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Abstract: Rendering musical notes randomly does not create music. To generate music, there 

has to be a pattern that makes the musical notes dependent. It is therefore of interest to know 

whether the probability of the next note depends on the current note only or whether it depends 

on the note(s) prior to the current note. In other words, it is important to explore the order of 

the Markov chain in the musical piece. In the context of Hindustani classical music, does this 

order depend on the raga or the composition? The present work addresses this fascinating 

question and attempts to answer it through Akaike’s information criterion (AIC). It appears, 

interestingly, that the order of the Markov chain is dependent on the raga, which has a well-

defined melodic structure with fixed notes and a set of rules characterizing a particular mood 

that is conveyed by performance. As long as these rules are maintained, as in a raga bandish, 

the order of the Markov chain is invariant over the raga compositions. 

Keywords: Hindustani classical music; raga; stochastic process; order of Markov chain; AIC 

(Akaike’s information criterion) 

MSC Classification: 62P99 

1. Introduction 

1.1. Mathematics and music 

Let us first take a look at the age-old relationship between mathematics and music. 
Since the earliest civilizations, mathematics has existed in some form or another. 

Mathematics was employed by the Inca, the Egyptians, and the Babylonians, but it 
was not until the Greek Antiquity (600–300 BC) that it was studied for its own 
purpose. The study of mathematics is quite broad and has been for hundreds of years; 
many cultures and civilizations have explored, utilised, and researched the subject in 
various ways and manners. It is a subject that is always evolving, making it 
challenging to describe. Westerners’ conception of mathematics in the twenty-first 
century is that it is the abstract science of amount, form, space, change, and number. 

Mathematicians use rigorous deduction to look for novel relationships and 
hypotheses. To solve problems, they apply logic, reasoning, and abstract thought. It is 
possible to study mathematics for its own sake or to use it to understand occurrences 
in other academic fields. For instance, physicists speak mathematically while 
describing the natural world. 

Music, like mathematics, is an intrinsic part of human existence and has been a 
part of cultures throughout history. It is an artistic way of expressing emotions and 
ideas, and it is frequently used to express and portray one’s self and identity. Different 
forms of music are studied, performed, played, and listened to. 

A lovely subject that has been studied for hundreds of years is music theory. 
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Simply put, music theory is the study of the mechanics and elements of music. An 
analysis of any claim, notion, or statement made about or regarding music is one 
possible component. Musical notation (technically called score) and language are 
frequently studied by theorists of music. Music researchers look for trends and 
frameworks in compositional methods across or within genres, as well as across 
historical eras. 

The fundamental generic definitions of mathematics and music suggest that they 
are two quite different fields of study. A discipline of science, often regarded as the 
queen of science, mathematics is characterised by order, countability, and calculability. 
Contrarily, music is seen as creative and expressive. Despite their apparent differences, 
these two fields of study are connected and have been so for over two thousand years. 
Music is inherently mathematical and many fundamental concepts in music theory are 
mathematical in nature. Like professionals in other fields, music theorists utilise 
mathematics to create, express, and convey their ideas. 

Numerous musical occurrences and ideas may be explained mathematically. 
Certain mathematical frequencies are used to describe how sound waves are described, 
how strings vibrate at particular frequencies, etc. Instruments have some mathematical 
basis; for example, cellos have a certain form to mathematically resonate with their 
strings. Mathematics is also a crucial component of contemporary technology that 
creates recordings for digital video discs (DVDs) and compact discs (CDs). These 
examples show how the connection between mathematics and music is intricate and 
evolving. 

By looking at its various facets, this article tries to provide an overview of this 
complex link between mathematics and music. It is only fitting to start this report by 
briefly describing the historical connections between the study of music and 
mathematics. Inquiries into mathematics and physics have frequently been used 
throughout history to address questions and difficulties related to music theory. The 
second segment will go over some of the mathematics involved in music and sound. 
On the other hand, conceptions in music theory have frequently been directly impacted 
by mathematical ideas and language. There are several examples of composers who 
have induced mathematical concepts into their compositions. The third segment will 
go through Olivier Messiaen’s “musical language’s” mathematical strategies. 

When explaining the illustrious relationship between mathematics and music 
throughout history, Pythagoras, Plato, and Aristotle were three exceptionally astute 
scholars and major influences. 

Between around 600 BC and 300 BC, during the Classical Greek era, when 
Greece was made up of several city-states, Pythagoras was born. He was forced to flee 
his island home since it was ruled by a dictator. He established a mathematics religion 
(sometimes referred to as a cult) there. His religion’s adherents, known as 
Pythagoreans, thought that mathematical constructions were magical. For further 
literature on the historical link between mathematics and music, see Fauvel et al.’s 
study [1]. 

1.2. Hindustani classical music 

Indian classical music has two streams: Hindustani (North Indian) and Carnatic 
(South Indian), and in either stream, the nucleus is the raga. A raga is a melodic 
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structure with fixed notes and a set of rules characterizing a particular mood that is 
conveyed by performance [2]. 

The notes of every raga fall under one of the 12 chromatic tones of the just-
intonated scale, which is the basis for Hindustani music [3]. The melodic notes of the 
Hindustani music scale are shadaj, rishabh, gandhar, madhyam, pancham, dhaivat, and 
nishad (or swaras, as they are called in other Indian languages). These notes are 
referred to collectively as sargam, which is comparable to the Solfège in the Western 
music system. The single syllables that are sung while singing are Sa, Re, Ga, Ma, Pa, 
Dha, and Ni; in this study, these notes are denoted by the symbols S, R, G, M, P, D, 
and N, respectively. Of these seven notes, Sa and Pa are always shudh (natural), while 
Re, Ga, Ma, Dha, and Ni have two variants each, namely komal (flat) Re and Shudh 
Re abbreviated as r and R respectively, komal Ga and Shudh Ga abbreviated as g and 
G respectively, shudh Ma and teevra (sharp) Ma abbreviated as M and m respectively, 
komal Dha and shudh Dha abbreviated as d and D respectively, and komal Ni and 
shudh Ni abbreviated as n and N respectively. If Sa is taken at natural C in western 
notation, the 12 notes of the octave in Indian notation are S r R g G M m P d D n N 
(capital letter is used for a natural note; small letter indicates a flat or a sharp note), 
which correspond to the notes C Db D Eb E F F# G Ab A Bb B, respectively, in 
western notation [4]. 

Hindustani music is tonal in nature and adheres to a hierarchy of notes, much like 
Western classical music [5]. The tonic note is Sa or S. The scale only has seven natural 
notes, but each one of them can take two distinct forms, with the exception of S (the 
tonic) and P (the perfect fifth), which only have one form each. 

In Hindustani music, each raga has a distinct ascending note pattern called 
“arohan,” which progresses to the tonic of the following octave, and a comparable 
falling note pattern called “avarohan.” According to Jairazbhoy [6], the arohan and 
avarohan are the most distinctive ascending and descending lines of a raga. In other 
words, the notes that should be played in a raga during rising and descending 
movements are indicated by the arohan and avarohan sequences. Arohan and avarohan 
singing and playing include a wealth of information that may be used to identify ragas. 

As a result, arohan and avarohan sequences (i.e., the raga-defining sequences) are 
created in the bandishes, studied, and compared to the sequences noted in raga 
literature in order to confirm our representation [7]. A raga bandish is a rhythmic song 
like raga composition that maintains the raga rules correctly. 

1.3. Why are patterns and structures important in early mathematics? 

“There is geometry in the humming of the strings, there is music in the spacing 
of the spheres.”—Pythagoras. 

Mathematical patterns follow a predictable norm that enables us to forecast what 
will happen next, while they frequently also have a pleasing aesthetic appeal. 
According to mathematicians, mathematics is the study of patterns, including patterns 
and structure in geometry as well as patterns and structure in numbers. 

Time signatures, overtones, tone, pitch, scales, intervals, symbols, and harmonies, 
too, have interesting patterns. Mathematics is tied to the notations used by composers 
and the sounds produced by performers. Think about the connections between 
mathematics and music the next time you hear or play classical, rock, folk, religious, 
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ceremonial, jazz, opera, pop, or current music. Consider how mathematics is utilised 
to produce the music you like. Patterns are where mathematics and music most 
resemble each other. Music, for instance, frequently repeats its choruses and verses, 
while mathematics employs patterns to explain the unknowable. 

Different mathematical phenomena can be used in music. These include 
trigonometry, differential calculus, signal processing, and even geometry. In fact, 
studies have found that music tends to be more well-liked when it exhibits some sort 
of mathematical structure. 

According to research on music and music therapy, mathematics and music are 
linked in the brain from an early age [8]. Mathematical concepts like spatial 
characteristics, sequencing, counting, patterning, and one-to-one correspondence are 
fundamental to musical aspects including a constant beat, rhythm, melody, and space. 
The extremely primitive areas of the brain also appear to be connected to music. 
Physiological responses to music are inevitable in humans [9,10]. This suggests that 
even the smallest kids may be able to respond naturally to music and the mathematical 
ideas it provides. 

Recent studies in neuro-musicology have shown that human attentional 
behaviours are influenced by a consistent rhythm. The premotor cortex of the brain, 
which is also connected to attention, is where we normally process steady beats. 120 
babies between the ages of 5 and 24 months were found to be more attentive to 
rhythmic stimuli than speech-only stimuli. The findings of this study suggest that 
youngsters may be more attentive to instructions while listening to consistent beats as 
opposed to vocal instructions. As a result, it is possible that listening to a constant beat 
pattern while engaging in mathematics-related tasks with young children in an early 
childhood school can help them pay attention and become more engaged [11]. 

2. Experimental results 

2.1. Computation of the transition probability matrix (TPM) 

Probability theory does not directly explain the decision process of the artist as 
music is always planned and not random. However, from the listener’s or the analyst’s 
perspective (the latter being our case), this deterministic response may be realized as 
the outcome of a stochastic process [2]. Further, as music must-have patterns, the 
random variables are dependent. 

We gave each raga a matrix representation that quantified the transition between 
the swaras (notes). As a result, the representations are referred to as transition 
probability matrices (TPM). Next, we carefully detected musical passages where the 
performers utilised swaras other than the middle octave by transcribing the 
performances of two musicians’ renderings of the same raga. The phrases were then 
moved from the lower (or higher) octave to the middle (or higher) octave. We were 
able to record information about transitions from one swara to another, which was our 
primary interest, despite losing information about the octave where the musicians 
preferred to sing or play a particular combination of swaras, thanks to this operation. 
In addition, our matrix representation would have been quite sparse and the transition 
information between the swaras would have been less helpful if we had used 
performances from only two performers that covered all the octaves. 
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Even though very few ragas employ all 7 of the swaras in Hindustani music, we 
took them all into consideration while creating the matrix. However, this would record 
two different types of information: a) a quick glance at the matrix will show which 
swaras are used in any given raga, and b) because some ragas have unidirectional note 
transitions the matrix will represent the entire raga rather than a specific direction of 
movement. 

We calculated how frequently any one specific swara was followed by another 
swara by calculating the precise number of transitions from one swara to the other 
swaras after we had each individually constructed a corpus of swaras transcribed from 
each raga. In order to calculate the frequency of transitions from each swara to each 
of the 7 swaras, including transitions to the same swara, we repeated this technique for 
all 7 swaras. The total of all transitions emanating from any one particular swara was 
divided by that number. This represented the likelihood of a swara appearing in 
relation to the swara that initiated the transition. 

2.2. Validation of the TPM representation using raga classification 

Suppose we collected 10 swara-sequences from each raga to assess the reliability 
of TPMs as a representation of Hindustani raga music. We estimated the chance that 
each given swara-sequence belongs to one of those 10 ragas by applying the method 
for computing the swara-sequence score, which is discussed in the methods section. 
The parent raga that could produce a sequence like a test swara-sequence was thought 
to be the TPM that produced the greatest score. Thus, all 100 swara-sequences were 
divided into 10 ragas based on the calculated score. Due to the fact that we obtained 
the swara sequences from various interpretations of the ragas that were taken into 
consideration for this study, we examined whether the raga identification based on the 
TPM score matched the raga name. It is interesting to see that 100% of the swara 
sequences were accurately categorised into their parent ragas. The excellent 
classification accuracy achieved with random swara-sequences demonstrates that 
TPMs may be utilised to identify ragas [12]. 

2.3. Relationship between ragas 

We determined the Euclidean distance between the ragas using the TPMs in order 
to comprehend the raga relationship and assess the effectiveness of TPM as a raga 
representation. We then used the traditional multidimensional scaling approach to 
transfer the connections between the ragas to a two-dimensional spatial representation 
based on Euclidean distances as a metric. In addition to measuring distance, the use of 
swaras in a raga was examined in order to better understand the link between the ragas. 
We summed up all instances of each swara throughout the recital and determined the 
proportion of each raga’s appearances that each swara is made up of. We next 
determined the correlation coefficients between ragas using the percentages of 
occurrence of swaras for all ragas as a gauge of similarity. We reasoned that more 
related ragas would use the same notes more frequently, leading to a higher frequency 
for that note and ultimately higher correlation coefficients between ragas. This might 
offer crucial details regarding the ragas’ tonal hierarchies, as demonstrated by 
Castellano et al. [5]. 

MATLAB was used for all calculations pertaining to the development of TPMs, 
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including the verification of TPMs as a representation for Hindustani ragas and the 
analysis of raga-to-raga correlations. 

2.4. Mathematical formulation of the problem 

We employed a Markov chain as our model to capture the statistical regularities 
between swaras in Kafi raga, which is the parent raga of the Kafi thata (thata is a raga 
group according to scale, ragas of Kafi thata have komal Ga and komal Ni, and the 
rest five notes are all shudh), due to the dynamic character of Hindustani music and 
the linkages between swaras in a swara sequence. Markov models have been widely 
used in speech and music, including both Western and Indian classical music. 

2.4.1. Computation of unconditional and conditional probability 

The unconditional probability of a note is computed as the relative frequency, 
that is, by taking the ratio of the number of times this particular note occurs in the 
musical piece to the total number of notes in the musical piece. 

The conditional probability of the next note Y given the current note X = P(Y/X) 
= (number of times X is followed by Y)/(number of times X occurs in the musical 
piece). However, if the last note in the musical node is X, we have to subtract one from 
the denominator because there is no information on the next note transition for the last 
note. It is also important to note that a probability has to be expressed as it is, not by 
simplifying the fraction. The reason is that such simplification will change the musical 
meaning of the note probability (for example, if the probability of the tonic Sa is, let 
us say, 30/100 we must not simplify it to 3/10. The former ratio implies that there are 
100 notes in the musical piece, out of which 30 occurrences are of the tonic Sa. The 
latter ratio implies that there are just 10 notes in the musical piece with 3 tonic 
occurrences! Thus, although both ratios are mathematically equal, they bear different 
meanings musically). 

In the case of the Markov chain of order 1st, we have taken the number of model 
parameters = k = 3 assuming the model 

Xn+1 = β0 + β1Xn + ε (1)
The three parameters are β0, β1, and the error variance. 
In the case of the Markov chain of order 2nd, we have taken k = 4 assuming the 

model 
Xn+1 = β0 + β1Xn + β2Xn−1 + ε (2)

and the four parameters are β0, β1, β2 and the error variance. 

2.4.2. Transition probability matrix 

The transition probabilities pjk satisfy 
pjk ≥ 0, ∑ 𝑝  = 1 for all j. (3)

These probabilities may be written in the matrix form 

𝑃 = 
𝑝ଵଵ    𝑝ଵଶ    𝑝ଵଷ     …
𝑝ଶଵ    𝑝ଶଶ    𝑝ଶଷ     …
…    …    …    …

൩ (4)

This is called the transition probability matrix or matrix of transition probabilities 
(TPM) of the Markov chain. P is a stochastic matrix, i.e., a square matrix with non-
negative elements and unit row sums. 
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2.4.3. Determination of the order of a Markov chain by AIC 

A procedure for the determination of the order of a Markov chain by Akaike’s 
information criterion (AIC) has been developed by Tong[13]. The AIC is defined as 

AIC = (−2)ln(Maximum-likelihood) + 2 (number of independent parameters in the model) (5)
AIC = (−2) ln (Maximum-likelihood) + 2k (6)

where, k = number of independent parameters in the model. 
This statistic is introduced as a measure of the deviation of the fitting model from 

the true structure.  
Given several models, the procedure envisages the adoption of the model that 

minimizes the AIC and is called minimum AIC estimation (MAICE). (It is argued that 
the MAICE procedure represents an attempt to strike a balance between overfitting, 
which needs more parameters, and underfitting, which incurs an increased residual 
variance). 

Denote the transition probability for a r-order Markov by pij...ki, i = 1, 2, ..., s, s 
being the (finite) number of states of the chain. 

Denote the ML (maximum likelihood) estimates by 

�̂�… =
𝑛….

𝑛……
 (7)

where nij…kl = ∑ 𝑛…. . The hypothesis tested is Hr−1: pij...kl = pj...kl, i = 1, ..., s (that the 

chain is (r − 1)- dependent against Hr: that the chain is r-dependent). The statistic 
constructed is 

r−1𝐴 ≡ −2 log 𝜆ିଵ, = 2  ൫𝑛……….൯ log
൫ೕ….ೖ൯ (∑ (ೕ….ೖ)…. )

൫ೕ….ೖ൯ (ೕ….ೖ)
⋅⋯

 (8)

which is a χ2-variate with sr−1(s − 1)2 d.f.  
The hypothesis Hk states that the chain is k-dependent while the hypothesis Hr 

states that the chain is r-dependent for k < r. Denote by λk,r the ratio of the maximum-
likelihood given Hk (that the chain is of order k) to that given Hr (that the chain is of 
order r); then we get 

𝜆,୰ = 𝜆୩,୩ାଵ + ⋯ + 𝜆୰ିଵ,୰ (9)

and so 
𝜆𝐴 = −2log𝜆,ାଵ − ⋯ − 2 log 𝜆ିଵ, , 𝑘 < 𝑟 (10)

Assume the variables −2log λr−1, r (r = 0, 1, ...) to be asymptotically independent, 
given Hk; then it follows that kAr has χ2-distribution with d.f. 

𝛻𝑠ାଵ − 𝛻𝑠ାଵ, k ≥ 0 (11)

and 

𝛻𝑠ାଵ, k = −1 (12)

where 

𝛻𝑠 = 𝑠 − 𝑠ିଵ, r ≥ 1 (13)

Now the question of choosing an appropriate loss function arises once this 
identification procedure is considered a decision procedure. The loss functions 
considered in the classical theory of hypothesis testing are defined by the probabilities 
of accepting the incorrect hypothesis or rejecting the correct hypothesis. 

Tong proposes the choice of the loss function, based on the AIC approach as 

𝑅(𝑘) =  𝐴 − 2൫∇𝑠ାଵ − ∇𝑠ାଵ൯ (14)
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where m is the highest order model to be considered and k is the order of the fitting 
model. The MAICE of the best approximating order of the Markov chain is that value 
of k which gives the minimum of R(k) overall orders considered. 

Note that 
R(m) = 0. (15)

Gabriel and Neumann described the occurrences and non-occurrences of rainfall 
(of Tel Aviv) by a two-state Markov chain. A dry date is denoted by state 0 and a wet 
date by state 1. For further literature on stochastic processes, refer to Medhi [14], Ross 
[15], Parzen [16], and Cinlar [17]. 

Our problem is to determine whether the order of the Markov chain in a raga 
depends on the inherent melodic structure of the concerned raga or does it vary over 
compositions in the same raga composed by different composers/musicians? We 
address this question using AIC taking different compositions (raga bandishes) in raga 
Kafi. More precisely, we shall be considering two famous raga Kafi bandishes’ 
notations for comparing the first and second order of Markov-chain using Akaike’s 
information criterion (AIC). 

2.5. Does the order of the Markov chain depend on the raga or its 
composition? 

Indian and corresponding western notes are given below: 
Western: C Db D Eb E F F# G Ab A Bb B 
Indian: S r R g G M m P d D n N 

2.5.1. First raga Kafi bandish notations 

SRRgMPMPPMPDnSnDPMggRRRnDnPDMPMgMPMSnSgRMgRSnPPDMP
nSRgRSRnSSnnDPgRRnDnPDMPMgMPMMSnSgRMgRSn 

Total number of notes in the first Kafi bandish = 90 
The unconditional probabilities of the notes are given below: 

P(S) = 12/90, P(R) = 14/90, P(g) = 11/90, P(M) = 16/90, P(P) = 15/90, P(D) = 8/90, 
P(n) = 14/90 

Table 1 gives the TPM depicting conditional probabilities assuming a first-order 
Markov chain. 

Table 1. TPM of the first Kafi bandish assuming Markov chain of the first order. 

 S R g M P D n 

S 1/12 3/12 2/12 0/12 0/12 0/12 6/12 

R 3/14 4/14 2/14 2/14 0/14 0/14 3/14 

G 0/11 7/11 1/11 3/11 0/11 0/11 0/11 

M 2/16 0/16 5/16 1/16 8/16 0/16 0/16 

P 0/15 0/15 1/15 7/15 2/15 4/15 1/15 

D 0/8 0/8 0/8 3/8 2/8 0/8 3/8 

n 5/13 0/13 0/13 0/13 3/13 4/13 1/13 

ln(Maximum-likelihood) = 1 × ln(1/12)+2 × ln (2/12)+3 × ln(3/12)+ 6 × ln(6/12) + 3 × ln(3/14) + 4 × ln(4/14) + 2 × 
ln(2/14)+2 × ln(2/14)+3 × ln(3/14)+7 × ln(7/11) +1 × ln(1/11)+3 × ln(3/11)+2 × ln(2/16)+5 × ln(5/16)+1 × ln(1/16)+8 
× ln(8/16)+1 × ln(1/15)+7 ×ln(7/15)+2 × ln(2/15) + 4 × ln(4/15) +1 × ln(1/15) + 3 × ln(3/8) +2 × ln(2/8)+3 × ln(3/8) + 
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5 × ln(5/13) + 3 × ln(3/13) + 4 × ln(4/13) + 1 × ln(1/13) = − 47.4932328 

AIC = (−2)ln(Maximum-likelihood) + 2k = (−2)(−47.4932328) + 2 × 3 = 94.9864656 + 6 = 100.986466 = 101 
(approx.) 

Table 2 gives the TPM depicting conditional probabilities assuming a first-order 
Markov chain. 

Table 2. TPM of the first Kafi bandish assuming Markov chain of second order. 

 S R g M P D n 

SS 0 0 0 0 0 0 1/1 

RS 0 1/3 0 0 0 0 2/3 

gS 0 0 0 0 0 0 0 

MS 0 0 0 0 0 0 2/2 

PS 0 0 0 0 0 0 0 

DS 0 0 0 0 0 0 0 

nS 1/5 1/5 2/5 0 0 0 1/5 

SR 0 1/3 1/3 0 0 0 1/3 

RR 0 1/4 1/4 0 0 0 2/4 

gR 3/7 2/7 0 2/7 0 0 0 

MR 0 0 0 0 0 0 0 

PR 0 0 0 0 0 0 0 

DR 0 0 0 0 0 0 0 

nR 0 0 0 0 0 0 0 

Sg 0 2/2 0 0 0 0 0 

Rg 0 1/2 0 1/2 0 0 0 

gg 0 1/1 0 0 0 0 0 

Mg 0 2/5 1/5 2/5 0 0 0 

Pg 0 1/1 0 0 0 0 0 

Dg 0 0 0 0 0 0 0 

ng 0 0 0 0 0 0 0 

SM 0 0 0 0 0 0 0 

RM 0 0 2/2 0 0 0 0 

gM 0 0 0 0 3/3 0 0 

MM 1/1 0 0 0 0 0 0 

PM 1/7 0 3/7 1/7 2/7 0 0 

DM 0 0 0 0 3/3 0 0 

nM 0 0 0 0 0 0 0 

SP 0 0 0 0 0 0 0 

RP 0 0 0 0 0 0 0 

gP 0 0 0 0 0 0 0 

MP 0 0 0 5/8 1/8 1/8 1/8 

PP 0 0 0 1/2 0 1/2 0 

DP 0 0 1/2 1/2 0 0 0 

nP 0 0 0 0 1/3 2/3 0 
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Table 2. (Continued). 

 S R g M P D n 

SD 0 0 0 0 0 0 0 

RD 0 0 0 0 0 0 0 

gD 0 0 0 0 0 0 0 

MD 0 0 0 0 0 0 0 

PD 0 0 0 3/4 0 0 1/4 

DD 0 0 0 0 0 0 0 

nD 0 0 0 0 2/4 0 2/4 

Sn 2/5 0 0 0 1/5 1/5 1/5 

Rn 1/3 0 0 0 0 2/3 0 

gn 0 0 0 0 0 0 0 

Mn 0 0 0 0 0 0 0 

Pn 1/1 0 0 0 0 0 0 

Dn 1/3 0 0 0 2/3 0 0 

nn 0 0 0 0 0 1/1 0 

ln(Maximum-likelihood) = 1 × ln(1/1) + 1 × ln(1/3) + 2 × ln(2/3) + 2 × ln(2/2) + 1 × ln(1/5) + 1 × ln(1/5) + 2 × ln(2/5) 
+ 1 × ln(1/5) + 1 × ln(1/3) + 1 × ln(1/3) + 1 × ln(1/3) + 1 × ln(1/4) + 1 × ln(1/4) + 2 × ln(2/4) + 3 × ln(3/7) + 2 × 

ln(2/7) + 2 × ln(2/7) + 2 × ln (2/2) + 1 × ln(1/2) + 1 × ln(1/2) + 1 × ln(1/1) + 2 × ln(2/5) + 1 × ln(1/5) + 2 × ln(2/5) + 1 
× ln(1/1) + 2 × ln(2/2) + 3 × ln(3/3) + 1 × ln(1/1) + 1 × ln(1/7) + 3 × ln(3/7) + 1 × ln(1/7) + 2 × ln(2/7) + 3 × ln(3/3) + 
5 × In(5/8) + 1 × ln(1/8) + 1 × ln (1/8) + 1 × ln(1/8) + 1 × ln(1/2) + 1 × ln(1/2) + 1 × ln(1/2) + 1 × ln(1/2) + 1 × ln(1/3) 

+ 2 × ln(2/3) + 3 × ln(3/4) + 1 × ln(1/4) + 2 × ln(2/4) + 2 × ln(2/4) + 2 × ln(2/5) + 1 × ln(1/5) + 1 × ln(1/5) + 1 × 
ln(1/5) + 1 × ln(1/3) + 2 × ln(2/3) + 1 × ln(1/1) + 1 × ln(1/3) + 2 × ln(2/3) + 1 × ln(1/1) = − 28.817901 

AIC = (−2)ln(Maximum-likelihood) + 2k = (−2)(−28.817901) + 2 × 4 = 57.635802 + 8 = 65.635802 = 65.63 (approx.) 

2.5.2. Second raga Kafi bandish notations 

R  M  n P  g  R  g  M  M  P  P  n  P  D  D  D  n  D  D  M  P  D  N  R  S  n  D  P  
N  P  g  R  g  M  M P  P  n  P  D  M  P  D  S  S  R  g  R  S  R  n  n  D  P  S  S  S  S  R  
n  S  n  D  M  D  n  S  n  D  P 

The total number of notes in the second Kafi bandish = 70 
The unconditional probabilities of the notes are given below: 

P(S) = 10/70, P(R) = 8/70, P(g) = 5/70, P(M) = 8/70, P(P) = 13/70, P(D) = 13/70, P(n) 
= 13/70 

Table 3 gives the TPM of the second Kafi bandish, assuming the Markov chain 
of the first order. 

Table 3. TPM of the second Kafi bandish assuming Markov chain of the first order. 

 S R g M P D n 

S 4/10 3/10 0/10 0/10 0/10 0/10 3/10 

R 2/8 0/8 3/8 1/8 0/8 0/8 2/8 

G 0/5 3/5 0/5 2/5 0/5 0/5 0/5 

M 0/8 0/8 0/8 2/8 4/8 1/8 1/8 

P 1/12 0/12 2/12 0/12 2/12 4/12 3/12 

D 1/13 0/13 0/13 3/13 3/13 3/13 3/13 

n 2/13 1/13 0/13 0/13 4/13 5/13 1/13 
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ln(Maximum-likelihood) = 4 × ln(4/10) + 3 × ln(3/10) + 3 × ln(3/10) + 2 × ln(2/8) + 3 × ln(3/8) + 1 × ln(1/8) + 2 × 
ln(2/8) + 3 × ln(3/5) + 2 × ln(2/5) + 2 × ln(2 /8) + 4 × ln(4/8) + 1 × ln(1/8) + 1 × ln(1/8)+1 × ln(1/12) + 2 × ln(2/12) + 
2 × ln(2/12) + 4 × ln(4/12) + 3 × ln(3/12) + 1 × ln(1/13) + 3 × ln (3/13)+ 3 × ln(3/13) + 3 × ln(3/13) + 3 × ln(3/13) + 2 

× ln(2/13) + 1 × ln(1/13) + 4 × ln(4/13) + 5 × ln(5/13) + 1 × ln(1/13) = −39.6324882 
AIC = (−2)ln(Maximum-likelihood) + 2k = (−2)(−39.6324882) + 2 × 3 = 79.2649764 + 6 = 85.2649764 = 85.26 

(approx.) 
Table 4 gives the TPM of the second Kafi bandish assuming the Markov chain 

of second order. 

Table 4. TPM of the second Kafi bandish assuming Markov chain of second order. 

 S R g M P D n 

SS 2/4 2/4 0 0 0 0 0 

RS 0 1/2 0 0 0 0 1/2 

gS 0 0 0 0 0 0 0 

MS 0 0 0 0 0 0 0 

PS 1/1 0 0 0 0 0 0 

DS 1/1 0 0 0 0 0 0 

nS 0 0 0 0 0 0 2/2 

SR 0 0 1/3 0 0 0 2/3 

RR 0 0 0 0 0 0 0 

gR 1/3 0 2/3 0 0 0 0 

MR 0 0 0 0 0 0 0 

PR 0 0 0 0 0 0 0 

DR 0 0 0 0 0 0 0 

nR 1/1 0 0 0 0 0 0 

Sg 0 0 0 0 0 0 0 

Rg 0 1/3 0 2/3 0 0 0 

gg 0 0 0 0 0 0 0 

Mg 0 0 0 0 0 0 0 

Pg 0 2/2 0 0 0 0 0 

Dg 0 0 0 0 0 0 0 

ng 0 0 0 0 0 0 0 

SM 0 0 0 0 0 0 0 

RM 0 0 0 0 0 0 1/1 

gM 0 0 0 2/2 0 0 0 

MM 0 0 0 0 2/2 0 0 

PM 0 0 0 0 0 0 0 

DM 0 0 0 0 2/3 1/3 0 

nM 0 0 0 0 0 0 0 

SP 0 0 0 0 0 0 0 

RP 0 0 0 0 0 0 0 

gP 0 0 0 0 0 0 0 

MP 0 0 0 0 2/4 2/4 0 
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Table 4. (Continued). 

 S R g M P D n 

PP 0 0 0 0 0 0 2/2 

DP 1/2 0 0 0 0 0 1/2 

nP 0 0 2/4 0 0 2/4 0 

SD 0 0 0 0 0 0 0 

RD 0 0 0 0 0 0 0 

gD 0 0 0 0 0 0 0 

MD 0 0 0 0 0 0 1/1 

PD 1/4 0 0 1/4 0 1/4 1/4 

DD 0 0 0 1/3 0 1/3 1/3 

nD 0 0 0 1/5 3/5 1/5 0 

Sn 0 0 0 0 0 3/3 0 

Rn 1/2 0 0 0 0 0 1/2 

gn 0 0 0 0 0 0 0 

Mn 0 0 0 0 1/1 0 0 

Pn 0 0 0 0 3/3 0 0 

Dn 1/3 1/3 0 0 0 1/3 0 

nn 0 0 0 0 0 1/1 0 

ln(Maximum-likelihood) = 2 × ln(2/4) + 2 × ln(2/4) + 1 × ln(1/2) + 1 × ln(1/2) + 1 × ln(1/1) + 1 × ln(1/1) + 2 × 
ln(2/2)+ 1 × ln(1/3) + 2 × ln(2/3) + 1 × ln(1/3) + 2 × ln(2/3) + 1 × ln(1/1) + 1 × ln(1/3) + 2 × ln(2/3) + 2 × ln(2/2) + 1 
× ln(1/1) + 2 × ln(2/2) + 2 × ln(2/2) + 2 × ln(2/3) + 1 × ln(1/3) +2 × ln(2/4) + 2 × ln(2/4) + 2 × ln(2/2) + 1 × ln(1/2) + 
1 × ln(1/2) + 2 × ln(2/4)+2 × ln(2/4) + 1 × ln(1/1) + 1 × ln(1/4) + 1 × ln(1/4) + 1 × ln(1/4) + 1 × ln(1/4) + 1 × ln(1/3) + 
1 × ln(1/3) + 1 × ln(1/3) + 1 × ln(1/5) + 3 × ln(3 /5) + 1 × ln(1/5) + 3 × ln(3/3) + 1 × ln(1/2) + 1 × ln(1/2) + 1 × ln(1/1) 

+ 3 × ln(3/3) +1 × ln(1/3) + 1 × ln(1/3) + 1 × ln(1/3) +1 × ln(1/1) = −16.0702088 
AIC = (−2)ln(Maximum-likelihood) + 2k = (−2)(−16.0702088) + 2 × 4 = 32.1404176 + 8 = 40.1404176 = 40.14 

(approx.) 

3. Discussion on the experimental results 
For the first raga, Kafi bandish, we observe that: 
AIC for the 1st order of Markov-chain > AIC for the 2nd order of Markov-chain 

as 100.98 > 65.63. 
Therefore, the second-order Markov chain corresponds to a better model that 

represents the raga structure. To put it simply, the probability of the next note depends 
not only on the current note but also on the previous note. 

For the second raga, Kafi bandish, we again observe interestingly that: 
AIC for the 1st order of Markov-chain > AIC for the 2nd order of Markov-chain 

as 85.26 > 40.14. 
Therefore, once again, the second-order Markov chain corresponds to a better 

model that represents the raga structure compared to the Markov chain of the first 
order. Given that increasing the order of the Markov chain may not lead to a better 
composition, as warned very clearly by Nierhaus [18], we shall take the second order 
Markov chain to be a signature for representing the note dependence in raga Kafi. 
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4. Concluding remarks 
It appears, interestingly, that the order of the Markov chain is dependent on the 

raga, which has a well-defined melodic structure with fixed notes and a set of rules 
characterizing a particular mood that is conveyed by performance. As long as these 
rules are maintained, as in a raga bandish, the order of the Markov chain seems to be 
invariant over the raga compositions. However, we propose to extend this study to 
other ragas and compositions thereof for substantiation. 

Remark: Nierhaus has pointed out that increasing the order of a Markov chain in 
music does not lead to a better composition [18]. Therefore, we experimented with 
Markov chains of orders one and two only. It can also be intuitively argued that in 
music, the maximum dependence of the next note will be on the current note only and 
that dependence on the previous notes will be less. So, we have considered one 
previous note for comparison in our analysis. 

Source of the musical data: Raag Kafi Parichay and Bandish Notation [19,20]. 
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