𝑎𝑥 𝑎 − 𝑎 𝑖 = 1,2, ⋯ , 𝑚 , 

Then we have that 𝑑 ≤ 𝑒 . 

Proof. By the definition of 𝑑 , we can know the following fact: 

(∃𝑖 ∈ {1,2, ⋯ , 𝑚}) 𝑑 = 𝑎 − 𝑎 . 

If 𝑑 = 0, then the conclusion of the lemma is clearly true. Now we assume that 

𝑑 > 0. We know that 𝜎 is a bijection, and then 𝑘 ≠ 𝑘 . 

Let 𝑠 = 𝑘  and 𝑡 = 𝑘 . So 𝑎 − 𝑎 = 𝑑 . We consider two cases: (i) and (ii) 
as follows. 

(i) 𝑠 < 𝑡. If we pay attention to the total order relation: 

𝑎 ≤ 𝑎 ≤ 𝑎 < 𝑎 ≤ ⋯ ≤ ⋯ ≤ 𝑎 , 

then we can learn the fact: 

𝑎 , 𝑎 , 𝑎 , ⋯ , 𝑎 , 𝑎 ∉ (𝑎 , 𝑎 ) = 𝑎 , 𝑎 , 

which means 𝑎 , 𝑎 , 𝑎 , ⋯ , 𝑎 , 𝑎 ∈ (−∞, 𝑎 ] ∪ [𝑎 , +∞). Let 

𝑙 = 𝑚𝑖𝑛{𝑖 ∈ {𝑠, 𝑠 + 1, ⋯ , 𝑡}|𝑎 ∈ (−∞, 𝑎 ]}. 

Clearly 𝑙 ≠ 𝑠; or else 𝑎 = 𝑎 ∈ [𝑎 , +∞); this will be contradictory with the fact 

that 𝑎 ∈ (−∞, 𝑎 ]. By the meaning of the subscript 𝑙, it is easy to understand that 

𝑎 ∈ [𝑎 , +∞). Thus, we have the result: 



Journal of AppliedMath 2024, 2(1), 382. 

 

3 

𝑒 ≥ |𝑎 − 𝑎 | ≥ 𝑎 − 𝑎 = 𝑑 . 

(ii) 𝑡 < 𝑠. This time we have the following result: 

𝑎 , 𝑎 , 𝑎 , ⋯ , 𝑎 , 𝑎 ∉ (𝑎 , 𝑎 ) = 𝑎 , 𝑎 , 

which means the following expression is true: 

𝑎 , 𝑎 , 𝑎 , ⋯ , 𝑎 , 𝑎 ∈ (−∞, 𝑎 ] ∪ [𝑎 , +∞). 

Let 𝑙 = 𝑚𝑎𝑥{𝑖 ∈ {𝑡, 𝑡 + 1, ⋯ , 𝑠}|𝑎 ∈ (−∞, 𝑎 ]}. Clearly 𝑙 ≠ 𝑠, or else we have 

𝑎 = 𝑎 ∈ [𝑎 , +∞); this will also be contradictory with this expression 𝑎 ∈ (−∞, 𝑎 ]. 

So 𝑎 ∈ [𝑎 , +∞). Thus, we have the result: 

𝑒 ≥ |𝑎 − 𝑎 | ≥ 𝑎 − 𝑎 = 𝑑 . 
We complete the proof of the lemma. 

Theorem 1. For arbitrarily given a continuous function 𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏], there must be 

a sequence of probability spaces {(𝛺, ℱ, 𝑃 )}  and a sequence of random vectors 
{(𝜉 , 𝜂 )}, where every random vector (𝜉 , 𝜂 ) is defined on the probability space 
(𝛺, ℱ, 𝑃 ) , such that the sequence of conditional mathematical expectations 
{𝐸(𝜂 |𝜉 = 𝑥)} uniformly converges to the continuous function 𝑓(𝑥) in [𝑎, 𝑏], that is, 

for any 𝜀 > 0, there exists 𝑁 ∈ ℕ , such that, for any 𝑛 ∈ ℕ , if 𝑛 > 𝑁, then 
(∀𝑥 ∈ [𝑎, 𝑏])(|𝐸(𝜂 |𝜉 = 𝑥) − 𝑓(𝑥)| < 𝜀), 

where 

ℕ = {1,2,3, ⋯ } and ℕ = {0,1,2, ⋯ }. 

Proof. Case 1. Let 𝑓(𝑥) be a strictly monotone functions, and we may as well assume 

that 𝑓(𝑥)  is a strictly monotonically increasing function, as when 𝑓(𝑥)  a strictly 
monotonically decreasing function, the proof is the same as the increasing status. 

Step 1. Construct a group of continuous base functions. 

Firstly, the interval 𝑋 = [𝑎, 𝑏] is equidistantly partitioned as the following: 

𝑎 = 𝑥
( )

< 𝑥
( )

< ⋯ < 𝑥
( )

= 𝑏. 

And we write 

𝑋(𝑛) = 𝑥
( )

𝑖 = 0,1, ⋯ , 𝑛 , 

ℎ(𝑛) =
𝑏 − 𝑎

𝑛
, 

𝑥
( )

= 𝑎 + 𝑖ℎ(𝑛),  𝑖 = 0,1, ⋯ , 𝑛. 

Clearly ℎ(𝑛) → 0 ⇔ 𝑛 → +∞. Then denote 𝑌 = [𝑐, 𝑑] = 𝑓(𝑋), and put 

𝑦
( )

= 𝑓 𝑥
( )

,  𝑖 = 0,1, ⋯ , 𝑛, 

𝑌(𝑛) = 𝑦
( )

𝑖 = 0,1, ⋯ , 𝑛 , 

𝑐(𝑛) = 𝑚𝑖𝑛 𝑌 (𝑛), 

𝑑(𝑛) = 𝑚𝑎𝑥 𝑌 (𝑛) 

then 𝑐(𝑛) ≥ 𝑐,  𝑑(𝑛) ≤ 𝑑 . By using two node sets 𝑋(𝑛) and 𝑌(𝑛), two groups of 
continuous base functions are formed as the following: 

𝒜(𝑛) = 𝐴
( )

∈ 𝐶(𝑋) 𝑖 = 0,1, ⋯ , 𝑛 , 

ℬ(𝑛) = 𝐵
( )

∈ 𝐶(𝑌) 𝑖 = 0,1, ⋯ , 𝑛  

where the definition of 𝐴( )
 (𝑖 = 0,1, ⋯ , 𝑛) are as the following which the figures of 

them are shown as Figure 1 [1]: 
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𝐴
( )

(𝑥) =

⎩
⎨

⎧ 𝑥 − 𝑥
( )

𝑥
( )

− 𝑥
( )

,    𝑥 ∈ 𝑥
( )

, 𝑥
( )

;

0 ,                                    otherwise,

 

𝐴
( )

(𝑥) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑥 − 𝑥

( )

𝑥
( )

− 𝑥
( )

,  𝑥 ∈ 𝑥
( )

, 𝑥
( )

;

𝑥 − 𝑥
( )

𝑥
( )

− 𝑥
( )

,  𝑥 ∈ 𝑥
( )

, 𝑥
( )

;

0，                otherwise;

    𝑖 = 1,2, ⋯ , 𝑛 − 1, 

𝐴
( )

(𝑥) =

⎩
⎨

⎧ 𝑥 − 𝑥
( )

𝑥
( )

− 𝑥
( )

,  𝑥 ∈ 𝑥
( )

, 𝑥
( )

;

0,                         otherwise,

 

(1)

As 𝑋(𝑛) = 𝑥
( )

𝑖 = 0,1, ⋯ , 𝑛  is an equidistant partition node set, above 

𝐴
( )

 (𝑖 = 0,1, ⋯ , 𝑛) can be simplified as the following: 

𝐴
( )

(𝑥) =
𝑥

( )
− 𝑥

ℎ
(𝑛),    𝑥 ∈ 𝑥

( )
, 𝑥

( )
;

0 ,                        otherwise,

 

𝐴
( )

(𝑥) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥 − 𝑥

( )

ℎ(𝑛)
,  𝑥 ∈ 𝑥

( )
, 𝑥

( )
;

𝑥
( )

− 𝑥

ℎ(𝑛)
,  𝑥 ∈ 𝑥

( )
, 𝑥

( )
;

0，           otherwise;

       𝑖 = 1,2, ⋯ , 𝑛 − 1, 

𝐴
( )

(𝑥) =

𝑥 − 𝑥
( )

ℎ(𝑛)
,  𝑥 ∈ 𝑥

( )
, 𝑥

( )
;

0,             otherwise,

 

 

Figure 1. continuous base functions 𝐴( ). 

As 𝑓(𝑥) being strictly monotonically increasing function, we have 

𝑐 = 𝑐(𝑛) = 𝑦
( )

< 𝑦
( )

< ⋯ < 𝑦
( )

= 𝑑(𝑛) = 𝑑 (2)

By means of these nodes: 𝑦( )
< 𝑦

( )
< ⋯ < 𝑦

( ), we can construct continuous 

base functions denoted by 𝐵( )
(𝑖 = 0,1, ⋯ , 𝑛), which are defined on 𝑌 as follows 
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𝐵
( )

(𝑦) =

⎩
⎨

⎧ 𝑦 − 𝑦
( )

𝑦
( )

− 𝑦
( )

,    𝑦 ∈ 𝑦
( )

, 𝑦
( )

;

0 ,                                    otherwise,

 

𝐵
( )

(𝑦) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑦 − 𝑦

( )

𝑦
( )

− 𝑦
( )

,  𝑦 ∈ 𝑦 , 𝑦 ;

𝑦 − 𝑦
( )

𝑦
( )

− 𝑦
( )

,  𝑦 ∈ 𝑦
( )

𝑦
( )

;

0，                otherwise;

 𝑖 = 1,2, ⋯ , 𝑛 − 1, 

𝐵
( )

(𝑦) =

⎩
⎨

⎧ 𝑦 − 𝑦
( )

𝑦
( )

− 𝑦
( )

,  𝑦 ∈ 𝑦
( )

, 𝑦
( )

;

0,                        otherwise,

 

(3)

So we get a group of continuous base functions ℬ(𝑛) = 𝐵
( )

𝑖 = 0,1, ⋯ , 𝑛 . 

Step 2. Construct a sequence of probability density functions {𝑝 (𝑥, 𝑦)}. 

By using 𝒜(𝑛) and ℬ(𝑛), we form a group of continuous base functions with 

two variables defined on 𝑋 × 𝑌 = [𝑎, 𝑏] × [𝑐, 𝑑] as follows 

𝐶
( )

(𝑥, 𝑦) = 𝐴
( )

(𝑥) ⋅ 𝐵
( )

(𝑦), 𝑖 = 0,1,2, ⋯ , 𝑛 

Write 𝒞(𝑛) = 𝐶
( )

(𝑥, 𝑦) 𝑖 = 0,1, ⋯ , 𝑛 , and it is easy to know that 𝒞(𝑛) is a 

group of linearly independent functions. Then span 𝒞(𝑛) is just a 𝑛 + 1 dimension 

linear subspace of 𝐶(𝑋 × 𝑌). 

Next let ∨= 𝑚𝑎𝑥, which means that for any 𝑛 + 1 real numbers 𝑎 , 𝑎 , ⋯ , 𝑎 , 
we have 

∨ 𝑎 = 𝑚𝑎𝑥{𝑎 , 𝑎 , ⋯ , 𝑎 }. 

Based on 𝒞(𝑛), a continuous function with two variables 𝑅 : 𝑋 × 𝑌 → [0,1] is 
formed as follows 

𝑅 (𝑥, 𝑦) =∨ 𝐶
( )

(𝑥, 𝑦) =∨ 𝐴
( )

(𝑥) ⋅ 𝐵
( )

(𝑦)  (4)

Then we get a sequence of continuous functions with two variables{𝑅 (𝑥, 𝑦)}. 
Then we write 

𝐻(𝑛) = ∫ ∫ 𝑅 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦. 

Clearly (∀𝑛 ∈ ℕ )(𝐻(𝑛) > 0). And we put 

𝑝 (𝑥, 𝑦) =
𝑅 (𝑥, 𝑦)

𝐻(𝑛)
𝜒 × (𝑥, 𝑦), 𝑛 = 1,2,3, ⋯ (5)

where 𝜒 ×  is the indicative function of set 𝑋 × 𝑌: 

𝜒 × : ℝ → {0,1}, (𝑥, 𝑦) ↦ 𝜒 × (𝑥, 𝑦) =
1, (𝑥, 𝑦) ∈ 𝑋 × 𝑌,
0, (𝑥, 𝑦) ∉ 𝑋 × 𝑌

 

So, we get a sequence of probability density functions {𝑝 (𝑥, 𝑦)} defined 

on ℝ = (−∞, +∞) . 

Step 3. Construct a sequence of probability spaces {(𝛺, ℱ, 𝑃 )}and a sequence of 

random vectors  {𝜁 } = {(𝜉 , 𝜂 )} which every random vector 𝜁  is defined on 
(𝛺, ℱ, 𝑃 ). In fact, let 

𝐹 (𝑥, 𝑦) = ∫ ∫ 𝑝 (𝑢, 𝑣)𝑑𝑢𝑑𝑣; 
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Then {𝐹 (𝑥, 𝑦)}is a sequence of distribution functions. Take 𝛺 = ℝ  and ℱ =

ℬ , where ℬ  is a Borel 𝜎 algebra on ℝ ; and 𝑃 is taken as the probability measure 

corresponding to 𝐹 (𝑥, 𝑦). We all know a fact in probability theory that 𝑃  must exist 
and be unique [2–4]. In this way, we get a sequence of probability spaces as the 
following: 

{(𝛺, ℱ, 𝑃 )} = {(ℝ , ℬ , 𝑃 )}. 

Then on every probability space (𝛺, ℱ, 𝑃 ) we define a random vector as follows: 

𝜁 = (𝜉 , 𝜂 ): 𝛺 → ℝ  

𝜔 = (𝜔 , 𝜔 ) ↦ 𝜁 (𝜔) = (𝜉 (𝜔), 𝜂 (𝜔)) = (𝜔 , 𝜔 ) 

For any (𝑥, 𝑦) ∈ ℝ , by noticing the following expression 
{𝜔 ∈ 𝛺|𝜉 (𝜔) ≤ 𝑥} = {𝜔 ∈ 𝛺|𝜔 ≤ 𝑥} = {𝜔 ∈ 𝛺|𝜔 ∈ (−∞, 𝑥], 𝜔 ∈ (−∞, +∞)} = (−∞, 𝑥] × (−∞, +∞) ∈ ℬ

= ℱ 

We can know that 𝜉 (𝜔) is really a random variable defined on (𝛺, ℱ, 𝑃 ); in the 

same way, 𝜂 (𝜔) is also really a random variable defined on (𝛺, ℱ, 𝑃 ). So 

𝜁 (𝜔) = (𝜉 (𝜔), 𝜂 (𝜔)) = (𝜔 , 𝜔 ) = 𝜔 

is just a random vector defined on(𝛺, ℱ, 𝑃 ). 

Let 𝐹 (𝑥, 𝑦)  be the distribution function of the random vector 𝜁 (𝜔) . For 

any (𝑥, 𝑦) ∈ ℝ , because 𝑃  is the probability measure corresponding to 𝐹 (𝑥, 𝑦), we 
have 

𝐹 (𝑥, 𝑦) = 𝑃 ({𝜔 ∈ 𝛺|𝜉 (𝜔) ≤ 𝑥, 𝜂 (𝜔) ≤ 𝑦}) 

= 𝑃 ({𝜔 ∈ 𝛺|𝜔 ≤ 𝑥, 𝜔 ≤ 𝑦}) 

= 𝑃 ((−∞, 𝑥] × (−∞, 𝑦]) = 𝐹 (𝑥, 𝑦) 

i.e., the distribution function 𝐹 (𝑥, 𝑦) of the random vector 𝜁 (𝜔) is just 𝐹 (𝑥, 𝑦), 

which means 
𝐹 (𝑥, 𝑦) ≡ 𝐹 (𝑥, 𝑦). 

So, the sequence of conditional expectations of the sequence of random 

vectors  {𝜁 } = {(𝜉 , 𝜂 )} is just {𝐸(𝜂 |𝜉 = 𝑥)} , where 𝐸(𝜂 |𝜉 = 𝑥) =

∫ ( , )

∫ ( , )
=

∫ ( , )

∫ ( , )
,  𝑛 = 1,2,3, ⋯. 

Step 4. Prove the fact that the sequence of conditional expectations {𝐸(𝜂 |𝜉 =

𝑥)} converges to 𝑓(𝑥) everywhere in [𝑎, 𝑏]. Firstly, we prove a result as the following: 

(∀𝑛 ∈ ℕ )(∀𝑥 ∈ [𝑎, 𝑏]) ∫ 𝑅 (𝑥, 𝑦)𝑑𝑦 > 0 . 

In fact, for any 𝑥 ∈ [𝑎, 𝑏], clearly (∃𝑖 ∈ {1,2, ⋯ , 𝑛}) 𝑥 ∈ 𝑥
( )

, 𝑥
( ) . Then for 

any 𝑦 ∈ [𝑐, 𝑑], we have 

𝑅 (𝑥, 𝑦) =∨ =
𝐴

( )
(𝑥) ⋅ 𝐵

( )
(𝑦) ∨ 𝐴

( )
(𝑥) ⋅ 𝐵

( )
(𝑦) , 𝑦 ∈ 𝑦

( )
, 𝑦

( )
,

0, 𝑦 ∈ [𝑐, 𝑑] − 𝑦
( )

, 𝑦
( )

 

It is easy to learn the fact that 

∃𝑦 ∈ 𝑦
( )

, 𝑦
( )

(𝑅 (𝑥, 𝑦 ) > 0). 

For this fixed 𝑥 ∈ [𝑎, 𝑏], since 𝑅 (𝑥, 𝑦) is a continuous function with respect to 𝑦, 
we have 

(∃𝛿 > 0) (𝑦 − 𝛿, 𝑦 + 𝛿) ⊂ 𝑦
( )

, 𝑦
( )  
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∀𝑦 ∈ (𝑦 − 𝛿, 𝑦 + 𝛿) (𝑅 (𝑥, 𝑦) > 0) 

By means of mean value theorem of integrals, there exists a point  𝜉 ∈

𝑦 − , 𝑦 + , such that 

𝑅 (𝑥, 𝑦)𝑑𝑦 ≥ 𝑅 (𝑥, 𝑦)
( , )

𝑑𝑦 ≥ 𝑅 (𝑥, 𝑦)
,

𝑑𝑦 = 𝑅 (𝑥, 𝜉) ⋅ 𝛿 > 0 

So above result is correct. By this result, for any  𝑛 ∈ ℕ , the following 
expression 

𝐸(𝜂 |𝜉 = 𝑥) =
∫ 𝑦𝑅 (𝑥, 𝑦)𝑑𝑦

∫ 𝑅 (𝑥, 𝑦)𝑑𝑦
 

is meaningful. 

Now we turn to prove the fact that the sequence of unary functions {𝐸(𝜂 |𝜉 =

𝑥)} converges to 𝑓(𝑥) everywhere in [𝑎, 𝑏]. In fact, for any 𝑥 ∈ [𝑎, 𝑏], clearly we have 

(∃𝑖 ∈ {1,2, ⋯ , 𝑛}) 𝑥 ∈ 𝑥
( )

, 𝑥
( ) . 

Then we can get the following expression: 

𝑅 (𝑥, 𝑦) =∨ =
𝐴

( )
(𝑥) ⋅ 𝐵

( )
(𝑦) ∨ 𝐴

( )
(𝑥) ⋅ 𝐵

( )
(𝑦) , 𝑦 ∈ 𝑦

( )
, 𝑦

( )
,

0, 𝑦 ∈ [𝑐, 𝑑] − 𝑦
( )

, 𝑦
( )

 

By means of the first mean value theorem of integrals, there exists a 

point 𝜂 (𝑥) ∈ 𝑦
( )

, 𝑦
( ) , such that 

𝐸(𝜂 |𝜉 = 𝑥) =
∫ 𝑦𝑅 (𝑥, 𝑦)𝑑𝑦

∫ 𝑅 (𝑥, 𝑦)𝑑𝑦
=

∫ 𝑦𝑅 (𝑥, 𝑦)𝑑𝑦
( )

( )

∫ 𝑅 (𝑥, 𝑦)𝑑𝑦
( )

( )

=

𝜂 (𝑥) ∫ 𝑅 (𝑥, 𝑦)𝑑𝑦
( )

( )

∫ 𝑅 (𝑥, 𝑦)𝑑𝑦
( )

( )

= 𝜂 (𝑥) 

For 𝑓(𝑥) being continuous and by noticing that 𝜂 (𝑥) ∈ 𝑦
( )

, 𝑦
( ) , based on 

the medium value theorem for continuous functions, we have 

∃�̄� ∈ 𝑥
( )

, 𝑥
( )

(𝑓(�̄�) = 𝜂 (𝑥)). 

Since 𝑓(𝑥) ∈ 𝑦
( )

, 𝑦
( )

⊂ 𝑦
( )

, 𝑦
( ) , we know that 

𝑛 → ∞ ⇒ 𝑦
( )

− 𝑦
( )

→ 0 ⇒ 𝜂 (𝑥) = 𝑓(�̄�) → 𝑓(𝑥) (6)

For 𝑥 ∈ [𝑎, 𝑏] being arbitrary, we get the fact as follows 

(∀𝑥 ∈ [𝑎, 𝑏]) 𝑙𝑖𝑚
→

𝐸(𝜂 |𝜉 = 𝑥) = 𝑓(𝑥) . 

Step 5. Prove the fact that the sequence of conditional expectations {𝐸(𝜂 |𝜉 =

𝑥)} uniformly converges to 𝑓(𝑥) in [𝑎, 𝑏]. 

Because 𝑓(𝑥) is continuous in [𝑎, 𝑏], for any 𝜀 > 0, there exists 𝑁 ∈ ℕ , such 
that 

(∀𝑛 ∈ ℕ ) 𝑛 > 𝑁 ⇒ 𝑚𝑎𝑥 𝛥𝑦
( )

𝑖 = 1,2, ⋯ , 𝑛 <
𝜀

3
 

By Equation (6), for any 𝑥 ∈ [𝑎, 𝑏], when 𝑛 > 𝑁, we have 

|𝐸(𝜂 |𝜉 = 𝑥) − 𝑓(𝑥)| = |𝜂 (𝑥) − 𝑓(𝑥)| ≤ 𝑦
( )

− 𝑦
( )

≤ 3 𝑚𝑎𝑥 𝛥𝑦
( )

𝑖 = 1,2, ⋯ , 𝑛 < 𝜀 

So far, we have proved the conclusion: for any 𝜀 > 0, there exists 𝑁 ∈ ℕ , such 

that, for any 𝑛 ∈ ℕ , if 𝑛 > 𝑁, then 
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(∀𝑥 ∈ [𝑎, 𝑏])(|𝐸(𝜂 |𝜉 = 𝑥) − 𝑓(𝑥)| < 𝜀) 

This means that the sequence of conditional expectations  {𝐸(𝜂 |𝜉 = 𝑥)} 

uniformly converges to 𝑓(𝑥) in [𝑎, 𝑏]. 

Case 2. 𝑓(𝑥) is not a strictly monotonic function and not a constant function. 

This time, the elements in 𝑌(𝑛) are not of monotonic property like as 𝑦 ≤ 𝑦 ≤

⋯ ≤ 𝑦  with respect to the subscripts 𝑖, which brings some difficulty to construct 

continuous base functions 𝐵  being shaped like Equation (3); so, we should make a 

permutation on the subscript set {0,1, ⋯ , 𝑛} as the following: 

𝜎 =
0 1 ⋯ 𝑛

𝑘 𝑘 ⋯ 𝑘
, 

(∀𝑖 ∈ {0,1, ⋯ , 𝑛})(𝑘 = 𝜎(𝑖)) 

such that the permutated subscript set 𝐾(𝑛) = {𝑘 , 𝑘 , ⋯ , 𝑘 } is with the condition: 

𝑐(𝑛) = 𝑦
( )

≤ 𝑦
( )

≤ ⋯ ≤ 𝑦
( )

= 𝑑(𝑛) (7)

As Equation (7) is not strictly monotonicity about the subscript, we will deal with 
it in two situations. 

1) Assume 𝑐(𝑛) = 𝑦
( )

< 𝑦
( )

< ⋯ < 𝑦
( )

= 𝑑(𝑛). By using these nodes 

𝑦
( )

, 𝑦
( )

, ⋯ , 𝑦
( ) 

in [𝑐, 𝑑], we form continuous base functions 𝐵( )
 (𝑗 = 0,1, ⋯ , 𝑛)as follows 

𝐵
( )

(𝑦) =

⎩
⎨

⎧ 𝑦 − 𝑦
( )

𝑦
( )

− 𝑦
( )

,    𝑦 ∈ 𝑦
( )

, 𝑦
( )

;

0 ,                                   otherwise,

 

𝐵
( )

(𝑦) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑦 − 𝑦

( )

𝑦
( )

− 𝑦
( )

, 𝑦 ∈ 𝑦
( )

, 𝑦
( )

;

𝑦 − 𝑦
( )

𝑦
( )

− 𝑦
( )

, 𝑦 ∈ 𝑦
( )

, 𝑦
( )

;

0，                 otherwise;

 𝑗 = 1,2, ⋯ , 𝑛 − 1, 

𝐵
( )

(𝑦) =

⎩
⎨

⎧ 𝑦 − 𝑦
( )

𝑦
( )

− 𝑦
( )

, 𝑦 ∈ 𝑦
( )

, 𝑦
( )

;

0,                          otherwise,

 

And we get a sequence of continuous functions with two variables {𝑅 (𝑥, 𝑦)} as 
the following 

𝑅 (𝑥, 𝑦) =∨ 𝐶
( )

(𝑥, 𝑦) =∨ 𝐴
( )

(𝑥) ⋅ 𝐵
( )

(𝑦) . 

Like Case 1, we can get a sequence of probability density 

functions  {𝑝 (𝑥, 𝑦)} defined on the real number field ℝ = (−∞, +∞) and a 

sequence of random vectors {𝜁 } = {(𝜉 , 𝜂 )}; then we have a sequence of conditional 

mathematical expectations {𝐸(𝜂 |𝜉 = 𝑥)}, where 

𝐸(𝜂 |𝜉 = 𝑥) =
∫ ( , )

∫ ( , )
=

∫ ( , )

∫ ( , )
,  𝑛 = 1,2,3, ⋯. 

Now we prove the fact that the sequence of conditional mathematical 

expectations {𝐸(𝜂 |𝜉 = 𝑥)} uniformly converges to 𝑓(𝑥) in [𝑎, 𝑏]. 



Journal of AppliedMath 2024, 2(1), 382. 

 

9 

Firstly, it is easy to know that the fact as the following: 

(∀𝑛 ∈ ℕ )(∀𝑥 ∈ [𝑎, 𝑏]) ∫ 𝑅 (𝑥, 𝑦)𝑑𝑦 > 0 . 

Here we should stipulate that  𝑘 = 𝑘 and  𝑘 = 𝑘 . For any  𝑥 ∈ [𝑎, 𝑏] , 
clearly we have 

(∃𝑠, 𝑡 ∈ {0,1, ⋯ , 𝑛}) 𝑥 ∈ 𝑥 , 𝑥 . 

Then we get the following expression: 

𝑅 (𝑥, 𝑦) =∨ =
𝐴

( )
(𝑥) ⋅ 𝐵

( )
(𝑦) ∨ 𝐴

( )
(𝑥) ⋅ 𝐵

( )
(𝑦) ,  𝑦 ∈ 𝑦

( )
, 𝑦

( )
∪ 𝑦

( )
, 𝑦

( )
,

0, 𝑦 ∈ [𝑐, 𝑑] − 𝑦
( )

, 𝑦
( )

∪ 𝑦
( )

, 𝑦
( )

 

Let  𝑦∗ = 𝑚𝑖𝑛 𝑦
( )

, 𝑦
( )

, 𝑦
( )

, 𝑦
( )  and  𝑦∗ =

𝑚𝑎𝑥 𝑦
( )

, 𝑦
( )

, 𝑦
( )

, 𝑦
( ) . 

𝑅 (𝑥, 𝑦) =∨ =
𝐴

( )
(𝑥) ⋅ 𝐵

( )
(𝑦) ∨ 𝐴

( )
(𝑥) ⋅ 𝐵

( )
(𝑦) ,  𝑦 ∈ 𝑦

( )
, 𝑦

( )
∪ 𝑦

( )
, 𝑦

( )
,

0, 𝑦 ∈ [𝑐, 𝑑] − 𝑦
( )

, 𝑦
( )

∪ 𝑦
( )

, 𝑦
( )

 

Let 𝑦∗ = 𝑚𝑖𝑛 𝑦
( )

, 𝑦
( )

, 𝑦
( )

, 𝑦
( )  and  𝑦∗ =

𝑚𝑎𝑥 𝑦
( )

, 𝑦
( )

, 𝑦
( )

, 𝑦
( ) . It assumes that  𝑦∗ = 𝑦

( )
 and 𝑦∗ = 𝑦

( ) , and 

clearly, we know the fact: 

[𝑦∗, 𝑦∗] = 𝑦
( )

, 𝑦
( )

⊃ 𝑦
( )

, 𝑦
( )

∪ 𝑦
( )

, 𝑦
( ) . 

So above expression can be written as follows: 

𝑅 (𝑥, 𝑦) =∨ =
𝐴

( )
(𝑥) ⋅ 𝐵

( )
(𝑦) ∨ 𝐴

( )
(𝑥) ⋅ 𝐵

( )
(𝑦) ,  𝑦 ∈ 𝑦

( )
, 𝑦

( )
,

0, 𝑦 ∈ [𝑐, 𝑑] − 𝑦
( )

, 𝑦
( )

 

By first means of mean value theorem for integrals, there exists a point 𝜂 (𝑥) ∈

𝑦
( )

, 𝑦
( ) , such that 

𝐸(𝜂 |𝜉 = 𝑥) =
∫ 𝑦𝑅 (𝑥, 𝑦)𝑑𝑦

∫ 𝑅 (𝑥, 𝑦)𝑑𝑦
=

∫ 𝑦𝑅 (𝑥, 𝑦)𝑑𝑦
( )

( )

∫ 𝑅 (𝑥, 𝑦)𝑑𝑦
( )

( )

=

𝜂 (𝑥) ∫ 𝑅 (𝑥, 𝑦)𝑑𝑦
( )

( )

∫ 𝑅 (𝑥, 𝑦)𝑑𝑦
( )

( )

= 𝜂 (𝑥) 

Write  𝑑 = 𝑚𝑎𝑥 𝛥𝑦
( )

𝑗 = 1,2, ⋯ , 𝑛 , where  𝛥𝑦
( )

= 𝑦
( )

− 𝑦
( )

, 𝑗 =

1,2, ⋯ , 𝑛. We can prove the fact that 𝑙𝑖𝑚
→

𝑑 = 0. In fact, let 

𝑒 = 𝑚𝑎𝑥 𝑦
( )

− 𝑦
( )

𝑖 = 1,2, ⋯ , 𝑛 , 

by means of Lemma 1 we have  (∀𝑛 ∈ ℕ )(𝑑 ≤ 𝑒 ) . By using this result, 

because𝑓(𝑥)  is uniformly continuous in  [𝑎, 𝑏] , it is true that 𝑙𝑖𝑚
→

𝑒 = 0 ; so, we 

have 𝑙𝑖𝑚
→

 𝑑 = 0. 

And then by above result we have the following expression: 

(∀𝜀 > 0)(∃𝑁 ∈ ℕ )(∀𝑛 ∈ ℕ ) 𝑛 > 𝑁 ⇒ 𝑑 < . 

By noticing the fact that 

𝑛 → ∞ ⇒ 𝑥
( )

− 𝑥
( )

→ 0 ⇒ 𝑦
( )

− 𝑦
( )

= 𝑓 𝑥
( )

− 𝑓 𝑥
( )

→ 0 

We immediately have the result: there exists 𝑁 ∈ ℕ , for any 𝑛 ∈ ℕ , such that 



Journal of AppliedMath 2024, 2(1), 382. 

 

10 

𝑛 > 𝑁 ⇒ 𝑦
( )

− 𝑦
( )

<
𝜀

3
 (8)

Take 𝑁 = 𝑚𝑎𝑥{𝑁 , 𝑁 }, and when 𝑛 > 𝑁, we get the following expression: 

𝑦
( )

− 𝑦
( )

≤ 𝑦
( )

− 𝑦
( )

+ 𝑦
( )

− 𝑦
( )

+ 𝑦
( )

− 𝑦
( )

< 𝑑 + + 𝑑 < + + = 𝜀. 

By this result we know that 𝑦
( )

− 𝑦
( )  →  

⎯⎯⎯⎯⎯ 0, so we get 

𝑦
( )

− 𝜂 (𝑥)
 →  

⎯⎯⎯⎯⎯ 0. 

By means of Equation (8), we can have 𝑓(𝑥) − 𝑦
( )  →  

⎯⎯⎯⎯⎯ 0. At last, we have 

|𝑓(𝑥) − 𝜂 (𝑥)| ≤ 𝑓(𝑥) − 𝑦
( )

+ 𝑦
( )

− 𝜂 (𝑥)
 →  

⎯⎯⎯⎯⎯ 0. 

i.e., 𝜂 (𝑥)
 →  

⎯⎯⎯⎯⎯ 𝑓(𝑥). So, we get the conclusion: 

(∀𝑥 ∈ [𝑎, 𝑏]) 𝑙𝑖𝑚
→

𝐸(𝜂 |𝜉 = 𝑥) = 𝑓(𝑥) . 

And then, similar to above proof, we can obtain the conclusion that the sequence 

of conditional mathematical expectations  {𝐸(𝜂 |𝜉 = 𝑥)} uniformly converges 

to 𝑓(𝑥) in [𝑎, 𝑏]. 

2) Assume 𝑐(𝑛) = 𝑦
( )

≤ 𝑦
( )

≤ ⋯ ≤ 𝑦
( )

= 𝑑(𝑛). The elements in the set 

𝑌(𝑛) = 𝑦
( )

, 𝑦
( )

, ⋯ , 𝑦
( )  

should be screened firstly. In fact, write 𝐾(𝑛) = {𝑘 , 𝑘 , ⋯ , 𝑘 }, and an equivalent 

relation ∼ is defined as the following: 

(∀𝑠, 𝑡 ∈ {0,1, ⋯ , 𝑛}) 𝑘 ∼ 𝑘 ⇔ 𝑦 = 𝑦 . 

We can get a quotient set of 𝐾(𝑛) as being 
𝐾(𝑛)

∼ = 𝑘 𝑗 = 0,1, ⋯ , 𝑛 , 

where 𝑘  is the equivalence class what 𝑘  belongs to. Suppose the elements of 

𝐾(𝑛)
∼ are as the following: 

𝑘 , 𝑘 , ⋯ , 𝑘
( )

, 

where 0 ≤ 𝑞(𝑛) ≤ 𝑛, and we stipulate that the representation element 𝑘  is taken as 

the least element in 𝑘 . Then we have 

𝑦
( )

< 𝑦
( )

< ⋯ < 𝑦
( )

( )  

By using the nodes 𝑦( )
, 𝑦

( )
, ⋯ , 𝑦

( )

( )  in [𝑐, 𝑑], a group of continuous base 

functions 

𝐵
( )

,  𝑠 = 0,1, ⋯ , 𝑞(𝑛) 

are formed as the following: 

𝐵
( )

(𝑦) =

⎩
⎨

⎧ 𝑦 − 𝑦
( )

𝑦
( )

− 𝑦
( )

,    𝑦 ∈ 𝑦
( )

, 𝑦
( )

;

0 ,                                   otherwise,

 (9)
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𝐵
( )

(𝑦) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑦 − 𝑦

( )

𝑦
( )

− 𝑦
( )

,  𝑦 ∈ 𝑦
( )

, 𝑦
( )

;

𝑦 − 𝑦
( )

𝑦
( )

− 𝑦
( )

,  𝑦 ∈ 𝑦
( )

, 𝑦
( )

;

0，                   otherwise;

 𝑠 = 1,2, ⋯ , 𝑞(𝑛) − 1, 

𝐵
( )

( )
(𝑦) =

⎩
⎪
⎨

⎪
⎧ 𝑦 − 𝑦

( )

( )

𝑦
( )

( )
− 𝑦

( )

( )
,  𝑦 ∈ 𝑦

( )
, 𝑦

( )

( )
;

0,                                   otherwise,

 

So at the nodes 𝑦
( )

, 𝑦
( )

, ⋯ , 𝑦
( )

( )  with respect to the representation 

elements 𝑘 , 𝑘 , ⋯ , 𝑘
( )

, the group of continuous base functions as follows 

𝐵
( )

(𝑦), 𝐵
( )

(𝑦), ⋯ , 𝐵
( )

( )
(𝑦) 

has been defined. 

And then, we should stipulate: for every equivalence class 𝑘 , all the elements 

in 𝑘  have been corresponded to the same continuous base function 𝐵
( )

(𝑦) . 

Therefore, all the nodes in [𝑐, 𝑑], 

𝑦
( )

≤ 𝑦
( )

≤ ⋯ ≤ 𝑦
( ), 

have been defined their continuous base functions: 𝐵
( )

(𝑦), 𝐵
( )

(𝑦), ⋯ , 𝐵
( )

(𝑦) . 

Hence, we can get a sequence of continuous base functions with two 

variables{𝑅 (𝑥, 𝑦)}as follows 

𝑅 (𝑥, 𝑦) =∨ 𝐶
( )

(𝑥, 𝑦) =∨ 𝐴
( )

(𝑥) ⋅ 𝐵
( )

(𝑦) , 𝑛 = 1,2,3, ⋯ (10)

Similar to above method we have ever been used, we can have a sequence of 

probability density functions {𝑝 (𝑥, 𝑦)} defined on ℝ = (−∞, +∞)  and a sequence 

of random vectors {𝜁 } = {(𝜉 , 𝜂 )} ; then we immediately get a sequence of 

conditional mathematical expectations {𝐸(𝜂 |𝜉 = 𝑥)}, where 

𝐸(𝜂 |𝜉 = 𝑥) =
∫ 𝑦𝑝 (𝑥, 𝑦)𝑑𝑦

∫ 𝑝 (𝑥, 𝑦)𝑑𝑦
=

∫ 𝑦𝑅 (𝑥, 𝑦)𝑑𝑦

∫ 𝑅 (𝑥, 𝑦)𝑑𝑦
,  𝑛 = 1,2,3, ⋯ 

Now we should prove the fact that the sequence of conditional mathematical 

expectations {𝐸(𝜂 |𝜉 = 𝑥)} uniformly converges to 𝑓(𝑥) in [𝑎, 𝑏]. 
Firstly, it is not difficult to know the fact that 

(∀𝑛 ∈ ℕ )(∀𝑥 ∈ [𝑎, 𝑏]) ∫ 𝑅 (𝑥, 𝑦)𝑑𝑦 > 0 . 

For any fixed 𝑥 ∈ [𝑎, 𝑏], (∃𝑠, 𝑡 ∈ {0,1, ⋯ , 𝑛}) 𝑥 ∈ 𝑥
( )

, 𝑥
( ) . 

Next, we should consider the following two situations. 

i) When 𝐵( )
(𝑦) ≡ 𝐵

( )
(𝑦), we have 

𝑅 (𝑥, 𝑦) =∨ =
𝐴

( )
(𝑥) ⋅ 𝐵

( )
(𝑦) ∨ 𝐴

( )
(𝑥) ⋅ 𝐵

( )
(𝑦) ,  𝑦 ∈ 𝑦

( )
, 𝑦

( )
,

0, 𝑦 ∈ [𝑐, 𝑑] − 𝑦
( )

, 𝑦
( )

.
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ii) When 𝐵( )
(𝑦) ≢ 𝐵

( )
(𝑦), we should have 

𝑅 (𝑥, 𝑦) =∨ 𝐴
( )

(𝑥) ⋅ 𝐵
( )

(𝑦)

=
𝐴

( )
(𝑥) ⋅ 𝐵

( )
(𝑦) ∨ 𝐴

( )
(𝑥) ⋅ 𝐵

( )
(𝑦) ,  𝑦 ∈ 𝑦

( )
, 𝑦

( )
∪ 𝑦

( )
, 𝑦

( )
,

0, 𝑦 ∈ [𝑐, 𝑑] − 𝑦
( )

, 𝑦
( )

∪ 𝑦
( )

, 𝑦
( )

.
 

However, in either case, we can use the method similar to 1) to prove the result: 

(∀𝑥 ∈ [𝑎, 𝑏]) 𝑙𝑖𝑚
→

 𝐸(𝜂 |𝜉 = 𝑥) = 𝑓(𝑥) , 

and the sequence of conditional mathematical expectations {𝐸(𝜂 |𝜉 = 𝑥)} uniformly 

converges to 𝑓(𝑥) in [𝑎, 𝑏]. 

Case 3. 𝑓(𝑥)  is a constant function, i.e.,  (∃𝛽 ∈ ℝ)(∀𝑥 ∈ [𝑎, 𝑏])(𝑓(𝑥) = 𝛽) . 
Clearly this is a kind of degrading situation. So, we should take a distribution function: 

𝐹 (𝑦) =
0,  𝑦 ∈ (−∞, 𝛽),
1,  𝑦 ∈ [𝛽, +∞)

 

And we construct a probability space (𝛺, ℱ, 𝑃), where 𝑃 is a probability measure 

corresponding to 𝐹 (𝑦), 𝛺 = ℝ  and ℱ = ℬ . Take the random variable as follows 

𝜂: 𝛺 → ℝ , 𝜔 ↦ 𝜂(𝜔) = 𝜔. 
It is easy to know that the distribution function of 𝜂 is just 𝐹 (𝑦). By noticing the 

following expression 
𝑃({𝜔 ∈ 𝛺|𝜂(𝜔) = 𝛽}) = 𝑃({𝜔 ∈ 𝛺|𝜔 = 𝛽}) = 𝐹 (𝛽) − 𝐹 (𝛽 − 0) = 1 − 0 = 1. 

We know that 𝐸(𝜂) = 𝛽. Hence 𝑓(𝑥) ≡ 𝐸(𝜂). 

Of course, we can also take another random variable 𝜉  defined on (𝛺, ℱ, 𝑃), 

which 𝜉 is required to be independent with 𝜂. So (𝜉, 𝜂) can be regarded as a random 

vector on (𝛺, ℱ, 𝑃). And we have 

𝐸(𝜂|𝜉 = 𝑥) ≡ 𝐸(𝜂) = 𝛽. 

Furthermore, we tale a sequence of random vectors {(𝜉 , 𝜂 )}, such that 

(∀𝑛 ∈ ℕ ) (𝜉 , 𝜂 ) = (𝜉, 𝜂) , 

then {𝐸(𝜂 |𝜉 = 𝑥)} uniformly converges to 𝑓(𝑥) in [𝑎, 𝑏]. We finish the proof of 
Theorem 1. 

3. The significance of function approximation of Theorem 1 

In above section, we have proved the conclusion: the sequence of conditional 

mathematical expectations {𝐸(𝜂 |𝜉 = 𝑥)} uniformly converges to 𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] in 

[𝑎, 𝑏]. Now we reveal the significance of function approximation of {𝐸(𝜂 |𝜉 = 𝑥)} 

about continuous function 𝑓(𝑥) . We only consider the continuous function space 

𝐶[𝑎, 𝑏]. In 𝐶[𝑎, 𝑏], addition operation “+” and scalar multiplication operation “⋅” are 
defined as the following: 

+: 𝐶[𝑎, 𝑏] × 𝐶[𝑎, 𝑏] → 𝐶[𝑎, 𝑏],      (𝑓, 𝑔) ↦ +(𝑓, 𝑔) = 𝑓 + 𝑔, 
(∀𝑥 ∈ [𝑎, 𝑏])[(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)]; 

⋅: ℝ × 𝐶[𝑎, 𝑏] → 𝐶[𝑎, 𝑏],      (𝑎, 𝑓) ↦⋅ (𝑎, 𝑓) = 𝑎 ⋅ 𝑓, 
(∀𝑥 ∈ [𝑎, 𝑏])[(𝑎 ⋅ 𝑓)(𝑥) = 𝑎 ⋅ 𝑓(𝑥)]. 

We all know that (𝐶[𝑎, 𝑏], +, ℝ,⋅) forms a linear space, which can be simply 

denoted by 𝐶[𝑎, 𝑏]. In 𝐶[𝑎, 𝑏], we define a norm operation as follows 
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‖⋅‖: 𝐶[𝑎, 𝑏] → [0, +∞), 𝑓 ↦ ‖⋅‖(𝑓) = ‖𝑓‖ = 𝑚𝑎𝑥
∈[ , ]

|𝑓(𝑥)|. 

Then (𝐶[𝑎, 𝑏], ‖⋅‖)  is a normed linear space, which can be also denoted by 

𝐶[𝑎, 𝑏] [5–7]. 

Clearly 𝐶[𝑎, 𝑏] is an infinite dimension normed linear space. Suppose 𝑓(𝑥) ∈

𝐶[𝑎, 𝑏] is a “complicated” function; for every 𝑛 ∈ ℕ , we try to find a group of 𝑛 + 1 
linearly independent “simple” functions as following: 

𝛷(𝑛) = 𝜑
( )

(𝑥), 𝜑
( )

(𝑥), ⋯ , 𝜑
( )

(𝑥) ⊂ 𝐶[𝑎, 𝑏], 

and 𝑛 + 1 real numbers 𝑎( )
, 𝑎

( )
, ⋯ , 𝑎

( )
∈ ℝ, where there at least exists one real 

number 𝑎( )
≠ 0, such that 𝑓(𝑥) can be approximately expressed by 𝛷(𝑛), i.e., 

(∀𝑥 ∈ [𝑎, 𝑏]) 𝑓(𝑥) − 𝑎
( )

𝜑
( )

(𝑥) < 𝜀  (11)

where 𝜀 > 0 is a kind of approximation accuracy determined in advance. If we put 

𝑓 (𝑥) = ∑ 𝑎
( )

𝜑
( )

(𝑥), 

then we have a sequence of continuous functions {𝑓 (𝑥)}  in 𝐶[𝑎, 𝑏]. Expression 

(11) means that the sequence of continuous functions {𝑓 (𝑥)}  uniformly converges 

to 𝑓(𝑥) in [𝑎, 𝑏], i.e., for any 𝜀 > 0, there exists 𝑁 ∈ ℕ , such that 
(∀𝑛 ∈ ℕ )(𝑛 > 𝑁 ⇒ ‖𝑓 − 𝑓‖ < 𝜀). 

For some fixed 𝜀 , when 𝑛 > 𝑁, (spanΦ(𝑛), ‖⋅‖)is a 𝑛 + 1 dimension normed 

linear sunspace of (𝐶[𝑎, 𝑏], ‖⋅‖) , such that, there exist real numbers 

𝑎
( )

, 𝑎
( )

, ⋯ , 𝑎
( )

∈ ℝ , such that ‖𝑓 − 𝑓‖ < 𝜀 , where span Φ(𝑛)  means that a 

normed linear subspace of 𝐶[𝑎, 𝑏] generated by 𝛷(𝑛). In other words, on this 𝜀, we 

can use a kind of linear combination of the base functions in span Φ(𝑛) as follows 

𝑓 (𝑥) = 𝑎
( )

𝜑
( )

(𝑥) 

to take the place of 𝑓(𝑥) approximately, or we say that 𝑓 (𝑥) can approximate 𝑓(𝑥) 

to the approximation accuracy 𝜀 . This is one of the basic ideas of function 
approximation. 

Particularly, function interpolation is a kind of function approximation method 

commonly used by us [8,9]. Based on this idea, firstly the interval [𝑎, 𝑏] is partitioned 
as 

𝑎 = 𝑥
( )

< 𝑥
( )

< ⋯ < 𝑥
( )

= 𝑏, 

where the partition may not be equidistant. Write 

𝑋(𝑛) = 𝑥
( )

𝑖 = 0,1, ⋯ , 𝑛 , 

𝑦
( )

= 𝑓 𝑥
( )

,  𝑖 = 0,1, ⋯ , 𝑛, 

𝑌(𝑛) = 𝑦
( )

𝑖 = 0,1, ⋯ , 𝑛 . 

By the use of the node set 𝑋(𝑛), a group of base function as the following 

𝛷(𝑛) = 𝜑
( )

(𝑥), 𝜑
( )

(𝑥), ⋯ , 𝜑
( )

(𝑥)  

is made, where every 𝜑
( )

(𝑥) ∈ 𝐶[𝑎, 𝑏] , and 𝜑
( )

(𝑥), 𝜑
( )

(𝑥), ⋯ , 𝜑
( )

(𝑥)  are 

linearly independent, and they meet Kronecker condition: 
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𝜑
( )

(𝑥) 𝑥
( )

= 𝛿 ,   𝑖, 𝑗 = 0,1, ⋯ , 𝑛. 

In 𝑓 (𝑥) = ∑ 𝑎
( )

𝜑
( )

(𝑥), if we take 𝑎( )
= 𝑦

( ), then 

𝑓 (𝑥) = ∑ 𝑦
( )

𝜑
( )

(𝑥) = ∑ 𝑓 𝑥
( )

𝜑
( )

(𝑥). 

This is an interpolation function as it meets interpolation condition: 

(∀𝑗 ∈ {0,1, ⋯ , 𝑛}) 𝑓 𝑥
( )

= 𝑓 𝑥
( ) . 

Especially we take 𝜑( )
(𝑥) = 𝐴

( )
(𝑥), 𝑖 = 0,1, ⋯ , 𝑛 , where the definition of 

𝐴
( )

(𝑥),  𝑖 = 0,1, ⋯ , 𝑛 has been expressed in Equation (1). Then 

𝑓 (𝑥) = 𝐴
( )

(𝑥)𝑦
( )

, 𝑛 = 1,2,3, ⋯ (12)

is just a sequence of piecewise interpolation functions. 

All in all, because 𝑓 (𝑥) ∈ span Φ(𝑛),𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏], and span Φ(𝑛) is a finite 

dimension normed linear subspace of 𝐶[𝑎, 𝑏], for any given 𝜀 > 0, there exists a 𝑛 ∈

ℕ , such that the element 𝑓(𝑥) in 𝐶[𝑎, 𝑏] can be approximated by using an element 

𝑓 (𝑥) in span Φ(𝑛), i.e., ‖𝑓 − 𝑓‖ < 𝜀. 

Definition 1. The sequence of conditional mathematical expectations {𝐸(𝜂 |𝜉 = 𝑥)} 
shown in Theorem 1 is called a sequence of conditional mathematical expectations 

generated by the continuous function 𝑓(𝑥) [1]. 

Theorem 2. For any continuous function 𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] , but assuming 𝑓(𝑥)  not 

being constant function, if {𝐸(𝜂 |𝜉 = 𝑥)} is a sequence of conditional methematical 

expectations generated by the continuous function 𝑓(𝑥) , then by means of 
{𝐸(𝜂 |𝜉 = 𝑥)} we can construct a group of continuous functions: 

𝛷(𝑛) = 𝜑
( )

(𝑥), 𝜑
( )

(𝑥), ⋯ , 𝜑
( )

(𝑥) , 

where 𝜑( )
(𝑥) ∈ 𝐶[𝑎, 𝑏], 𝑙 = 0,1, ⋯ , 𝑛, such that, by using the sequence of the groups 

of base functions {𝛷(𝑛)}, the sequence of interpolation functions constructed as the 
following 

𝑓 (𝑥) = 𝜑
( )

(𝑥)𝑦
( )

,  𝑛 = 1,2,3, ⋯ 

uniformly converges to 𝑓(𝑥) in [𝑎, 𝑏]. 

Proof. Case 1. Let 𝑓(𝑥) be a strictly monotone functions, and we may as well assume 

that 𝑓(𝑥) is a strictly monotonically increasing function, as when 𝑓(𝑥) is a strictly 
monotonically decreasing function, the proof is the same as the increasing status. 

For any given 𝑥 ∈ [𝑎, 𝑏] , there must exist 𝑖 ∈ {1,2, ⋯ , 𝑛} , such that 𝑥 ∈

𝑥
( )

, 𝑥
( ) . Then we have 

𝑅 (𝑥, 𝑦) =∨ 𝐴
( )

(𝑥) ⋅ 𝐵
( )

(𝑦) =
𝐴

( )
(𝑥) ⋅ 𝐵

( )
(𝑦) ∨ 𝐴

( )
(𝑥) ⋅ 𝐵

( )
(𝑦) ,  𝑦 ∈ 𝑦

( )
, 𝑦

( )
,

0, 𝑦 ∈ [𝑐, 𝑑] − 𝑦
( )

, 𝑦
( )

.
 

Now we consider the limits of Riemann sums corresponding to two integrals 

𝑦𝑅 (𝑥, 𝑦)𝑑𝑦 , 𝑅 (𝑥, 𝑦)𝑑𝑦 
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in 𝐸(𝜂 |𝜉 = 𝑥) =
∫ ( , )

∫ ( , )
 as the following: 

𝑦𝑅 (𝑥, 𝑦)𝑑𝑦 = 𝑙𝑖𝑚
( )→

𝑦
( )

𝑅 𝑥, 𝑦
( )

𝛥𝑦
( )

, 

𝑅 (𝑥, 𝑦)𝑑𝑦 = 𝑙𝑖𝑚
( )→

𝑅 𝑥, 𝑦
( )

𝛥𝑦
( )

, 

𝛥𝑦
( )

= 𝑦
( )

− 𝑦
( )

,  𝑙 = 1,2, ⋯ , 𝑚, 

𝜆(𝑇 ) = 𝑚𝑎𝑥 𝛥𝑦
( )

𝑙 = 1,2, ⋯ , 𝑚 , 

where 𝑇  represents a partition of 𝑌 = [𝑐, 𝑑] as the following: 

𝑐 = 𝑦
( )

< 𝑦
( )

< ⋯ < 𝑦
( )

= 𝑑, 

and in the same time, we should notice the expressions (see step 1 in Theorem 1) as 
following: 

𝑥
( )

= 𝑎 + 𝑙ℎ(𝑚),  ℎ(𝑚) = , 𝑦( )
= 𝑓 𝑥

( )
,  𝑙 = 0,1, ⋯ , 𝑚. 

We also should notice that 𝑚 and 𝑛 are different, which 𝑛 is a temporarily fixed 

subscript, but 𝑚 will tend to infinite.  

Because 𝑓(𝑥) is continuous, clearly, we know that 𝜆(𝑇 ) → 0 ⇒ 𝑚 → ∞, and so 
above expressions can be written as 

𝑦𝑅 (𝑥, 𝑦)𝑑𝑦 = 𝑙𝑖𝑚
→

𝑦
( )

𝑅 𝑥, 𝑦
( )

𝛥𝑦
( )

, 

∫ 𝑅 (𝑥, 𝑦)𝑑𝑦 = 𝑙𝑖𝑚
→

∑ 𝑅 𝑥, 𝑦
( )

𝛥𝑦
( ). 

Let 𝛥𝑦
( )

= 𝛥𝑦
( ) , and since 𝑅 (𝑥, 𝑦)  is a bounded function, in fact 0 ≤

𝑅 (𝑥, 𝑦) ≤ 1, and 𝑓(𝑥) is also a bounded function, we have 

(∃𝑀(𝑥) > 0)(∀𝑚 ∈ ℕ) 𝑦
( )

𝑅 𝑥, 𝑦
( )

< 𝑀(𝑥) . 

So, we easily know that 

𝑙𝑖𝑚
→

𝑦
( )

𝑅 𝑥, 𝑦
( )

𝛥𝑦
( )

= 0 = 𝑙𝑖𝑚
→

𝑅 𝑥, 𝑦
( )

𝛥𝑦
( ) . 

Then we have 

𝑙𝑖𝑚
→

𝑦
( )

𝑅 𝑥, 𝑦
( )

𝛥𝑦
( )

= 𝑙𝑖𝑚
→

𝑦
( )

𝑅 𝑥, 𝑦
( )

𝛥𝑦
( )

+ 𝑦
( )

𝑅 𝑥, 𝑦
( )

𝛥𝑦
( )

= 𝑙𝑖𝑚
→

𝑦
( )

𝑅 𝑥, 𝑦
( )

𝛥𝑦
( )

, 

𝑙𝑖𝑚
→

∑ 𝑅 𝑥, 𝑦
( )

𝛥𝑦
( )

= 𝑙𝑖𝑚
→

𝑅 𝑥, 𝑦
( )

𝛥𝑦
( )

+ ∑ 𝑅 𝑥, 𝑦
( )

𝛥𝑦
( )

=

𝑙𝑖𝑚
→

∑ 𝑅 𝑥, 𝑦
( )

𝛥𝑦
( ). 

Therefore, we get 

𝑦𝑅 (𝑥, 𝑦)𝑑𝑦 = 𝑙𝑖𝑚
→

𝑦
( )

𝑅 𝑥, 𝑦
( )

𝛥𝑦
( )

, 

∫ 𝑅 (𝑥, 𝑦)𝑑𝑦 = 𝑙𝑖𝑚
→

∑ 𝑅 𝑥, 𝑦
( )

𝛥𝑦
( ). 

Because of the following expressions: 
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(∀𝑥 ∈ [𝑎, 𝑏]) 𝑅 (𝑥, 𝑦)𝑑𝑦 > 0 , 

∫ 𝑅 (𝑥, 𝑦)𝑑𝑦 = 𝑙𝑖𝑚
→

∑ 𝑅 𝑥, 𝑦
( )

𝛥𝑦
( ). 

We have the fact that, for any given 𝑥 ∈ [𝑎, 𝑏], there exists 𝑁(𝑥) ∈ ℕ , such that 

(∀𝑚 ∈ ℕ ) 𝑚 > 𝑁(𝑥) ⇒ ∑ 𝑅 𝑥, 𝑦
( )

𝛥𝑦
( )

> 0 . 

Then when 𝑚 > 𝑁(𝑥), we get 

𝐸(𝜂 |𝜉 = 𝑥) =
∫ ( , )

∫ ( , )
= →

∑
( )

,
( ) ( )

→
∑ ,

( ) ( ) = 𝑙𝑖𝑚
→

∑
( )

,
( ) ( )

∑ ,
( ) ( ) =

𝑙𝑖𝑚
→

∑
,

( ) ( )

∑ ,
( ) ( ) ⋅ 𝑦

( ). 

If we let 

𝜑
( )

(𝑥) =
,

( ) ( )

∑ ,
( ) ( ) ,  𝑙 = 0,1, ⋯ , 𝑚, 

then above expression can be expressed as 

𝑙𝑖𝑚
→

𝜑
( )

(𝑥)𝑦
( )

= 𝐸(𝜂 |𝜉 = 𝑥) (13)

Write 𝑓 (𝑥) = ∑ 𝜑
( )

(𝑥)𝑦
( ) , and we get a sequence with double 

subscripts of continuous functions as being {𝑓 (𝑥)} , . If we put 

𝛷 (𝑚) = 𝜑
( )

(𝑥), 𝜑
( )

(𝑥), ⋯ , 𝜑
( )

(𝑥) , 

then 𝑓 (𝑥) = ∑ 𝜑
( )

(𝑥)𝑦
( ) is just an interpolation function with base function 

group 𝛷 (𝑚). 

Next, we especially we take 𝑚 = 𝑛, i.e., if we only use the diagonal elements 

in {𝑓 (𝑥)} , , then we get a sequence only with single subscripts of continuous 

functions as being {𝑓 (𝑥)} , where 

𝑓 (𝑥) = 𝑓 (𝑥) = 𝜑
( )

(𝑥)𝑦
( )

, 𝑛 = 1,2,3, ⋯ 

Let 

𝛷(𝑛) = 𝛷 (𝑛) = 𝜑
( )

(𝑥), 𝜑
( )

(𝑥), ⋯ , 𝜑
( )

(𝑥) , 

and then 𝑓 (𝑥) = ∑ 𝜑
( )

(𝑥)𝑦
( )  is an interpolation function based on base 

function group 𝛷(𝑛). 

For proving that {𝑓 (𝑥)}  can uniformly converge to 𝑓(𝑥) in 𝑋 = [𝑎, 𝑏]. we 

firstly consider 𝑛 + 1 unitary functions 𝑅 𝑥, 𝑦
( )

,  𝑙 = 0,1, ⋯ , 𝑛, with respect to 𝑥. 

In fact, since 𝐵( )
𝑦

( )  are of Kronecker character: 

𝐵
( )

𝑦
( )

= 𝛿 =
1,   𝑖 = 𝑙,
0,  𝑖 ≠ 𝑙,

𝑖, 𝑙 = 0,1, ⋯ , 𝑛. 

We easily learn the following expression: 

𝑅 𝑥, 𝑦
( )

= ∨ 𝐴
( )

(𝑥) ⋅ 𝐵
( )

𝑦
( )

= 𝐴
( )

(𝑥). 

And then we get the following expressions: 
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𝑦 𝑅 𝑥, 𝑦
( )

𝛥𝑦
( )

= 𝑦
( )

𝐴
( )

(𝑥)𝛥𝑦
( )

, 

𝑅 𝑥, 𝑦
( )

𝛥𝑦
( )

= 𝐴
( )

(𝑥)𝛥𝑦
( )

, 

𝜑
( )

(𝑥) =
𝑅 𝑥, 𝑦

( )
𝛥𝑦

( )

∑ 𝑅 𝑥, 𝑦
( )

𝛥𝑦
( )

=
𝐴

( )
(𝑥)𝛥𝑦

( )

∑ 𝐴
( )

(𝑥)𝛥𝑦
( )

, 𝑙 = 0,1, ⋯ , 𝑛, 

by these expressions we have 

𝑓 (𝑥) =
𝐴

( )
(𝑥)𝛥𝑦

( )

∑ 𝐴
( )

(𝑥)𝛥𝑦
( )

⋅ 𝑦
( )

= 𝜑
( )

(𝑥)𝑦
( ) (14)

Clearly the function group 𝛷(𝑛) = 𝜑
( )

(𝑥) 𝑙 = 0,1, ⋯ , 𝑛  is linearly 

independent and meets the normalizing condition: 

(∀𝑥 ∈ [𝑎, 𝑏]) ∑ 𝜑
( )

(𝑥) ≡ 1 . 

And the group is a dimension normed linear subspace of 𝐶[𝑎, 𝑏]. If 𝛷(𝑛) is 
regarded as a base function group, then 

𝑓 (𝑥) = 𝜑
( )

(𝑥)𝑦
( ) (15)

is just a piecewise interpolation function. 
At last, we prove that the sequence {𝑓 (𝑥)}  uniformly converges to 𝑓(𝑥) in 

[𝑎, 𝑏]. 

In fact, for any given 𝑥 ∈ [𝑎, 𝑏], clearly (∃𝑖 ∈ {1,2, ⋯ , 𝑛}) 𝑥 ∈ 𝑥
( )

, 𝑥
( ) , 

and then 

𝑓 (𝑥) = ∑ 𝜑
( )

(𝑥)𝑦
( )

= 𝜑
( )

(𝑥)𝑦
( )

+ 𝜑
( )

(𝑥)𝑦
( ). 

Because 𝑓(𝑥) is continuous, there exist two points 𝜉( )
, 𝜂

( )
∈ 𝑥

( )
, 𝑥

( ) , such 

that 

𝑓 𝜉
( )

= 𝑚𝑖𝑛
∈

( )
,

( )
𝑓(𝑥),  𝑓 𝜂

( )
= 𝑚𝑎𝑥

∈
( )

,
( )

𝑓(𝑥). 

Clearly the following expressions are true: 

(∀𝑙 ∈ {0,1, ⋯ , 𝑛}) 𝜑
( )

([𝑎, 𝑏]) = [0,1] , 

∀𝑥 ∈ 𝑥
( )

, 𝑥
( )

𝜑
( )

(𝑥) + 𝜑
( )

(𝑥) = 1 . 

So we have the result: for any 𝑥 ∈ 𝑥
( )

, 𝑥
( ) , we have 

𝑓 𝜉
( )

≤ 𝜑
( )

(𝑥)𝑦
( )

+ 𝜑
( )

𝑦
( )

≤ 𝑓 𝜂
( ) . 

By noticing the facts 𝑦( )
= 𝑓 𝑥

( ) and𝑦
( )

= 𝑓 𝑥
( ) , for any point 𝑥 ∈

𝑥
( )

, 𝑥
( ) , we have the following inequation: 

|𝑓(𝑥) − 𝑓 (𝑥)| = 𝑓(𝑥) − 𝜑
( )

(𝑥)𝑦
( )

+ 𝜑
( )

𝑦
( )

≤ 𝑓 𝜂
( )

− 𝑓 𝜉
( ) . 

Also, for 𝑓(𝑥) being uniformly continuous in [𝑎, 𝑏], for any given 𝜀 > 0, there 

exists 𝛿 > 0, such that 
(∀𝑢, 𝑣 ∈ [𝑎, 𝑏])(|𝑢 − 𝑣| < 𝛿 ⇒ |𝑓(𝑢) − 𝑓(𝑣)| < 𝜀). 
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Now we suppose that ℎ(𝑛) = < 𝛿, then 𝑓 𝜂
( )

− 𝑓 𝜉
( )

< 𝜀, and we 

have 

∀𝑥 ∈ 𝑥
( )

, 𝑥
( )

(|𝑓(𝑥) − 𝑓 (𝑥)| < 𝜀). 

As ℎ(𝑛) → 0 ⇔ 𝑛 → ∞, so 
(∃𝑁 ∈ ℕ )(∀𝑛 ∈ ℕ )(𝑛 > 𝑁 ⇒ ℎ(𝑛) < 𝛿); 

hence 

(∀𝑛 ∈ ℕ ) 𝑛 > 𝑁 ⇒ (∀𝑥 ∈ [𝑎, 𝑏])(|𝑓(𝑥) − 𝑓 (𝑥)| < 𝜀) . 

This means that {𝑓 (𝑥)} uniformly converges to 𝑓(𝑥) in 𝑋 = [𝑎, 𝑏]. 

Case 2. Assume 𝑓(𝑥)  be not strictly monotonic. Similar to the method in 
Theorem 1, we can have 

𝑅 (𝑥, 𝑦) =∨ 𝐴
( )

(𝑥) ⋅ 𝐵
( )

(𝑦) . 

Based on them, we get a sequence of interpolation functions: 

𝑓 (𝑥) =
𝐴

( )
(𝑥)𝛥𝑦

( )

∑ 𝐴
( )

(𝑥)𝛥𝑦
( )

⋅ 𝑦
( )

= 𝜑
( )

(𝑥)𝑦
( )

, 

where 

𝜑
( )

(𝑥) =

( )
( )

( )

∑
( )

( )
( ) , 𝑙 = 0,1, ⋯ , 𝑛. 

Then in the same way, we know that {𝑓 (𝑥)}  uniformly converges to 𝑓(𝑥) in 

𝑋 = [𝑎, 𝑏]. The proof of the theorem has been finished. 

4. Quantum mechanics representation of classic mechanics 

As we all know, classic mechanics is the scope of macroscopical physics in which 
Newtonian mechanics is its main part. Classic mechanics is very different from 
microphysics, especially with quantum mechanics [10,11]. For example, the motions 
of microscopic particles have wave-particle duality; but the motion of mass points in 
macroscopical physics only has mass point characters and no wave natures; in other 
words, there is no wave-mass-point duality in macroscopical physics. However, there 
has ever existed a correspondence principle: considering a kind of motion state in 

quantum physics, when quantum number 𝑛 → ∞, the limit situation of the motion state 
in quantum physics must become a kind of motion state in macroscopical physics. In 
other words, the limit situation of the motion law in quantum physics is just some 
motion law in macroscopical physics. 

Generally, Bohr suggested a generalized correspondence principle: the limited 
situation of any new theory must be in line with some old theory. 

It is worth noting that the above correspondence principle or generalized 
correspondence principle is all of unipolarity: the limit situation of the motion law in 
quantum physics is just some motion law in macroscopical physics, but the converse 
principle is clearly meaningless. 

However, we can consider an important problem: must any one of the motion 
states in macroscopical physics be the limit situation of some of the motion states in 
quantum physics? 
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Apparently, this problem has not been observed, and of course, there is no answer. 
For example, we consider the well-known projectile motion. As we all know, a 
projectile motion can be expressed by the equation of locus of the projectile motion as 
follows: 

𝑦(𝑥) = 𝑥 𝑡𝑎𝑛 𝛼 −
𝑔

2𝑣 𝑐𝑜𝑠 𝛼
𝑥 , 

𝑥 ∈ [0, 𝑑 ], 𝑑 = 𝑠𝑖𝑛 2 𝛼, 

where 𝛼 ∈ 0,  is a mass ejection angle, 𝑑 ∈ (0, +∞) is the maximum range of fire, 

and the initial velocity is repressed by 𝑣 ∈ (0, +∞); here the air friction is omitted. 

Clearly 𝑦(𝑥) ∈ 𝐶[0, 𝑑 ], i.e., a projectile motion can be described by a unary 
continuous function. For this continuous function, can we find some microscopic 
particles such that the limit of the group behavior of these microscopic particles is just 

this continuous function 𝑦(𝑥) when quantum number 𝑛 → ∞? 
In this paper, we will give a positive answer to this problem. It is easy to 

understand that almost all laws of classic mechanics are described by continuous 
functions. So, we can generalize the above problem as such problem: for any 

continuous function 𝑓, unary continuous function, or multivariate continuous function, 
which should describe some motion law of some mass point in microscopic physics, 
can we find some microscopic particles such that the limit of the group behavior of 

these microscopic particles is just this continuous function 𝑓 when quantum number 

𝑛 → ∞? 
Now we start to try to solve the problem. 
Firstly, we consider the case of unary continuous functions. For any a unary 

continuous function 𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] , we can use a linear transformation as the 
following: 

𝑢: [𝑎, 𝑏] → [0,1], 𝑥 ↦ 𝑢 = 𝑢(𝑥) =
𝑥 − 𝑎

𝑏 − 𝑎
 

to redefine the continuous function 𝑓(𝑥) on the closed interval [0,1], i.e., 

𝑔(𝑢) = 𝑓((𝑏 − 𝑎)𝑢 + 𝑎) ∈ 𝐶[0,1]. 
Therefore, without loss of generality, we can only consider such continuous 

functions as being 𝑓(𝑥) ∈ 𝐶[0,1]. However, we do not consider constant functions 
because constant functions are almost meaningless in physics. 

Theorem 3. Given arbitrarily a non-constant function 𝑓(𝑥) ∈ 𝐶[0,1], there must exist 
some microscopic particles such that the limit of the group behavior of these 

microscopic particles is just this continuous function 𝑓(𝑥) when the quantum number 

𝑛 → ∞. 
Proof. Step 1. We consider the wave function of a microscopic particle in infinite 
deep square potential well. 

As a matter of fact, we take a particle 𝑀 with quality 𝑚, and 𝑀 moves along 𝑂𝑥 

axis and is of determined momentum 𝑝 = 𝑚𝑣  and determined energy 𝐸 = 𝑚𝑣 =

 where 𝑣  is the velocity of 𝑀 moving along 𝑂𝑥. We take a special infinite deep 

square potential well as follows (see Figure 2): 

𝑉(𝑥) =
0,      𝑥 ∈ [0,1],
+∞,  𝑥 ∈ (−∞, 0) ∪ (1, +∞)
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The particle 𝑀 is completely free inside the potential well; only at two endpoints 

𝑥 = 0, 𝑥 = 1, there are infinite forces to impose restrictions on 𝑀 not to escape. 

 
Figure 2. Particle movement in the infinite deep square potential well. 

At outside of the potential well, i.e., 𝑥 ∈ (−∞, 0) ∪ (1, +∞), we now notice the 
steady state Schrodinger Equation as the following: 

−
ℏ

+ 𝑉(𝑥) 𝜓(𝑥) = 𝐸𝜓(𝑥). 

It is easy to know that 𝜓(𝑥) = 0; so the probability of finding the particle in the 

interval (−∞, 0) ∪ (1, +∞) is zero. However inside the potential well, i.e., 𝑥 ∈ [0,1], 

we have 𝑉(𝑥) = 0; then the Schrodinger Equation turn into the following form: 

( )
= −

√

ℏ
𝜓(𝑥). 

Let 𝑘 =
√

ℏ
; then we have the following form: 

( )
+ 𝑘 𝜓(𝑥) = 0, 

which is the equation of motion of a simple harmonic oscillation, and its general 
solution is as follows: 

𝜓(𝑥) = 𝐴 𝑠𝑖𝑛 𝑘 𝑥 + 𝐵 𝑐𝑜𝑠 𝑘 𝑥, 

where 𝐴, 𝐵  are two arbitrary constants that can be determined by some boundary 
conditions. 

Then, what are the boundary conditions? In fact, in quantum mechanics, the 
solution of a Schrodinger Equation in three-dimensional space, i.e., the wave function 

𝛹(𝑥, 𝑦, 𝑧, 𝑡) should satisfy the following established standard conditions: 

i) ∫ |𝛹|
ℝ

𝑑𝑥𝑑𝑦𝑑𝑧 = 1; 

ii) 𝛹 and its three partial derivatives , ,  are continuous everywhere; 

iii) 𝛹 is a single-valued function about coordinates. 
By means of the above conditions, when the potential function approaches 

infinite, based on the continuity of 𝜓(𝑥), we can get the result as being 𝜓(0) =

𝜓(1) = 0, which can make the solution be continuous at both inside and outside of 
the potential well. Because of the following expression: 

0 = 𝜓(0) = 𝐴 𝑠𝑖𝑛 0 + 𝐵 𝑐𝑜𝑠 0 = 𝐵, 

we get 𝐵 = 0; thus we have the following equation: 

𝜓(𝑥) = 𝐴 𝑠𝑖𝑛 𝑘𝑥. 

And then we take notice of the equation: 0 = 𝜓(1) = 𝐴 𝑠𝑖𝑛 𝑘, if 𝐴 = 0, then 

𝜓(𝑥) ≡ 0 which is a trivial solution and cannot be normalized. Thus we only get the 

result: 𝑠𝑖𝑛 𝑘 = 0, and we know the following fact: 
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𝑘 = 0, ±𝜋, ±2𝜋, ±3𝜋, ⋯ 

Clearly 𝑘 = 0 is meaningless, for this can also make that 𝜓(𝑥) ≡ 0. Besides, 𝑘 

with negative values cannot generate any new solutions because of the fact that 𝑠𝑖𝑛( −

𝜃) = − 𝑠𝑖𝑛 𝜃 and we can make the minus signs enter into the coefficient 𝐴. Therefore, 
we have the result: 

𝑘 = 𝑘 = 𝑛𝜋,  𝑛 = 1,2,3, ⋯ 

We should notice the fact that, the boundary condition at 𝑥 = 1 is not used to 

determine the coefficient 𝐴, but to determine the energy 𝐸 because of the expression: 

𝑘 =
√

ℏ
, i.e., 

𝐸 = 𝐸 =
ℏ 𝑘

2𝑚
=

𝑛 𝜋 ℏ

2𝑚
,  𝑛 = 1,2,3, ⋯ (16)

It is well-known that 𝐸 =
ℏ

 is ground state, and others are follows: 

𝐸 = 4𝐸 , 𝐸 = 9𝐸 , 𝐸 = 16𝐸 , ⋯ 
which means that the energy of a particle can only take discrete values; in other words, 

the energy of a particle is quantized. And positive integer 𝑛 is called the quantum 
number of the energy of a particle. So we can learn that the quantization of the energy 
of a particle is very natural in quantum mechanics. 

Thus the solution of the Schrodinger Equation can be expressed by the quantum 
number as the following: 

𝜓 (𝑥) = 𝐴 𝑠𝑖𝑛( 𝑛𝜋𝑥),  𝑛 = 1,2,3, ⋯ (17)

In order to determine the coefficient 𝐴, we can use the normalization condition 

∫ |𝜓 (𝑥)| 𝑑𝑥 = 1  to get 𝐴 = √2 . Then we get the solution of the Schrodinger 

Equation inside the potential well as the following: 

𝜓 (𝑥) = √2 𝑠𝑖𝑛( 𝑛𝜋𝑥), 𝑥 ∈ [0,1],  𝑛 = 1,2,3, ⋯ (18)

Let 

𝛼 (𝑥) = 𝑠𝑖𝑛( 𝑛𝜋𝑥),  𝑥 ∈ [0,1],  𝑛 = 1,2,3, ⋯, 
and we have the following form: 

𝜓 (𝑥) = √2𝛼 (𝑥), 𝑥 ∈ [0,1],  𝑛 = 1,2,3, ⋯ (19)

The function 𝛼 (𝑥) is called the essence wave function of the wave function 

𝜓 (𝑥). 
Step 2. Based on an important fact that will be described as follows, we should 

consider weakening three standard conditions about the wave function 𝛹(𝑥, 𝑦, 𝑧, 𝑡) 
mentioned above. 

As a matter of fact, we can see that the derived function 
( )

 of the wave 

function 𝜓 (𝑥) = √2 𝑠𝑖𝑛( 𝑛𝜋𝑥) is not continuous at 𝑥 = 0,1. For this we only notice 
the following implication is true: 

𝜕𝜓 (𝑥)

𝜕𝑥
=

√2

𝑛𝜋
𝑐𝑜𝑠( 𝑛𝜋𝑥) ⇒

𝜕𝜓 (0)

𝜕𝑥
=

√2

𝑛𝜋
≠ 0, 

𝜕𝜓 (1)

𝜕𝑥
=

√2

𝑛𝜋
𝑐𝑜𝑠( 𝑛𝜋) ≠ 0 . 

It is well known that the movement of a particle in the infinite potential well is a 
typical example in quantum mechanics. However, as we have learned above, its wave 

function 𝛹 and its three partial derivatives , ,  are not continuous at 
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everywhere (of course, in above case, there is only one partial derivative , in fact 

=  here). 

We should not forget the fact that wave function 𝛹 does not represent a physical 

wave but only a mathematical wave; in other words, |𝛹|  is a probability density 
function where it should be normalized. 

We also know such a fact that, in probability theory, any probability density 
function is not required to be continuous everywhere but only required to be almost 
everywhere continuous. Thus, we have enough reason to revise the three standard 

conditions which the wave function 𝛹(𝑥, 𝑦, 𝑧, 𝑡) should satisfy mentioned above to be 
as the following: 

(i) ∫ |𝛹|
ℝ

𝑑𝑥𝑑𝑦𝑑𝑧 = 1; 

(ii) 𝛹 and its three partial derivatives , ,  cannot be continuous only at finite 

points (clearly the requirement is a little stronger than almost everywhere 
continuous); 

(iii) 𝛹 is a single-valued function about coordinates. 

Moreover, from the viewpoint of Von Neumann, wave function 𝛹 is defined in 

a Hilbert space ℒ (ℝ ), where the operations in quantum mechanics (momentum, 
work, and so on) are inner product operations, which may be enlightened by 

∫ |𝛹|
ℝ

𝑑𝑥𝑑𝑦𝑑𝑧 = 1 and form a mathematical formalization structure. We all know 

the fact that, in a Hilbert space ℒ (ℝ ), we have no need to require wave function 𝛹 
to be continuous at everywhere but almost everywhere continuous to be enough. 

Step 3. We continue to consider the wave function of the particle in the one-
dimension infinite deep potential well. We have known its general solution to be as 

𝜓(𝑥) = 𝐴 𝑠𝑖𝑛 𝑘 𝑥 + 𝐵 𝑐𝑜𝑠 𝑘 𝑥, 

where 𝐴, 𝐵  are arbitrary constants which can be determined by the boundary 

conditions. This time, we suppose 
( )

 be continuous at the boundary points 𝑥 = 0,1. 

We take notice of the following implication: 
( )

= 𝑐𝑜𝑠 𝑘 𝑥 − 𝑠𝑖𝑛 𝑘 𝑥 ⇒ 0 =
( )

= ⇒ 𝐴 = 0. 

Then we get the following result: 

𝜓(𝑥) = 𝐵 𝑐𝑜𝑠 𝑘 𝑥. 

And then we pay attention to the equation 
( )

= − 𝑠𝑖𝑛 𝑘 𝑥, so that 

0 =
( )

= − 𝑠𝑖𝑛 𝑘. 

Because ≠ 0, we solve out the values of 𝑘 as follows: 

𝑘 = 𝑘 = 𝑛𝜋,  𝑛 = 1,2,3, ⋯ 

Very similar to the method in Step 1, we have the expression of 𝐸  again as 
follows: 

𝐸 = 𝐸 =
ℏ 𝑘

2𝑚
=

𝑛 𝜋 ℏ

2𝑚
,  𝑛 = 1,2,3, ⋯ 

So the solution of the Schrodinger Equation can be expressed by means of 
quantum numbers as the following: 

𝜑 (𝑥) = 𝐵 𝑐𝑜𝑠( 𝑛𝜋𝑥),  𝑛 = 1,2,3, ⋯ (20)
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Again by using the normalization condition, we can get that 𝐵 = √2 . Thus 
another solution of the Schrodinger Equation in the potential well is as follows: 

𝜑 (𝑥) = √2 𝑐𝑜𝑠( 𝑛𝜋𝑥), 𝑥 ∈ [0,1],  𝑛 = 1,2,3, ⋯ (21)

Let 𝛽 (𝑥) = 𝑐𝑜𝑠( 𝑛𝜋𝑥), 𝑥 ∈ [0,1], 𝑛 = 1,2,3, ⋯, and we have 

𝜑 (𝑥) = √2𝛽 (𝑥), 𝑥 ∈ [0,1],  𝑛 = 1,2,3, ⋯ (22)

The function 𝛽 (𝑥) is also called the essence wave function of the wave function 

𝜑 (𝑥). 

It is interesting to note that the wave function 𝜑 (𝑥) = √2 𝑐𝑜𝑠( 𝑛𝜋𝑥) is not 

continuous at boundary points 𝑥 = 0,1 this time. Besides, since 

𝜓 𝑥 + = √2 𝑠𝑖𝑛 𝑛𝜋 𝑥 + = √2 𝑠𝑖𝑛 𝑛𝜋𝑥 + = √2 𝑐𝑜𝑠( 𝑛𝜋𝑥) = 𝜑 (𝑥), 

when the quantum number 𝑛 is very large, the two wave functions 𝜓 (𝑥) and 𝜑 (𝑥) 

are almost no different; in other words, 𝜑 (𝑥)  is just the situation that 𝜓 (𝑥) 

translates a  phase position to the right side. 

For visualization, the function 𝜓 (𝑥) can be vividly called Adam wave function 

and 𝜑 (𝑥) be called Eve wave function. In fact, we care more about the function 
family of essence wave functions of Adam and Eve wave functions, denoted by 
{𝛼 (𝑥), 𝛽 (𝑥)} , and we can call 𝛼 (𝑥) to be Adam essence wave function and 

𝛽 (𝑥) to be Eve essence wave function. Clearly 𝛼 (𝑥) and 𝛽 (𝑥) are defined on the 

unit interval 𝑋 = [0,1]. 

Step 4. Supplementary instruction for the revision of the three standard 

requirements on the wave function 𝛹. 
It is well known that, in physics, harmonic oscillation is often described by 

complex exponential form; for example, the two wave functions that we just get can 
be described as the following: 

𝛹(𝑥) = √2𝑒 ( ) = √2 𝑐𝑜𝑠( 𝑛𝜋𝑥) + 𝑖√2 𝑠𝑖𝑛( 𝑛𝜋𝑥) = 𝜑 (𝑥) + 𝑖𝜓 (𝑥) (23)

In classic physics, this kind of expression is said to be more convenient for 
operation but with no more physical significance. However, here we can find the 

physical significance of the complex variables function 𝛹(𝑥) = √2𝑒  coming 

from quantum mechanics. As its real part of the 𝛹(𝑥) = √2𝑒 , Eve wave function 

as being 𝜑 (𝑥) = √2 𝑐𝑜𝑠( 𝑛𝜋𝑥) is determined by the second boundary condition; and 

its imaginary part, Adam wave function as being 𝜓 (𝑥) = √2 𝑠𝑖𝑛( 𝑛𝜋𝑥)  is 

determined by the first boundary condition. These mean that the two boundary 
conditions are all useful and we cannot give up any one of them. Therefore, the 
revision of the three standard requirements is quite reasonable. 

Step 5. The extension of the domain of definition of the wave functions. 

For any finite closed interval [𝑎, 𝑏], by means of the linear transformation as 
follows: 

𝑡 = (𝑏 − 𝑎)𝑥 + 𝑎, 

the essence wave function family {𝑠𝑖𝑛( 𝑛𝜋𝑥), 𝑐𝑜𝑠( 𝑛𝜋𝑥)}  defined on the interval 

[0,1] can be extended to the closed interval [𝑎, 𝑏]; we rewrite the variable 𝑡 to be 𝑥, 
and we have the following form: 

𝑠𝑖𝑛
( )

, 𝑐𝑜𝑠
( )

, 𝑥 ∈ [𝑎, 𝑏]. 
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We can easily know that the mapping as follows 

𝑢: [𝑎, 𝑏] → [0,1],  𝑥 ↦ 𝑢(𝑥) =
𝑥 − 𝑎

𝑏 − 𝑎
 

is a topological homeomorphism from [𝑎, 𝑏] to [0,1]. This means that the essence 

wave function family {𝑠𝑖𝑛( 𝑛𝜋𝑥), 𝑐𝑜𝑠( 𝑛𝜋𝑥)}  and the family of essence wave 

functions 

𝑠𝑖𝑛
𝑛𝜋(𝑥 − 𝑎)

𝑏 − 𝑎
, 𝑐𝑜𝑠

𝑛𝜋(𝑥 − 𝑎)

𝑏 − 𝑎
 

is not essentially different; so they can be regarded the same. 
It is worth noting that, for Adam wave function, in the infinite deep square 

potential well, it should be written as the following complete form: 

𝛹(𝑥, 𝑡) = 𝜓 (𝑥)𝑒 ℏ = √2 𝑠𝑖𝑛( 𝑛𝜋𝑥)𝑒 ℏ , 𝑥 ∈ [0,1] (24)

where we only write out the expression just as being 𝑥 ∈ [0,1]. And for Eve wave 
function, in the infinite deep square potential well, it should be written as the following 
complete form: 

𝛹(𝑥, 𝑡) = 𝜑 (𝑥)𝑒 ℏ = √2 𝑐𝑜𝑠( 𝑛𝜋𝑥)𝑒 ℏ , 𝑥 ∈ [0,1] (25)

where we also only write out the expression just as being 𝑥 ∈ [0,1]. 

Based on the statistical interpretation of wave functions, |𝛹(𝑥, 𝑡)|  should be a 
kind of probability density function. Then from Equations (24) and (25), we can learn 

that 2 𝑠𝑖𝑛 ( 𝑛𝜋𝑥) is a probability density function and 2 𝑐𝑜𝑠 ( 𝑛𝜋𝑥) is a probability 

density function too. We have enough reason to call 𝑠𝑖𝑛 ( 𝑛𝜋𝑥)  and 𝑐𝑜𝑠 ( 𝑛𝜋𝑥) 
essence probability density function of the probability density functions. So we get the 
essence probability density function family of Adam wave functions and Eve functions 
as the following: 

{𝑠𝑖𝑛 ( 𝑛𝜋𝑥), 𝑐𝑜𝑠 ( 𝑛𝜋𝑥)}  (26)

It is easy to see that {𝑠𝑖𝑛 ( 𝑛𝜋𝑥), 𝑐𝑜𝑠 ( 𝑛𝜋𝑥)}  is of two-phase normalization 

property: 

𝑠𝑖𝑛 ( 𝑛𝜋𝑥) + 𝑐𝑜𝑠 ( 𝑛𝜋𝑥) = 1. 
Step 6. The construction of the sequence of two-dimension probability density 

functions. 

Given arbitrarily a continuous function 𝑓 ∈ 𝐶[0,1], clearly 𝑓([0,1]) is a closed 

interval, denoted by 𝑌 = [𝑐, 𝑑] = 𝑓([0,1]). Let 

𝑋(𝑛) = {𝑥 ∈ [0,1]|𝑠𝑖𝑛( 𝑛𝜋𝑥) = 0, 𝑐𝑜𝑠( 𝑛𝜋𝑥) = 0}. 

And we can easily know that card(𝑋(𝑛)) = 2𝑛 + 1 . Hence we have the 
following expression: 

𝑋(𝑛) = 𝑥
( )|𝑖 = 0,1,2, ⋯ ,2𝑛 , 

where 𝑥( )
= ,  𝑖 = 0,1,2, ⋯ ,2𝑛. This expression means that the closed interval 

𝑋 = [0,1] are equidistantly partitioned as the following: 

𝛥𝑥
( )

= 𝑥
( )

− 𝑥
( )

= ,  𝑖 = 1,2, ⋯ ,2𝑛. 

And we let 

𝑌(𝑛) = 𝑦
( )

= 𝑓 𝑥
( )

𝑖 = 0,1,2, ⋯ ,2𝑛 . 
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For convenience, let 𝑚 = 2𝑛; but be careful, here 𝑚 means subscript but not the 
quality of some particle. We are going to discuss our problem from the following two 
cases. 

Case 1. Suppose 𝑓(𝑥) is a strict monotonous function. It assumes that 𝑓(𝑥) be a 
strict monotonous rising function because its proof is not of essence difference when 

𝑓(𝑥) is a strict monotonous declining function. Therefore, we have the following 
partition: 

𝑐 = 𝑦
( )

< 𝑦
( )

< ⋯ < 𝑦
( )

< 𝑦
( )

= 𝑑. 

Then we consider the particle wave functions defined in the following 
subintervals one by one: 

𝑦
( )

, 𝑦
( )

, 𝑦
( )

, 𝑦
( )

, ⋯ , 𝑦
( )

, 𝑦
( )

, 𝑦
( )

, 𝑦
( ) . 

Firstly, we treat with it in the closed interval 𝑦
( )

, 𝑦
( ) . And we consider the 

movement of a particle in the infinite deep square potential well that the closed interval 

0,2 𝑦
( )

− 𝑦
( )  is just the bottom margin of the potential well. The particle is 

denoted by 𝑀( )  which can be regarded as a descendant particle generated by the 

Adam wave function and Eve wave function of the original particle 𝑀 in the case of 

energy level being 𝑛 . The descendant particle 𝑀
( )  moves along 𝑂𝑦  axis with 

determined quality 𝑚
( )  and determined momentum 𝑝

( )
= 𝑚

( )
𝑣

( , )  and 

determined energy 

𝐸
( )

= 𝑚
( )

𝑣
( , )

=
( )

( ) , 

where 𝑣( , ) is the velocity of movement of 𝑀( )  along 𝑂𝑦 axis. By means of the 

continuity of the wave function, it is easy to get the solution of the wave function in 

0,2 𝑦
( )

− 𝑦
( )  as following: 

𝜓
( , )

(𝑦) =
2

2 𝑦
( )

− 𝑦
( )

𝑠𝑖𝑛
𝑝𝜋

2 𝑦
( )

− 𝑦
( )

𝑦, 𝑝 = 1,2,3, ⋯ (27)

Then again, by means of the continuity of the derived function of the wave 
function, we can get another solution of the wave function in the closed interval 

0,2 𝑦
( )

− 𝑦
( )  as following: 

𝜑
( , )

(𝑦) =
2

2 𝑦
( )

− 𝑦
( )

𝑐𝑜𝑠
𝑝𝜋

2 𝑦
( )

− 𝑦
( )

𝑦, 𝑝 = 1,2,3, ⋯ (28)

Now we care more for the ground state of 𝜓( , )
(𝑦) and 𝜑( , )

(𝑦), i.e., the wave 

functions when 𝑝 = 1 as follows:  

𝜓
( , )

(𝑦) =
2

2 𝑦
( )

− 𝑦
( )

𝑠𝑖𝑛
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦, (29)

𝜑
( , )

(𝑦) =
2

2 𝑦
( )

− 𝑦
( )

𝑐𝑜𝑠
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦, (30) 
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We can omit the amplitudes of the wave and keep the essence wave function and 
do squaring operation on the essence wave functions, and get the probability essence 
wave functions as the following: 

𝑠𝑖𝑛
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦, 𝑐𝑜𝑠
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 (31)

The graphs of the probability essence wave functions in 0, 𝑦
( )

− 𝑦
( )  are 

shown in Figure 3. 

 

Figure 3. The probability essence wave functions in 0, 𝑦
( )

− 𝑦
( ) . 

Next, we make a coordinate translation: 𝑡 = 𝑦 + 𝑦
( ) , and then we have the 

following expressions: 

𝑠𝑖𝑛
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 = 𝑠𝑖𝑛
𝜋

2 𝑦
( )

− 𝑦
( )

𝑡 − 𝑦
( )

, 

𝑐𝑜𝑠 ( ) ( ) 𝑦 = 𝑐𝑜𝑠 ( ) ( ) 𝑡 − 𝑦
( ) . 

Thus we transfer the probability essence wave functions defined in the closed 

interval 0, 𝑦
( )

− 𝑦
( )  into the probability essence wave functions in in closed 

interval 𝑦
( )

, 𝑦
( ) . And we rewrite the variable 𝑡 back to 𝑦, and then we get the 

following expressions: 

𝑠𝑖𝑛
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )

,  𝑐𝑜𝑠
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )  (32)

The graphs of the probability essence wave functions in 𝑦
( )

, 𝑦
( )  are shown in 

Figure 4. 

 

Figure 4. The probability essence wave functions in 𝑦
( )

, 𝑦
( ) . 
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In that way, we can regard the following expression 

𝑠𝑖𝑛 ( ) ( ) 𝑦 − 𝑦
( ) , 

as Adam probability essence wave function of the movement of the descendant 

particle 𝑀( ) in 𝑦
( )

, 𝑦
( ) , and regard the following expression 

𝑐𝑜𝑠 ( ) ( ) 𝑦 − 𝑦
( ) , 

as Eve probability essence wave function of the movement of the descendant particle 

𝑀
( ) in 𝑦

( )
, 𝑦

( ) . 

In the same way, we can get Adam and Eve probability essence wave functions 

of the movement of the descendant particles 𝑀( )
, ⋯ , 𝑀

( )  in the closed intervals 

𝑦
( )

, 𝑦
( )

, ⋯ , 𝑦
( )

, 𝑦
( )  respectively as the following: 

𝑠𝑖𝑛
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )

,  𝑐𝑜𝑠
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )

, 

⋯ ⋯ 

𝑠𝑖𝑛 ( ) ( ) 𝑦 − 𝑦
( )

,  𝑐𝑜𝑠 ( ) ( ) 𝑦 − 𝑦
( ) . 

We get all these graphs of the probability essence wave functions together in the 
following closed intervals: 

𝑦
( )

, 𝑦
( )

,  𝑦
( )

, 𝑦
( )

, ⋯ , 𝑦
( )

, 𝑦
( )  

and they are shown in Figure 5. 

 

Figure 5. All the probability essence wave functions in 𝑦
( )

, 𝑦
( )

, ⋯ , 𝑦
( )

, 𝑦
( ) . 

Now we need to summarize the work that we have done as follows: 

When 𝑥 ∈ 𝑥
( )

, 𝑥
( ) , from the information of Adam and Eve probability 

essence wave functions 𝑠𝑖𝑛 ( 𝑛𝜋𝑥) and 𝑐𝑜𝑠 ( 𝑛𝜋𝑥) at the nodes as the following: 

𝑦
( )

= 𝑓 𝑥
( )

,  𝑦
( )

= 𝑓 𝑥
( ) , 

we get Adam and Eve probability essence wave functions in 𝑦
( )

, 𝑦
( )  as follows: 

𝑠𝑖𝑛 ( ) ( ) 𝑦 − 𝑦
( )

,  𝑐𝑜𝑠 ( ) ( ) 𝑦 − 𝑦
( ) . 

They have some interesting properties: one is that they can have the form of 
Adam probability essence wave functions; another is that they can also have the form 
of Eve probability essence wave functions; they are all at ground state, and they are 
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all regarded as the probability essence wave functions of the descendant particles of 

𝑀 when the quantum number is the natural number 𝑛. 

When 𝑥 ∈ 𝑥
( )

, 𝑥
( ) , from the information of Adam and Eve probability 

essence wave functions 𝑠𝑖𝑛 ( 𝑛𝜋𝑥) and 𝑐𝑜𝑠 ( 𝑛𝜋𝑥) at the nodes as the following: 

𝑦
( )

= 𝑓 𝑥
( )

, 𝑦
( )

= 𝑓 𝑥
( ) , we can get Adam and Eve probability essence 

wave functions in 𝑦
( )

, 𝑦
( )  as follows: 

𝑠𝑖𝑛 ( ) ( ) 𝑦 − 𝑦
( )

,  𝑐𝑜𝑠 ( ) ( ) 𝑦 − 𝑦
( ) . 

They also have the properties: one is that they can have the form of Adam 
probability essence wave functions; another is that they can also have the form of Eve 
probability essence wave functions; they are all at ground state, and they are all 

regarded as the probability essence wave functions of the descendant particles of 𝑀 

when the quantum number is also the natural number 𝑛. 

At last, when 𝑥 ∈ 𝑥
( )

, 𝑥
( ) , from the information of Adam and Eve 

probability essence wave functions 𝑠𝑖𝑛 ( 𝑛𝜋𝑥) and 𝑐𝑜𝑠 ( 𝑛𝜋𝑥) at the nodes: 𝑦( )
=

𝑓 𝑥
( )

, 𝑦
( )

= 𝑓 𝑥
( ) , we get Adam and Eve probability essence wave functions 

in 𝑦
( )

, 𝑦
( )  as follows: 

𝑠𝑖𝑛 ( ) ( ) 𝑦 − 𝑦
( )

,  𝑐𝑜𝑠 ( ) ( ) 𝑦 − 𝑦
( ) . 

They have the same properties: one is that they can have the form of Adam 
probability essence wave functions; another is that they can also have the form of Eve 
probability essence wave functions; they are all at ground state, and they are all 

regarded as the probability essence wave functions of the descendant particles of 𝑀 

when quantum number is𝑛. 
Based on these probability essence wave functions, we try to make some useful 

base functions defined respectively on the intervals [0,1] and [𝑐, 𝑑] = 𝑦
( )

, 𝑦
( )  

denoted as follows: 

𝐴
( )

, 𝐴
( )

, ⋯ , 𝐴
( )

, 𝐵
( )

,  𝐵
( )

, ⋯ , 𝐵
( )

： 

𝐴
( )

(𝑥) = 𝜒
,

(𝑥) 𝑐𝑜𝑠 ( 𝑛𝜋𝑥), 

𝐴
( )

(𝑥) = 𝜒
,

(𝑥) 𝑠𝑖𝑛 ( 𝑛𝜋𝑥), 

𝐴
( )

(𝑥) = 𝜒
,

(𝑥) 𝑐𝑜𝑠 ( 𝑛𝜋𝑥) 

⋯ ⋯ 

𝐴
( )

(𝑥) = 𝜒
,

(𝑥) 𝑐𝑜𝑠 ( 𝑛𝜋𝑥), 

𝐴
( )

(𝑥) = 𝜒
,

(𝑥) 𝑠𝑖𝑛 ( 𝑛𝜋𝑥), 

𝐴
( )

(𝑥) = 𝜒
,

(𝑥) 𝑐𝑜𝑠 ( 𝑛𝜋𝑥); 

𝐵
( )

(𝑦) = 𝜒 ( )
,

( ) (𝑦) 𝑐𝑜𝑠
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )

, 
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𝐵
( )

(𝑦) = 𝜒 ( )
,

( ) (𝑦) 𝑠𝑖𝑛
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )

+ 𝜒 ( )
,

( ) (𝑦) 𝑐𝑜𝑠
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )

, 

⋯ ⋯ 

𝐵
( )

(𝑦) = 𝜒 ( )
,

( ) (𝑦) 𝑠𝑖𝑛
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )

+ 𝜒 ( )
,

( ) (𝑦) 𝑐𝑜𝑠
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )

, 

𝐵
( )

(𝑦) = 𝜒 ( )
,

( ) (𝑦) 𝑠𝑖𝑛 ( ) ( ) 𝑦 − 𝑦
( ) , 

where 𝜒  is the characteristic function of the set 𝐴; for example, 

𝜒
,

(𝑥) =
1,  𝑥 ∈ 0,

1

𝑚
,

0,  𝑥 ∈ [0,1] − 0,
1

𝑚
,

 

𝜒 ( )
,

( ) (𝑦) =
1,  𝑦 ∈ 𝑦

( )
, 𝑦

( )
,

0,  𝑦 ∈ [𝑐, 𝑑] − 𝑦
( )

, 𝑦
( )

. 

Let us denote two classes of sets as the following: 

𝒜(𝑛) = 𝐴
( )

, 𝐴
( )

, ⋯ , 𝐴
( )

,  ℬ(𝑛) = 𝐵
( )

, 𝐵
( )

, ⋯ , 𝐵
( ) . 

Clearly, they are just the groups of base functions defined respectively on the 

closed intervals 𝑋 = [0,1] and 𝑌 = [𝑐, 𝑑]. Clearly 𝒜(𝑛)  is a linearly independent 

group in the continuous function space 𝐶[0,1] and ℬ(𝑛) is a linearly independent 

group in the continuous function space 𝐶[𝑐, 𝑑]. Put 

𝒜(𝑛) ⋅ ℬ(𝑛) = 𝐴
( )

⋅ 𝐵
( )

𝑖, 𝑗 = 0,1, ⋯ , 𝑚 , 

𝐴
( )

⋅ 𝐵
( )

: [0,1] × [𝑐, 𝑑] → [0,1], 

(𝑥, 𝑦) ↦ 𝐴
( )

⋅ 𝐵
( )

(𝑥, 𝑦) = 𝐴
( )

(𝑥) ⋅ 𝐵
( )

(𝑦). 

It is easy to know that 𝒜(𝑛) ⋅ ℬ(𝑛)  a linearly independent group in the 

continuous function space 𝐶([0,1] × [𝑐, 𝑑]). Now we take the diagonal elements of 

𝒜(𝑛) ⋅ ℬ(𝑛) to make a set as follows: 

𝒞(𝑛) = 𝐴
( )

⋅ 𝐵
( )

𝑖 = 0,1, ⋯ , 𝑚 , 

which is clearly a linearly independent group with 𝑚 + 1 = 2𝑛 + 1 dimension in the 

continuous function space 𝐶([0,1] × [𝑐, 𝑑]). By using 𝒞(𝑛), we can get a sequence of 
binary nonnegative continuous functions as the following: 

𝜇 : [0,1] × [𝑐, 𝑑] → [0,1] 

(𝑥, 𝑦) ↦ 𝜇 (𝑥, 𝑦) =∨ 𝐴
( )

(𝑥) ⋅ 𝐵
( )

(𝑦) ,  𝑛 = 1,2,3, ⋯ 

where 

∨ 𝐴
( )

(𝑥) ⋅ 𝐵
( )

(𝑦) = 𝑚𝑎𝑥 𝐴
( )

(𝑥) ⋅ 𝐵
( )

(𝑦) . 

Then this sequence of binary nonnegative continuous functions as being 
{𝜇 (𝑥, 𝑦)}  are normalized as the following: 

𝑝 (𝑥, 𝑦) = 𝜒[ , ]×[ , ](𝑥, 𝑦)
𝜇 (𝑥, 𝑦)

∫ ∫ 𝜇 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦
,  𝑛 = 1,2,3, ⋯, 

where 

𝜒[ , ]×[ , ](𝑥, 𝑦) =
1,    (𝑥, 𝑦) ∈ [0,1] × [𝑐, 𝑑],

0, (𝑥, 𝑦) ∈ ℝ − [0,1] × [𝑐, 𝑑]
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Therefore {𝑝 (𝑥, 𝑦)}  becomes a sequence of probability density functions 

defined on ℝ , and 𝑝 (𝑥, 𝑦)  is called the probability density function when the 

quantum number is just 𝑛. 

And now by means of the sequence {𝑝 (𝑥, 𝑦)} , we can construct a sequence 

of functions of one variable as follows: 

𝑓 (𝑥) =
∫ 𝑦𝑝 (𝑥, 𝑦) 𝑑𝑦

∫ 𝑝 (𝑥, 𝑦) 𝑑𝑦
,  𝑛 = 1,2,3, ⋯ (33)

Apparently, {𝑓 (𝑥)}  is just the sequence of conditional mathematical 

expectations formed by {𝑝 (𝑥, 𝑦)} . 

Case 2. Suppose 𝑓: 𝑋 → 𝑌 be not strict monotonous function and not constant 
function.  

Because the elements of the set 𝑌(𝑛) may not always satisfy the monotonicity 

about the subscript 𝑖 as like as 𝑦 ≤ 𝑦 ≤ ⋯ ≤ 𝑦 , it is of a little difficulty to make 
the continuous base functions as follows: 

𝐵
( )

(𝑦),  𝑖 = 0,1, ⋯ , 𝑚. 

So we have to make a permutation on the subscript set {0,1, ⋯ , 𝑚}  as the 
following: 

𝜎 =
0 1 ⋯ 𝑚

𝑘 𝑘 ⋯ 𝑘
, (∀𝑖 ∈ {0,1, ⋯ , 𝑚})(𝑘 = 𝜎(𝑖)) 

such that the subscript set after the permutation is denoted by the following symbol: 

𝐾(𝑛) = {𝑘 , 𝑘 , ⋯ , 𝑘 } 
and satisfies the following condition: 

𝑐(𝑛) = 𝑦
( )

≤ 𝑦
( )

≤ ⋯ ≤ 𝑦
( )

= 𝑑(𝑛) (34)

Since Equation (34) shows that the inequalities may not be strict, we have to 
consider the following two situations. 

1) Assume that 𝑐(𝑛) = 𝑦
( )

< 𝑦
( )

< ⋯ < 𝑦
( )

= 𝑑(𝑛) . Based on these nodes 

𝑦
( )

, 𝑦
( )

, ⋯ , 𝑦
( )  in [𝑐, 𝑑] and doing in imitation of Case 1, we can get the 

continuous base functions 𝐵( )as the following: 

𝐵
( )

(𝑦) = 𝜒 ( )
,

( ) (𝑦) 𝑐𝑜𝑠
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )

, 

𝐵
( )

(𝑦) = 𝜒 ( )
,

( ) (𝑦) 𝑠𝑖𝑛
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )

+ 𝜒 ( )
,

( ) (𝑦) 𝑐𝑜𝑠
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )

, 

⋯ ⋯ 

𝐵
( )

(𝑦) = 𝜒 ( )
,

( ) (𝑦) 𝑠𝑖𝑛
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )

+ 𝜒 ( )
,

( ) (𝑦) 𝑐𝑜𝑠
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )

, 

𝐵
( )

(𝑦) = 𝜒 ( )
,

( ) (𝑦) 𝑠𝑖𝑛 ( ) ( ) 𝑦 − 𝑦
( ) . 

Then we easily make a sequence of binary nonnegative continuous functions 

defined on 𝑋 × 𝑌 = [0,1] × [𝑐, 𝑑] as follows: 
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𝜇 (𝑥, 𝑦) =∨ 𝐴
( )

(𝑥) ⋅ 𝐵
( )

(𝑦) , 𝑛 = 1,2,3, ⋯ (35)

2) Assume 𝑐(𝑛) = 𝑦
( )

≤ 𝑦
( )

≤ ⋯ ≤ 𝑦
( )

= 𝑑(𝑛). Firstly we do a kind of screen 

work on the elements in the following node set: 

𝑌(𝑛) = 𝑦
( )

, 𝑦
( )

, ⋯ , 𝑦
( ) . 

In fact, let 𝐾(𝑛) = {𝑘 , 𝑘 , ⋯ , 𝑘 }. We define an equivalence relation on the set 

𝐾(𝑛) as being “∼” as follows: 

(∀𝑠, 𝑡 ∈ {0,1, ⋯ , 𝑚}) 𝑘 ∼ 𝑘 ⇔ 𝑦
( )

= 𝑦
( ) . 

Then we get the quotient set of 𝐾(𝑛) as the following: 
𝐾(𝑛)

∼ = 𝑘 𝑗 = 0,1, ⋯ , 𝑚 , 

where 𝑘  is the equivalence class in which 𝑘  belongs. 

Let all the elements of the quotient set 𝐾(𝑛)
∼ be the following: 

𝑘 , 𝑘 , ⋯ , 𝑘
( )

, 

where 0 ≤ 𝑞(𝑚) ≤ 𝑚, and stipulate the representative element 𝑘  be the smallest 

element in 𝑘 . Thus we have the following inequalities: 

𝑦
( )

< 𝑦
( )

< ⋯ < 𝑦
( )

( ) . 

Based on the nodes 𝑦( )
, 𝑦

( )
, ⋯ , 𝑦

( )

( )  in [𝑐, 𝑑], we make the continuous base 

functions 𝐵( )
 (𝑠 = 0,1, ⋯ , 𝑞(𝑚)) as follows: 

𝐵
( )

(𝑦) = 𝜒 ( )
,

( ) (𝑦) 𝑠𝑖𝑛
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )  

𝐵
( )

(𝑦) = 𝜒 ( )
,

( ) (𝑦) 𝑠𝑖𝑛
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )

+ 𝜒 ( )
,

( ) (𝑦) 𝑐𝑜𝑠
𝜋

2 𝑦
( )

− 𝑦
( )

𝑦 − 𝑦
( )

, 

⋯ ⋯ 

𝐵
( )

( )
(𝑦) = 𝜒

( )

( )
,

( )

( )
(𝑦) 𝑠𝑖𝑛

𝜋

2 𝑦
( )

( )
− 𝑦

( )

( )
𝑦 − 𝑦

( )

( )

+ 𝜒

( )

( )
,

( )

( )
(𝑦) 𝑐𝑜𝑠

𝜋

2 𝑦
( )

( )
− 𝑦

( )

( )
𝑦 − 𝑦

( )

( )
, 

𝐵
( )

( )
(𝑦) = 𝜒

( )

( )
,

( )

( )
(𝑦) 𝑠𝑖𝑛

( )

( )

( )

( )
𝑦 − 𝑦

( )

( ) . 

Hence for the nodes 𝑦( )
, 𝑦

( )
, ⋯ , 𝑦

( )

( )  which correspond to the representative 

elements: 

𝑘 , 𝑘 , ⋯ , 𝑘
( )

 

coming from these equivalence classes 𝑘 , 𝑘 , ⋯ , 𝑘
( )

, we have made the 

continuous base functions as follows: 

𝐵
( )

(𝑦), 𝐵
( )

(𝑦), ⋯ , 𝐵
( )

( )
(𝑦). 

For any 𝑠 ∈ {0,1, ⋯ , 𝑞(𝑚)} and we can define the continuous base functions 

corresponding to the elements in 𝑘 − 𝑘  as following: 
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∀𝜏 ∈ 𝑘 − 𝑘 𝐵
( )

(𝑦) ≡ 𝐵
( )

(𝑦) . 

So for all the nodes 𝑦
( )

≤ 𝑦
( )

≤ ⋯ ≤ 𝑦
( )  in [𝑐, 𝑑] , we have got the 

corresponding continuous base functions as follows: 

𝐵
( )

(𝑦), 𝐵
( )

(𝑦), ⋯ , 𝐵
( )

(𝑦). 

By using these continuous base functions, we get a sequence of binary 

nonnegative continuous functions defined on 𝑋 × 𝑌 = [0,1] × [𝑐, 𝑑] as the following: 

𝜇 (𝑥, 𝑦) =∨ 𝐴
( )

(𝑥) ⋅ 𝐵
( )

(𝑦) , 𝑛 = 1,2,3, ⋯ (36)

Based on above two cases, we have got the sequence of binary nonnegative 
continuous functions defined on 𝑋 × 𝑌 = [0,1] × [𝑐, 𝑑] as being {𝜇 (𝑥, 𝑦)} . Now 

we normalize {𝜇 (𝑥, 𝑦)}  as follows: 

𝑝 (𝑥, 𝑦) = 𝜒[ , ]×[ , ](𝑥, 𝑦)
𝜇 (𝑥, 𝑦)

∫ ∫ 𝜇 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦
, 𝑛 = 1,2,3, ⋯ 

where 

𝜒[ , ]×[ , ](𝑥, 𝑦) =
1,    (𝑥, 𝑦) ∈ [0,1] × [𝑐, 𝑑],

0, (𝑥, 𝑦) ∈ ℝ − [0,1] × [𝑐, 𝑑]
. 

Therefore, {𝑝 (𝑥, 𝑦)}  becomes a sequence of probability density functions 

defined on ℝ , and 𝑝 (𝑥, 𝑦) is also called the probability density function when the 

quantum number is just 𝑛 . And by means of {𝑝 (𝑥, 𝑦)} , we can construct a 

sequence of functions of one variable defined on [0,1] as follows: 

𝑓 (𝑥) =
∫ 𝑦𝑝 (𝑥, 𝑦) 𝑑𝑦

∫ 𝑝 (𝑥, 𝑦) 𝑑𝑦
,  𝑥 ∈ [0,1], 𝑛 = 1,2,3, ⋯ (37)

Apparently, {𝑓 (𝑥)}  is just the sequence of conditional mathematical 

expectations formed by {𝑝 (𝑥, 𝑦)} . Besides, it is not under the following 

expression: 

𝑓 (𝑥) =
∫ 𝑦𝜇 (𝑥, 𝑦) 𝑑𝑦

∫ 𝜇 (𝑥, 𝑦) 𝑑𝑦
, 𝑥 ∈ [0,1],  𝑛 = 1,2,3, ⋯ 

Step 7. Similar to the proof of Theorem 1, we know that the sequence of 
conditional mathematical expectations {𝑓 (𝑥)}  can uniformly converge to 𝑓(𝑥) on 

the closed interval [0,1]. 

Paying attention to the process of the theorem, when the quantum number is 𝑛, 

the set of the descendant particles generated by the particle 𝑀 is the following: 

ℳ = 𝑀
( )

, 𝑀
( )

, ⋯ , 𝑀
( ) , 

when 𝑛 → ∞, the set of all descendant particles generated by the particle 𝑀 is ℳ =

⋃ ℳ . Clearly the cardinal number of the set is as being: card(ℳ) = ℵ ; i.e., we 

all use countable infinite particles. These particles can be expressed as the following 
expression: 
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𝑀 ⇒
, , ,⋯

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑀

( )
, 𝑀

( )
;

𝑀
( )

, 𝑀
( )

, 𝑀
( )

, 𝑀
( )

;

𝑀
( )

, 𝑀
( )

, 𝑀
( )

, 𝑀
( )

, 𝑀
( )

, 𝑀
( )

;

⋯ ⋯

𝑀
( )

, 𝑀
( )

, ⋯ , 𝑀
( )

, 𝑀
( )

;

⋯ ⋯

 

where only the particle 𝑀  moves along 𝑂𝑥  axis, but all the descendant particles 

𝑀
( )

, 𝑀
( )

, ⋯ 𝑀
( )

, ⋯ 𝑀
( )

, ⋯ move along 𝑂𝑦 axis. 

This means that the motion curve of a mass point in classic physics 𝑦 = 𝑓(𝑥) can 
be constructed by an infinite sequence of microscopic particles wave functions. In 

other words, this motion curve of a mass point 𝑦 = 𝑓(𝑥) has been quantization, which 

is the limit state of these microscopic particles wave functions when 𝑛 → ∞. Clearly 
this fact meets the Bohr’s correspondence principle. 

We finally end the proof of the theorem. 

Example 1. Suppose we cast an object 𝐵 with quality 𝑚 , which is regarded as a mass 

point. So the movement of 𝐵 can be described by its equation of locus as follows: 

𝑦 = 𝑓(𝑥) = 𝑥 𝑡𝑎𝑛 𝛼 − 𝑥 , 𝑥 ∈ [0, 𝑑 ], 𝑑 = 𝑠𝑖𝑛 2 𝛼, 

where 𝛼 ∈ 0,  is a mass ejection angle, 𝑑 ∈ (0, +∞) is the maximum range of fire, 

and 𝑣 ∈ (0, +∞)  is the initial velocity; here the air friction is omitted. Clearly 

𝑦(𝑥) ∈ 𝐶[0, 𝑑 ], which means that the projectile motion is expressed by a unary 
continuous function. 

Now if we take 𝛼 = , 𝑣 = 𝑔 , then 𝑑 = 1 ; then we have the following 

equation: 

𝑦 = 𝑓(𝑥) = 𝑥 − 𝑥 = 𝑥(1 − 𝑥). 

When the quantum number 𝑛 = 5,10,20, the approximation situations of the 

sequence of conditional mathematical expectations 𝑓 (𝑥)  to 𝑓(𝑥)  are respectively 

shown in Figures 6–8, where red curve means 𝑓 (𝑥), and blue curve indicates 𝑓(𝑥). 

 
Figure 6. Approximation of 𝑓 (𝑥) to 𝑓(𝑥). 
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Figure 7. Approximation of 𝑓 (𝑥) to 𝑓(𝑥). 

 

Figure 8. Approximation of 𝑓 (𝑥) to 𝑓(𝑥). 

5. Duality of mass point motion 

We first review the projectile motion in Example 1. The property of mass point 

motion is shown as its momentum 𝑝 = 𝑚 𝑣  and its energy as the following: 

𝐸 = 𝐸 = 𝑚 𝑣 . 

Actually, more straightway, its property of mass point should be described by its 
equation of locus as the following: 

𝑦 = 𝑓(𝑥) = 𝑥 𝑡𝑎𝑛 𝛼 − 𝑥 . 

In other words, the property of a mass point can be described by its momentum 
and energy or by its equation of locus; these two methods are equivalent. 

Then we ask an interesting and important problem: is there wave nature on mass 
point motion in classic physics? Alternatively, we can ask the question: is there wave 
mass point duality in classic physics? 

For answering this problem, we firstly review the particle nature and wave nature 
in quantum mechanics. As we all know, a microscopic particle has no determinate 
movement locus so that it has no an equation describing its movement locus. Thus, its 

nature of particle can only be described by its momentum 𝑝 = 𝑚𝑣 and its energy 𝐸 =

𝑚𝑣 . Based on the viewpoint of de Broglie, an object particle is of wave-particle 

duality, which means the particle also has its nature of wave. The nature of wave 

should be shown by its wave function 𝛹, and the wave function 𝛹 should be the 
solution of Schrodinger Equation. The wave as being the solution of Schrodinger 
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Equation is called de Broglie wave. Then Born gave Schrodinger Equation the 

statistical interpretation of de Broglie wave, which means that |𝛹|  should be a kind 

of probability density function. So |𝛹|  is often called probability wave. In fact, in 

quantum mechanics, the probability wave |𝛹|  is much more important than the wave 

function 𝛹 itself. 
Again, we consider the movement of the particle in the infinite deep square 

potential well as we have discussed in Step 1 in Theorem 1, where the wave function 
is as following: 

𝜓 (𝑥) = √2 𝑠𝑖𝑛( 𝑛𝜋𝑥), 𝑥 ∈ [0,1],  𝑛 = 1,2,3, ⋯ 

Then, its probability wave is |𝜓 (𝑥)| = 2 𝑠𝑖𝑛 ( 𝑛𝜋𝑥), which figure is shown in 
Figure 9. 

It is worth noting that, the probability wave |𝜓 (𝑥)|  describes the probability 

density that the particle 𝑀  appears at 𝑥  in [0,1] when the quantum number is 𝑛 . 

Because the particle 𝑀  does one-dimension motion along 𝑂𝑥  axis, |𝜓 (𝑥)|  is a 
curve on two-dimension plane. 

 
Figure 9. The nature of waves of 𝜓 (𝑥) and |𝜓 (𝑥)| . 

It is well-known that the wave nature of simple harmonic wave is constructed by 

its frequency 𝜈 and its wave length 𝜆. When the quantum number is 𝑛, its energy 

expression is 𝐸 =
ℏ

, and the wave frequency is as following: 

𝜈 = = = = =
√ ℏ

. 

Based on the definition of wave length, we know the wave length is 𝜆 =  so 

that 

𝜆 = =
√ ℏ

. 

This just gives the result that 𝜈 ⋅ 𝜆 = 1, which means that the relation between 

the wave nature and the particle nature can be established by using Planck number ℏ. 
Now we return to continue to discuss the motion of a projectile. Its mass point 

nature is reflected in its equation of locus. 

Especially, when 𝛼 = , 𝑣 = 𝑔, the equation of locus is as follows: 

𝑦 = 𝑓(𝑥) = 𝑥 − 𝑥 = 𝑥(1 − 𝑥),  𝑥 ∈ [0,1]. 
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Because this sequence of conditional mathematical expectations as being 
{𝑓 (𝑥)}  uniformly converges to 𝑦 = 𝑓(𝑥) in [0,1], for arbitrarily given a 𝜀 > 0, 

there must exist a natural number 𝑁 ∈ ℕ , such that 
(∀𝑛 ∈ ℕ )(𝑛 > 𝑁 ⇒ ‖𝑓 − 𝑓‖ < 𝜀), 

where ‖⋅‖ is a kind of norm in the linear normed space (𝐶[0,1], ‖⋅‖) and defined as 
the following: 

(∀𝑓 ∈ 𝐶[0,1]) ‖𝑓‖ = 𝑚𝑎𝑥
∈[ , ]

|𝑓(𝑥)| . 

For 𝜀 > 0 is small enough, that ‖𝑓 − 𝑓‖ < 𝜀 means that the difference between 

𝑓  and 𝑓 is very small so that 𝑓  can be replaced by 𝑓 approximately. 
We now take notice of the following important expression: 

𝑓(𝑥) ≈ 𝑓 (𝑥) =
∫ ( , )

∫ ( , )
=

∫ ( , )

∫ ( , )
, 

for above the motion of projectile where 𝑐 = 0, 𝑑 = 1, where 𝑝 (𝑥, 𝑦) is a binary 
probability density function. 

When the quantum number 𝑛 = 5, 10, 15, the graphs of the probability density 

function 𝑝 (𝑥, 𝑦) are respectively shown in Figures 10–12. 

 
Figure 10. Graph of 𝑝 (𝑥, 𝑦). 

 
Figure 11. Graph of 𝑝 (𝑥, 𝑦). 
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Figure 12. Graph of 𝑝 (𝑥, 𝑦). 

Apparently, the probability density function 𝑝 (𝑥, 𝑦) shows up waviness. We 

observe the motion curve of the projectile, and suppose some mass point 𝐵 moves in 

the rectangle as in Figure 13, and the probability density function that 𝐵 falls into the 

set of graphs of 𝑓(𝑥) as follows 
𝐺 = {(𝑥, 𝑦) ∈ [0,1] × [0,0.25]|𝑦 = 𝑓(𝑥)} (38)

is just 𝑝 (𝑥, 𝑦). 

It is worth noting that, since the mass point 𝐵 moves in a two-dimension region, 

the probability density function 𝑝 (𝑥, 𝑦) is a wave surface in three-dimension space. 

From Figure 8, we can learn that, since the particle 𝑀 moves in [0,1] on 𝑂𝑥 axis, the 

probability wave |𝜓 (𝑥)|  mainly roots in [0,1]; while from Figure 11, we also can 

learn that, since the mass point 𝐵 moves in 𝐺  on 𝑥 − 𝑦 plane, the probability wave 

𝑝 (𝑥, 𝑦) roots in 𝐺 . 

 
Figure 13. Graph of the motion of projectile. 

Above discussion reveals an important conclusion: the motion of mass point in 
classic mechanics is surely of waviness so that the motion of mass point in classic 
mechanics also has wave mass point duality, which is very same with wave-particle 
duality in quantum mechanics. 

Furthermore, the relationship between the wave nature and particle nature is 

established by means of Schrodinger Equation and the energy of the particle 𝐸 and the 

momentum of the particle 𝑝 can be respectively expressed by the frequency 𝜈 and the 

wavelength 𝜆 of the particle as the following: 

𝐸 = 2𝜋ℏ𝜈,  𝑝 =
ℏ
. 
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While in classic mechanics, the relation between the mass point nature and 
waviness of motion of mass point is related by means of the following integral 
equation: 

∫ 𝑦𝑝(𝑥, 𝑦)𝑑𝑦

∫ 𝑝(𝑥, 𝑦)𝑑𝑦
= 𝑓(𝑥), (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑐, 𝑑] (39)

where 𝑝(𝑥, 𝑦) ∈ 𝐶([𝑎, 𝑏] × [𝑐, 𝑑])  is an unknown binary function satisfying the 
following conditions: 

1) (∀(𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑐, 𝑑])(𝑝(𝑥, 𝑦) ≥ 0); 

2) (∀𝑥 ∈ [𝑎, 𝑏]) ∫ 𝑝(𝑥, 𝑦)𝑑𝑦 > 0 . 

3) ∫ ∫ 𝑝(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 = 1. 

Because 𝑦 = 𝑓(𝑥)  is the equation of locus of motion of the mass point, it 

completely represents the mass point nature of motion of the mass point; while 𝑝(𝑥, 𝑦) 

is the probability density function which is the probability wave of itself so that 𝑝(𝑥, 𝑦) 
itself represents the waviness of motion of the mass point. The relation between the 
mass point nature and the wave nature is related by means of the integral Equation 
(39). This adequately explains that the motion of a mass point in classic mechanics 
has the duality of wave mass point, or written by wave-mass-point duality. 

Here we need to explain that to solve the integral Equation (39) is not an easy 
thing; however, we have given a kind of approximate method to do it; actually, 
{𝑝 (𝑥, 𝑦)}  is a sequence of approximate solutions of the integral equation because 

if we write 

𝑓 (𝑥) =
∫ ( , )

∫ ( , )
, 

then we have 𝑙𝑖𝑚
→

‖𝑓 − 𝑓‖ = 0 based on Theorem 1. 

6. Conclusions 

Firstly from the physical world, we can receive a point of view: continuous 
functions can describe a large proportion of certainty phenomena; for example, the 
trajectory of a projectile motion is just described as a continuous function. And random 
variables or vectors should describe random phenomena. So if we want to consider the 
connection between some certainty phenomena and some random phenomena, we 
should or must research the relation between continuous functions and random 
vectors. Theorem 1 shows us an interesting conclusion: 

For arbitrarily given a continuous function 𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] , there must be a 

sequenc of probability spaces {(𝛺, ℱ, 𝑃 )}  and a sequence of random vectors 

{(𝜉 , 𝜂 )}, where every random vector  ,n n  (𝜉 , 𝜂 ) is defined on the probability 

space (𝛺, ℱ, 𝑃 ), such that the sequence of conditional mathematical expectations 
{𝐸(𝜂 |𝜉 = 𝑥)} converges uniformly to the continuous function 𝑓(𝑥) in [𝑎, 𝑏]. 

This is a random vector representation of continuous functions, which is like a 
bridge to be set up between real function theory and probability theory. By using this 
conclusion, we have a result with respect to function approximation which has been 
shown by Theorem 2: 
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For any continuous function 𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] , but assuming 𝑓(𝑥)  not being 

constant function, if {𝐸(𝜂 |𝜉 = 𝑥)} is called a sequence of conditional methematical 

expectations generated by the continuous function 𝑓(𝑥) , then by means of 
{𝐸(𝜂 |𝜉 = 𝑥)} we can construct a group of continuous functions: 

𝛷(𝑛) = 𝜑
( )

(𝑥), 𝜑
( )

(𝑥), ⋯ , 𝜑
( )

(𝑥) , 

where 𝜑( )
(𝑥) ∈ 𝐶[𝑎, 𝑏], such that, by using the sequence of the groups of base 

functions {𝛷(𝑛)}, the sequence of interpolation functions constructed as the following 

𝑓 (𝑥) = 𝜑
( )

(𝑥)𝑦
( )

, 𝑛 = 1,2,3, ⋯ 

uniformly converges to 𝑓(𝑥) in [𝑎, 𝑏]. 
And then, in approximation from a sequence of random vectors to a continuous 

function, the base functions are appropriately selected by us, an important conclusion 
for quantum mechanics is deduced: classical mechanics and quantum mechanics is 
unified. This is the content of Theorem 3: 

Given arbitrarily a non-constant function 𝑓(𝑥) ∈ 𝐶[0,1], there must exist some 
microscopic particles such that the limit of the group behavior of these microscopic 

particles is just this continuous function 𝑓(𝑥) when the quantum number 𝑛 → ∞. 
Particularly, an interesting and very important conclusion is introduced as the fact 

that the mass point motion of a macroscopical object possesses a kind of wave 
characteristic curve, which is called wave-mass-point duality. 

In this paper, we reveal an important problem: the unified theory of classic 
mechanics and quantum mechanics. The so-called unified theory here means almost 
every motion of a mass point in classic mechanics can be represented by the motions 
of an infinite sequence of particles in quantum mechanics, where limit operation plays 
an important role in the unified theory. Clearly, this situation is just according to 
Bohr’s Correspondence Principle. 

It is worth noting that this kind of correspondence relation between classic 
mechanics and quantum mechanics cannot be expressed by the relationship between 
the mass point nature in classic mechanics and the particle nature in quantum 
mechanics because of Heisenberg’s Uncertainty Principle (see Figure 14). As we all 
know, in classic mechanics, the motion of a mass point has no uncertainty so we can 
use continuous functions to describe the movement locus of the mass point. However, 
in quantum mechanics, the motion of a particle has surely uncertainty so we cannot 
use continuous functions to describe the movement locus of the particle. By now, we 
know that the position and momentum of a particle are all random and they are related 

by the Planck constant ℏ, i.e., 

𝜎 𝜎 ≥
ℏ
. 
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Figure 14. Unified frame of two kinds of mechanics. 

Fortunately, we have pointed out that the motion of a mass point in classic 
mechanics Fortunately, we have pointed out that the motion of a mass point in classic 
mechanics also has waviness in Section 5. The wave function of the motion of a mass 
point has surely no uncertainty. On the other hand, although the motion of a particle 
surely has uncertainty, the wave function of the particle must have no uncertainty. 
Thus, we can consider the relation between the wave function of a mass point in classic 
mechanics and the wave functions of some particles in quantum mechanics. As we 
discussed in Section 4, we have revealed the relation by means of Theorem 3. In other 
words, by using wave functions of both classic mechanics and quantum mechanics, 
classic mechanics and quantum mechanics are unified, which is the significance of our 
unified theory about the two kinds of mechanics. 

We need to emphasize our new important and interesting conclusion: The motion 
of a mass point also has so-called duality: wave-mass-point duality, which is very 
similar to the case of the motion of a particle in quantum mechanics and is an important 
support to our unified theory on classic mechanics and quantum mechanics. It is not 
difficult to understand that Theorem 3 should be the most important in physics. 

Prigogine pointed out his conclusion through many experiments: the world is 
random not certain [12]. In fact, Theorem 1 just proves his idea, because, as we all 
know, a large part of physical phenomenon can be described by some kind of 
continuous functions, and based on Theorem 1, any one of these continuous functions 
must be the limit of the sequence of conditional mathematical expectations of a 
sequence of random vectors.  

At last, we should state the fact that the results in this paper can be easily extended 
to the cases of multivariate continuous functions based on the methods in Section 2. 

has x waviness in Section 5. The wave function of the motion of a mass point has 
surely no uncertainty. On the other hand, although the motion of a particle has surely 
uncertainty, the wave function of the particle must have no uncertainty. Thus, we can 
consider the relation between the wave function of a mass point in classic mechanics 
and the wave functions of some particles in quantum mechanics. As we discussed in 
Section 4, we have revealed the relation by means of Theorem 3. In other words, by 
using wave functions of both classic mechanics and quantum mechanics, classic 
mechanics and quantum mechanics are unified, which is the significance of our unified 
theory about the two kinds of mechanics. 
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We need to emphasize our new important and interesting conclusion: The motion 
of a mass point has also so-called duality: wave-mass-point duality, which is very 
similar to the case of the motion of a particle in quantum mechanics and is an important 
support to our unified theory on classic mechanics and quantum mechanics. It is not 
difficult to understand that Theorem 3 should be the most important in physics. 

Prigogine pointed out his conclusion through many experiments: the world is 
random not certain [12]. In fact, Theorem 1 just proves his idea, because, as we all 
know, a large part of physical phenomenon can be described by some kind of 
continuous functions, and based on Theorem 1, any one of these continuous functions 
must be the limit of the sequence of conditional mathematical expectations of a 
sequence of random vectors.  

At last, we should state the fact that the results in this paper can be easily extended 
to the cases of multivariate continuous functions based on the methods in Section 2. 

Author contributions: Conceptualization, HXL; methodology, HXL; software, WZ; 
validation, HXL, WZ and HHM; formal analysis, HXL; investigation, HXL and 
HHM; resources, HXL and WZ; data curation, WZ; writing—original draft 
preparation, HXL; writing—review and editing, WZ; visualization, WZ; supervision, 
HXL; project administration, HXL; funding acquisition, HXL. All authors have read 
and agreed to the published version of the manuscript. 

Conflict of interest: The authors declare that they have no conflict of interest. 

References 

1. Li H. Probability representations of fuzzy systems. Science in China Series F. 2006; 49(3): 339–363. doi: 10.1007/s11432-

006-0339-9 

2. Loeve M. Probability Theory, 4th ed. Springer-Verlag; 1977. 

3. Halmos PR. Measure Theory. Springer New York; 1950. doi: 10.1007/978-1-4684-9440-2 

4. de Barra G. Measure Theory and Integration. D. Halsled Press; 1981. 

5. Browder A. Mathematical Analysis, An Introduction. Springer-Verlag; 1996. 

6. Graves LM. Theory of Functions of Real Variables. McGraw-Hill; 1946.  

7. Bohnenblust HF. Theory of Functions of Real Variables. Princeton University Press; 1937. 

8. Kress R. Numerical Analysis. Springer New York, 1998. doi: 10.1007/978-1-4612-0599-9 

9. Davis GG. Interpolation and Approximation. Blaisdell Publishing; 1963. 

10. David JG. Introduction to Quantum Mechanics, 2nd ed. Prentice-Hall, Inc; 2005. 

11. Zeng JY. Quantum Mechanics, 5th ed. Science Press; 2015. 

12. Prigogine L. The End of Certainty. Free Press; 1997. 


