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Abstract: The Benney equation arises from many different physical contexts as an 

appropriately real physical model equation involving a lot of effects of dispersion, dissipation, 

nonlinearity, and instability. As a result, it is a very important and challenging theme to search 

for the explicit and accurate traveling wave solutions of the Benney equation. In this paper, by 

introducing an ansatz solution with two E-exponential functions, we have made some 

improvements to the trial function approach for solving three NPDEs proposed by Xie and 

Tang. On this basis, we have put forward a direct trial function approach to search for the 

explicit and accurate traveling wave solutions of NEEs. We have demonstrated its effectiveness 

by applying it to the Benney equation. Therefore, a series of more general explicit and accurate 

traveling wave solutions to the Benney equation, comprising the solitary wave solutions and 

the singular traveling wave solutions, are successfully derived in a forthright and concise way. 

The obtained results are completely consistent with those given in the existing references. In 

addition, compared with the proposed approaches in the existing references, the technique 

described herein seems to be less calculative. Our approach may provide a novel way of 

thinking for solving NEEs. We firmly believe that the method used herein may also be applied 

to search for the explicit and accurate traveling wave solutions to other NEEs. We plan to 

extend this technique to search for the explicit and accurate traveling wave solutions of other 

NEEs. 

Keywords: Benney equation; direct trial function approach; traveling wave solution; solitary 

wave solution 

1. Introduction 

The explicit and accurate solutions for nonlinear evolution equations (NEEs for 

short) play a very important part in nonlinear science, especially in nonlinear physical 

science, since these solutions not only may well characterize various real natural 

phenomena, such as propagation with a finite speed, solitons, and vibrations, but also 

may give us insight into the physical essences of the problems. On account of this 

reason, the construction of the explicit and accurate solutions of NEEs has become one 

of the most important and essential tasks in nonlinear physics science. On account of 

the complexity of nonlinear systems, it is often very difficult to search for the explicit 

and accurate solutions of a real nonlinear physical model equation. Fortunately, a large 

number of powerful and efficient techniques of searching for the explicit and accurate 

solutions to NEEs have been developed. Among them are the hyperbolic tangent 

function expansion method [1,2], the Jacobi elliptic function expansion method [3,4], 

the trial function method [5], the combination equation expansion method [6], the 

function transformation expansion method [7], the trigonometric function expansion 

method [8], the new extended auxiliary equation method and the generalized 

Kudryashov method [9], the modified Sine-Gordon equation expansion method [10], 

the generalized Riccati equation mapping and the modified F-function expansion 
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method [11], the new Riccati equation expansion method [12], the generalized 

exponential rational function (GERF) expansion method [13], the modified Sardar 

sub-equation method [14], the novel analytical function expansion method [15], the 

Hirota bilinear operator method [16], the Khater III and improved Kudryashov method 

[17], and so on. However, not all the above approaches are generally applicable to 

searching for the explicit and accurate solutions of all types of NEEs. As a 

consequence, it is still a very important and challenging task to proceed to casting 

around for all kinds of more preferable and efficient techniques to investigate the 

explicit and accurate solutions of NEEs. 

In the present paper, by introducing an ansatz solution with two E-exponential 

functions  𝑒𝑘1𝜉  and 𝑒𝑘𝜉 , we have made some improvements to the trial function 

technique of solving three NPDEs presented by Xie and Tang. On this basis, we have 

put forward a direct trial function approach to search for the explicit and accurate 

traveling wave solutions of NEEs. As a consequence, a series of explicit and accurate 

traveling wave solutions to the Benney equation are easily obtained by virtue of this 

strategy. 

This paper is arranged as follows: 

In Section 1, we overview a lot of methods of searching for the explicit and 

accurate solutions of NEEs in a simple way.  

In Section 2, we briefly describe our direct trial function technique.  

In Section 3, we make use of this technique to construct a great deal of explicit 

and accurate traveling wave solutions for the Benney equation.  

In Section 4, we make a summary of this paper and make some necessary 

remarks. 

2. Outline of the presented method 

The fundamental idea of our approach is as follows. Let us take into account the 

following known NEE with respect to two independent variables, 𝑥 and 𝑡. 

𝑃(𝑢,
𝜕𝑢

𝜕𝑡
,
𝜕𝑢

𝜕𝑥
,
𝜕2𝑢

𝜕𝑡2
,
𝜕2𝑢

𝜕𝑥2
, ⋯ ) = 0 (1) 

Generally speaking, the left-hand side of Equation (1) is a polynomial with regard 

to 𝑢 and its various partial derivatives. 

Our fundamental aim is to search for the explicit and accurate traveling wave 

solutions for Equation (1) in a systematic and concise way. We have noticed that Xie 

and Tang [5] have put forward a unified trial function method to search for the explicit 

and accurate solutions of three NEEs by introducing two trial functions recently. This 

approach seems to be slightly complicated in that there are two trial functions in this 

approach that are hard to select in a usual manner. In order to modify this approach 

and to make use of it to solve Equation (1) more easily, here we straightforwardly 

presume that Equation (1) is of the following ansatz solution with two E-exponential 

functions 𝑒𝑘1𝜉 and 𝑒𝑘𝜉 by our careful and repeated considerations. 

𝑢 = 𝑢0 +
𝑎𝑒𝑘1𝜉

(𝑏 + 𝑒𝑘𝜉)𝑑
,        0 ≤ 𝑘1 ≤ 𝑘𝑑 (2) 
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in which 𝜉 = 𝑥 − 𝑐𝑡, and 𝑢0, 𝑎, 𝑏, 𝑐, 𝑑, 𝑘, and 𝑘1 are undetermined constants. 

In what follows, let us briefly introduce the main steps of making use of Equation 

(2) to solve Equation (1).  

Firstly, the constant 𝑑 can be determined by means of substituting Equation (2) 

into Equation (1) and with the aid of partial balance between the highest order 

derivative term and the highest degree nonlinear term in Equation (1).  

Secondly, the specific form of the ansatz solution Equation (2) can be easily get 

by means of substituting 𝑑 into Equation (2). 

Thirdly, substituting the specific form of the ansatz solution Equation (2) into 

Equation (1) gives rise to a set of algebraic equations because the coefficients of all 

𝑒𝑘1𝜉 and 𝑒𝑘𝜉 have to vanish. 

Finally, the basic explicit and accurate solutions of Equation (1) can be readily 

found with the aid of solving this set of algebraic equations.  

In the following, we would like to make use of the procedure described above to 

search for the explicit and accurate traveling wave solutions of the Benney equation. 

3. Application to the Benney equation 

The celebrated Benney equation in concern reads. 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝛼

𝜕2𝑢

𝜕𝑥2
+ 𝛽𝑢

𝜕3𝑢

𝜕𝑥3
+ 𝛾

𝜕4𝑢

𝜕𝑥4
= 0 (3) 

which arises from many different physical contexts as an appropriately real model 

equation involving a lot of effects of dispersion, dissipation, nonlinearity, instability, 

and so on, and where 𝛼, 𝛽, and 𝛾 are arbitrary constants with 𝛼𝛽𝛾 ≠ 0. 

To start with, let us determine the constant 𝑑 of the ansatz solution Equation (1) 

by means of partial balance between the highest order derivative term and the highest 

degree nonlinear term in Equation (3). Thanks to 0 ≤ 𝑘1 ≤ 𝑘𝑑, we can take the order 

of u as: 

𝑂(𝑢) = 𝑑 (4) 

Then it is not hard to derive that: 

𝑂(
𝜕𝑛𝑢

𝜕𝑥𝑛
) = 𝑑 + 𝑛 (5) 

Partial balance between the highest order derivative term and the highest degree 

nonlinear term in Equation (3) gives rise to the following result: 

𝑂(
𝜕4𝑢

𝜕𝑥4
) = 𝑂(𝑢

𝜕𝑢

𝜕𝑥
) (6) 

From which it follows that: 

𝑑 = 3 (7) 

So, the ansatz solution Equation (2) can be rewritten as: 

𝑢 =
𝑎𝑒𝑘1𝜉

(𝑏 + 𝑒𝑘𝜉)3
,        0 ≤ 𝑘1 ≤ 3𝑘 (8) 
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In view of Equation (8), it is not hard to deduce that: 

𝜕𝑢

𝜕𝑡
=

𝑎𝑐𝑒𝑘1𝜉[(3𝑘 − 𝑘1)𝑒𝑘𝜉 − 𝑏𝑘1]

(𝑏 + 𝑒𝑘𝜉)4
 (9) 

𝜕𝑢

𝜕𝑥
= −

𝑎𝑒𝑘1𝜉[(3𝑘 − 𝑘1)𝑒𝑘𝜉 − 𝑏𝑘1)

(𝑏 + 𝑒𝑘𝜉)4
 (10) 

𝜕2𝑢

𝜕𝑥2
=

𝑎𝑒𝑘1𝜉[(2𝑏𝑘1
2 − 3𝑏𝑘2 − 6𝑏𝑘𝑘1)𝑒𝑘𝜉 + (9𝑘2 + 𝑘1

2 − 6𝑘𝑘1)𝑒2𝑘𝜉 + 𝑏2𝑘1
2]

(𝑏 + 𝑒𝑘𝜉)5
 (11) 

 
𝜕3𝑢

𝜕𝑥3
=

𝑎𝑒𝑘1𝜉[𝑏3𝑘1
3 + (3𝑏2𝑘1

3 − 3𝑏2𝑘3 − 9𝑏2𝑘2𝑘1 − 9𝑏2𝑘𝑘1
2)𝑒𝑘𝜉]

(𝑏 + 𝑒𝑘𝜉)6
 

+
𝑎𝑒𝑘1𝜉[(30𝑏𝑘3 + 18𝑏𝑘2𝑘1 − 18𝑏𝑘𝑘1

2 + 3𝑏𝑘1
3)𝑒2𝑘𝜉 + (27𝑘2𝑘1 − 27𝑘3 − 9𝑘𝑘1

2 + 𝑘1
3)𝑒3𝑘𝜉]

(𝑏 + 𝑒𝑘𝜉)6
 

(12) 

          
𝜕4𝑢

𝜕𝑥4

=
𝑎𝑒𝑘1𝜉[𝑏4𝑘1

4 − (3𝑏3𝑘4 + 12𝑏3𝑘3𝑘1 + 18𝑏3𝑘2𝑘1
2 + 12𝑏3𝑘𝑘1

3 − 4𝑏3𝑘1
4)𝑒𝑘𝜉]

(𝑏 + 𝑒𝑘𝜉)7
 

                

+
𝑎𝑒𝑘1𝜉(75𝑏2𝑘4 + 108𝑏2𝑘3𝑘1 − 36𝑏2𝑘𝑘1

3 + 18𝑏2𝑘2𝑘1
2 + 6𝑏2𝑘1

4)𝑒2𝑘𝜉

(𝑏 + 𝑒𝑘𝜉)7
 

               +
𝑎𝑒𝑘1𝜉(12𝑏𝑘3𝑘1 − 201𝑏𝑘4 + 90𝑏𝑘2𝑘1

2 − 36𝑏𝑘𝑘1
3 + 4𝑏𝑘1

4)𝑒3𝑘𝜉

(𝑏 + 𝑒𝑘𝜉)7
 

               +
𝑎𝑒𝑘1𝜉(81𝑘4 − 108𝑘3𝑘1 + 54𝑘2𝑘1

2 − 12𝑘𝑘1
3 + 𝑘1

4)𝑒4𝑘𝜉

(𝑏 + 𝑒𝑘𝜉)7
 

(13) 

Substituting Equations (8)–(13) into Equation (3) results in: 

𝑎𝑏4𝑘1(𝑘1𝛼 + 𝑘1
2𝛽 + 𝑘1

3𝛾 − 𝑐)𝑒𝑘1𝜉 + 𝑎2𝑏𝑘1𝑒2𝑘1𝜉 + 𝑎𝑏3(3𝑐𝑘 − 4𝑐𝑘1 − 3𝑘2𝛼 − 6𝑘𝑘1𝛼 

+4𝑘1
2𝛼 − 3𝑘3𝛽 − 9𝑘2𝑘1𝛽 − 9𝑘𝑘1

2𝛽 + 4𝑘1
3𝛽 − 3𝑘4𝛾 − 12𝑘3𝑘1𝛾 − 18𝑘2𝑘1

2𝛾 − 12𝑘𝑘1
3𝛾 + 4𝑘1

4𝛾)𝑒(𝑘+𝑘1)𝜉 

+𝑎𝑏2(9𝑐𝑘 − 6𝑐𝑘1 + 3𝑘2𝛼 − 18𝑘𝑘1𝛼 + 𝑘1
2𝛼 + 27𝑘3𝛽 + 9𝑘2𝑘1𝛽 − 27𝑘𝑘1

2𝛽 + 6𝑘1
3𝛽 + 75𝑘4𝛾 + 

108𝑘3𝑘1𝛾 + 18𝑘2𝑘1
2𝛾 − 36𝑘𝑘1

3𝛾 + 6𝑘1
4𝛾)𝑒(2𝑘+𝑘1)𝜉 + 𝑎𝑏(9𝑐𝑘 − 4𝑐𝑘1 + 15𝑘2𝛼 − 18𝑘𝑘1𝛼 + 4𝑘1

2𝛼 + 3𝑘3𝛽 

+45𝑘2𝑘1𝛽 − 27𝑘𝑘1
2𝛽 + 4𝑘1

3𝛽 − 201𝑘4𝛾 + 12𝑘3𝑘1𝛾 + 90𝑘2𝑘1
2𝛾 − 36𝑘𝑘1

3𝛾 + 4𝑘1
4𝛾)𝑒(3𝑘+𝑘1)𝜉 

+𝑎(3𝑐𝑘 − 𝑐𝑘1 + 9𝑘2𝛼 − 6𝑘𝑘1𝛼 + 𝑘1
2𝛼 − 27𝑘3𝛽 + 27𝑘2𝑘1𝛽 − 9𝑘𝑘1

2𝛽 + 𝑘1
3𝛽 + 81𝑘4𝛾 − 108𝑘3𝑘1𝛾 + 

54𝑘2𝑘1
2𝛾 − 12𝑘𝑘1

3𝛾 + 𝑘1
4𝛾)𝑒(4𝑘+𝑘1)𝜉 + 𝑎2(𝑘1 − 3𝑘)𝑒(𝑘+2𝑘1)𝜉 + 𝑢0 = 0 

(14) 

For Equation (14), there are four cases that need to be considered: Case (A): 𝑘1 =

0, Case (B): 𝑘1 = 𝑘, Case (C): 𝑘1 = 2𝑘, Case (D): 𝑘1 = 3𝑘. We shall give detailed 

discussions below. 

Case (A): 𝑘1 = 0. 

In this case, Equation (13) can be converted to: 

3𝑎𝑘(𝑏3𝑐 − 𝑎 − 𝑏3𝑘𝛼 − 𝑏3𝑘2𝛽 − 𝑏3𝑘3𝛾)𝑒𝑘𝜉 + 3𝑎𝑏2𝑘(3𝑐 + 𝑘𝛼 + 9𝑘2𝛽 + 25𝑘3𝛾)𝑒2𝑘𝜉 

+3𝑎𝑏𝑘(3𝑐 + 5𝑘𝛼 + 𝑘2𝛽 − 67𝑘3𝛾)𝑒3𝑘𝜉 + 3𝑎𝑘(𝑐 + 3𝑘𝛼 − 9𝑘2𝛽 + 27𝑘3𝛾)𝑒4𝑘𝜉 + 𝑢0 = 0 
(15) 

Because of 𝑒𝑗𝑘𝜉 ≠ 0 (𝑗 = 1,2,3,4), we acquire the following system of nonlinear 
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algebraic equations from Equation (15). 

𝑏3𝑐 − 𝑎 − 𝑏3𝑘𝛼 − 𝑏3𝑘2𝛽 − 𝑏3𝑘3𝛾 = 0 (16) 

3𝑐 + 𝑘𝛼 + 9𝑘2𝛽 + 25𝑘3𝛾 = 0 (17) 

3𝑐 + 5𝑘𝛼 + 𝑘2𝛽 − 67𝑘3𝛾 = 0 (18) 

𝑐 + 3𝑘𝛼 − 9𝑘2𝛽 + 27𝑘3𝛾 + 𝑢0 = 0 (19) 

Solving the above nonlinear algebraic equation system with the aid of Maple, we 

obtain the following results: 

 

(20) 

with the constraint 𝛼 =
47𝛽2

144𝛾
. 

Plugging Equation (20) into Equation (8), we acquire the basic traveling wave 

solution of the Benney Equation (3) in the following form: 

𝑢1 = −
5𝑏3𝛽3

72𝛾2(𝑏 + 𝑒
𝛽

12𝛾
𝜉

)3

+ 𝑐 +
5𝛽3

144𝛾2
 (21) 

Taking advantage of the following hyperbolic identical equation  

1

𝑒2𝑥 + 1
=

1

2
(1 − 𝑡𝑎𝑛ℎ 𝑥) (22) 

and letting 𝑏 = 1 in Equation (21), we obtain the solitary wave solution of the Benney 

Equation (3) in the following form: 

𝑢2 = −
5𝛽3

576𝛾2
(1 − 𝑡𝑎𝑛ℎ

𝛽

24𝛾
𝜉)3 + 𝑐 +

5𝛽3

144𝛾2
 (23) 

The solitary wave solution Equation (23) of the Benney Equation (3) is of definite 

physical meaning in that it may aid in explaining nonlinear wave phenomena of 

diffusion in fluid mechanics. In addition, it is worth presenting the physical motivation 

by plotting a figure to the solitary wave solution Equation (23) of the Benney Equation 

(3). We shall leave this issue for further research in the future. 

In the same way, taking advantage of the following hyperbolic identical equation: 

1

𝑒2𝑥 − 1
=

1

2
(𝑐𝑜𝑡ℎ 𝑥 − 1) (24) 

and letting 𝑏 = −1 in Equation (21), we possess the so-called singular traveling wave 

solution for the Benney Equation (3) in the following form: 

𝑢3 = −
5𝛽3

576𝛾2
(1 − 𝑐𝑜𝑡ℎ

𝛽

24𝛾
𝜉)3 + 𝑐 +

5𝛽3

144𝛾2
 (25) 

Case (B): 𝑘1 = 𝑘 

Utilizing the similar program as before, we find the basic traveling wave solution 

to the Benney Equation (3) in the following form: 
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𝑢4 =
15𝑏2𝛽3𝑒

𝛽
4𝛾

𝜉

8𝛾2(𝑏 + 𝑒
𝛽

4𝛾
𝜉

)3

+ 𝑐 −
3𝛽3

32𝛾2
 (26) 

with the constraint 𝛼 =
𝛽2

16𝛾
. 

Taking advantage of the previous identical Equation (22) and the following 

hyperbolic identical equation: 

𝑒2𝑥

(𝑒2𝑥 + 1)2
=

1

4
𝑠𝑒𝑐 ℎ

2 𝑥 (27) 

and letting 𝑏 = 1  in Equation (26), we acquire the solitary wave solution of the 

Benney Equation (3) as follows: 

𝑢5 =
15𝛽3

64𝛾2
𝑠𝑒𝑐 ℎ

2 𝛽

8𝛾
𝜉(1 − 𝑡𝑎𝑛ℎ

𝛽

8𝛾
𝜉) + 𝑐 −

3𝛽3

32𝛾2
 (28) 

Making use of the following hyperbolic identical equation: 

𝑠𝑒𝑐 ℎ
2 𝑥 =

2

𝑐𝑜𝑠ℎ2𝑥 + 1
 (29) 

Then Equation (20) can be changed to: 

𝑢6 =
15𝛽3

32𝛾2

1

𝑐𝑜𝑠ℎ
𝛽

8𝛾
𝜉 + 1

(1 − 𝑡𝑎𝑛ℎ
𝛽

8𝛾
𝜉) + 𝑐 −

3𝛽3

32𝛾2
 (30) 

In the same way, taking advantage of the foregoing identical Equation (24) and 

the following hyperbolic identical equation: 

𝑒2𝑥

(𝑒2𝑥 − 1)2
=

1

4
𝑐𝑠𝑐 ℎ

2 𝑥 (31) 

and letting 𝑏 = −1  in Equation (26), we get the so-called singular traveling wave 

solution for the Benney Equation (3) in the following form: 

𝑢7 = −
15𝛽3

64𝛾2
𝑐𝑠𝑐 ℎ

2 𝛽

8𝛾
𝜉(1 − 𝑐𝑜𝑡ℎ

𝛽

8𝛾
𝜉) + 𝑐 −

3𝛽3

32𝛾2
 (32) 

Making use of the following hyperbolic identical equation 

𝑐𝑠𝑐 ℎ
2 𝑥 =

2

𝑐𝑜𝑠ℎ2𝑥 − 1
 (33) 

Then Equation (32) can be rewritten as: 

𝑢8 = −
15𝛽3

32𝛾2

1

𝑐𝑜𝑠ℎ
𝛽

4𝛾 𝜉 − 1
𝑐𝑠𝑐 ℎ

2 𝛽

8𝛾
𝜉(1 − 𝑐𝑜𝑡ℎ

𝛽

8𝛾
𝜉) + 𝑐 −

3𝛽3

32𝛾2
 (34) 

Case (C): 𝑘1 = 2𝑘. 

Making use of the similar program as above, we find the basic traveling wave 

solution to the Benney Equation (3) in the following form: 
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𝑢9 =
15𝑏𝛽3𝑒

−
𝛽

2𝛾
𝜉

8𝛾2(𝑏 + 𝑒
−

𝛽
4𝛾

𝜉
)3

+ 𝑐 −
3𝛽3

32𝛾2
 (35) 

with the constraint 𝛼 =
𝛽2

16𝛾
. 

Taking advantage of the former identical Equation (27) and the following 

hyperbolic identical equation: 

𝑒2𝑥

𝑒2𝑥 + 1
=

1

2
(1 + 𝑡𝑎𝑛ℎ 𝑥) (36) 

and letting 𝑏 = 1 in Equation (35), we obtain the same solution as Equation (28). 

In the same way, taking advantage of the former identical Equation (31) and the 

following hyperbolic identical equation: 

𝑒2𝑥

𝑒2𝑥 − 1
=

1

2
(1 + 𝑐𝑜𝑡ℎ 𝑥) (37) 

and letting 𝑏 = −1 in Equation (35), we get the same solution as Equation (32). 

Case (D): 𝑘1 = 3𝑘. 

Taking advantage of the same procedure as above, we find the basic traveling 

wave solution for the Benney Equation (3) in the following form: 

𝑢10 = −
5𝛽3𝑒

−
𝛽

4𝛾
𝜉

72𝛾2(𝑏 + 𝑒
−

𝛽
12𝛾

𝜉
)3

+ 𝑐 +
5𝛽3

144𝛾2
 (38) 

with the constraint 𝛼 =
47𝛽2

144𝛾
. 

Taking advantage of the previous identical Equation (22) and letting b = 1 in 

Equation (38), we acquire the same solution as Equation (23).  

In the same way, taking advantage of the former identical Equation (24) and 

letting b = −1 in Equation (38), we get the same solution as Equation (25). 

Apparently, the solutions 𝑢1, 𝑢2 and 𝑢3 are in agreement with those obtained in 

reference [7]. It is worth noting that there is an error (maybe a misprint) in reference 

[7], namely, 
𝛽

8𝛾
𝜉  in Equations (50) and (51) in reference [7] should be 

𝛽

24𝛾
𝜉 . The 

solution 𝑢5 is equivalent to one given in reference [8] as well. 

Finally, it is worth pointing out that if all “𝑐” in the above solutions is replaced 

with “−𝑐”, in this way we can obtain other lots of explicit and accurate traveling wave 

solutions to the Benney equation. Here we do not list them one by one for the limit of 

length. 

4. Conclusions and remarks 

In a word, by presuming an ansatz solution with two E-exponential functions 

𝑒𝑘1𝜉  and 𝑒𝑘𝜉 , we have made some modifications to the trial function approach of 

solving three NPDEs put forward by Xie and Tang. On this basis, we have come up 

with a straightforward trial function approach to looking for the explicit and accurate 

traveling wave solutions to NEEs. We have demonstrated its effectiveness by applying 
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it to the Benney equation. Therefore, a series of more general explicit and accurate 

traveling wave solutions of the Benney equation, comprising the solitary wave 

solutions and the singular traveling wave solutions, are successfully obtained in a 

forthright and concise way. The obtained results are the same as those given in the 

existing reference. On account of the Benney equation being real physical models, 

solving it has received much attention from many authors, and quite a lot of papers 

have investigated its explicit and accurate traveling wave solutions. However, 

compared with some proposed approaches in the literature, the above technique 

described herein seems to be relatively concise and straightforward and less 

calculative. For example, there are two trial functions in the trial function method put 

forward by Xie and Tang [5], and it needs to perform more tedious calculations. 

However, there is one trial function in our approach, and it certainly needs to perform 

fewer calculations. In addition, it should be pointed out that some solutions found 

herein are of definite physical meaning. For example, the solitary wave solution 

Equation (23) of the Benney Equation (3) may aid in explaining nonlinear wave 

phenomena of diffusion in fluid mechanics. Furthermore, our technique may provide 

a new way of thinking for solving NEEs. We are sure that the approach used herein 

may also be used to search for the explicit and accurate traveling wave solutions of 

other NEEs. We intend to develop this procedure to look for the explicit and accurate 

traveling wave solutions for other NEEs. Unfortunately, the approach used herein 

cannot currently be applied to solve NEEs with variable coefficients. Therefore, how 

to make some improvements to this technique so that it can be used to solve NEEs 

with variable coefficients is worth further research in the future. 
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