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ABSTRACT: Intrusion detection in information technology as well as 

operational technology networks is highly required in modern day 

systems due to the increased spate of cyber-attacks in both number and 

complexity. Anomaly-based intrusion detection systems which have the 

capacity to detect novel or zero-day attacks are highly employed in this 

regard. One important component of anomaly-based intrusion detection 

systems which ensures their behaviour is artificial intelligence in general 

and machine learning in particular. The burden in modern day 

cybersecurity research is to investigate and develop models that can 

outperform existing ones. This paper is aimed at developing a hybrid 

decision tree model using the stacking ensemble approach. Performances 

were measured on the basis of recall, precision, accuracy, F1-score, 

receiver operating characteristics and confusion matrices. The hybrid 

model presented a precision of 97%, accuracy of 81%, F1-score of 80% 

and AUC score of 0.96, respectively. 
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1. Introduction
The advent of the third industrial revolution saw the rise of computers as well as internet technology.

This development came with many potential enhancements for existing human engagements[1]. Thus, 
many processes that used to involve human contact now are based on both human and electronic 
interaction or are entirely digital. Governance for instance can now be electronic hence the term e-
governance, and banking does not always have to take place within the premises of a banking hall since 
financial transactions could be carried out by simply pressing buttons or manipulating interfaces of digital 
devices that are connected to relevant networks, among other benefits. These developments are however 
shadowed by the prevalence of cybercrime in computer networks and the Internet. Malicious actors probe 
such networks on a constant basis seeking for easy targets so as to deploy various threats and attacks in 
compromising the safe and efficient functioning of computer networks[2]. Such threats and attacks include 
worms, viruses, denial of service (DoS) attacks, distributed denial of service (DDoS) attacks, trojan, 
injection attacks, and the like[3,4] which tend to compromise the confidentiality, integrity and availability 
of networks[5–7]. One peculiar intervention being employed to defend networks is the intrusion detection 
system (IDS). An intrusion detection system is a software and hardware system combination that is 
implemented to detect intrusions or unauthorized access into computer networks[8,9]. Such a system 
operates by scanning traffic in order to detect unauthorized access and then report such, based on 
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preconfigured detection parameters[10]. IDS classifications on basis of habitation scope are Host-based 
Intrusion Detection Systems (HIDS) and Network Intrusion Detection Systems (NIDS). A host-based 
system could be a single workstation which monitors very crucial operating system files and protects such 
files from attack. A NIDS operates by analyzing designated network traffic so as to detect malicious 
signatures in the network[11]. IDSs could also be classified according to their detection approach, into 
Signature-based IDS (SIDS) and Anomaly-based IDS (AIDS). A Signature-based IDS carries out 
detection by searching for patterns in the traffic such as byte sequences or instruction sequences and 
matches the discovered patterns against a pre-existing signature database[12]. SIDs however are limited in 
detecting novel or zero-day attacks[12]. Anomaly-based intrusion detection systems (AIDSs) on the other 
hand are capable of monitoring network traffic and making continuous comparison with an established 
normal behaviour baseline. Such systems detect anomalous traffic across the network plane, in devices, 
ports, protocols, bandwidth, etc.[13]. Highly efficient anomaly-based intrusion detection systems (AIDSs) 
are developed by implementing machine learning which is the process of programming or instructing 
computing devices so that they can learn from data[14]. This approach to intrusion detection involves 
training relevant machine learning algorithms to develop models of trustworthy activity which could be 
deployed for intrusion detection. Such AIDSs can be used to expose evolving threats and zero-day attacks 
thereby overcoming a major limitation of the signature-based system[13]. The NSL-KDD dataset is a 
popular benchmark in the machine learning intrusion detection ecosystem and several authors have 
employed this dataset for binary classification problems (i.e., normal or attack traffic). In the work by 
Alladi[15], a hybrid classifier model for intrusion detection which was composed of the K-means clustering 
algorithm and the neural network Multilayer Perceptron algorithm was investigated and an accuracy of 
73.09% was obtained. In the work by Sapre et al.[16], the authors compared the performances of KDD’99 
and NSL-KDD datasets with four classifiers, namely Support Vector Machine, Artificial Neural Network, 
Random Forest and Naïve Bayes classifier. For NSL-KDD, their approach resulted in accuracy values 
of 71.32%, 78.51%, 74.41% and 61.08% for Support Vector Machine, Artificial Neural Network, 
Random Forest and Naïve Bayes, respectively. By leveraging on Apache Spark, Vinayakumar et al.[17] 
proposed Deep Neural Network (DNN) for intrusion detection systems. Their model achieved an 
accuracy score of 79.42% when tested with the NSL-KDD test dataset. However, more efficient AIDs 
are required in order to improve performance and reduce the number of false positives during prediction 
by the machine learning models. Ensemble techniques such as stacking could be implemented to develop 
a hybrid approach to intrusion detection where disparate machine learning models are stacked together 
so as to underline new and improved anomaly-based intrusion detection systems for better performance. 
Hence, this work employs a stacking approach to improve on the prediction level of the decision tree 
model when used to fit the NSL-KDD Dataset. The aim of this work was achieved, since a hybrid 
classifier model capable of improved prediction and lower number of false positives was developed.   

2. Materials and methods 

2.1. Experimental environment 

The experimental environment for this research was the Google Colaboratory environment in which 
a single Jupyter notebook was populated with the necessary python codes. The operating system 
provisioned was Linux-5.15.107+-x86_64-with-glibc2.31. Libraries that were provisioned include Python 
3.10.12, Pandas 1.5.3, NumPy 1.22.4, Seaborn 0.12.2, SciPy 1.10.1 and Scikit-Learn 3.7.1. The flow 
diagram for the hybrid model design is presented in Figure 1. 
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Figure 1. Flow diagram of hybrid model design. 

2.2. Install and import 

The necessary python packages for the Catboost and LightGBM classifiers were installed onto the 
Jupyter notebook environment. Also, the necessary software libraries for developing the machine 
learning models such as pandas for data manipulation, seaborn with matplotlib for visualization as well 
as numpy for numerical processes were imported at this point in the experiment. Libraries for data 
preprocessing such as StandardScaler, MinMaxScaler and OneHotEncoder were also imported. The 
machine learning algorithms employed in this work were imported from scikit-learn collection, namely 
DecisionTreeClassifier, LGBMClassifier and CatboostClassifier. Evaluation metrics for the developed 
models such as accuracy_score, confusion_matrix, recall_score, precision_recall_curve, auc_roc_curve, 
roc_auc_score, classification_report, and RocCurveDisplay were also imported. The training data, i.e., 
NSL-KDD Train+ which consists of 125,973 samples and the NSL-KDD test dataset which consists of 
22544 samples respectively were imported as well.  These datasets were adopted from the official website 
of the University of New Brunswick, Canada. 

2.3. Exploratory data analysis (EDA) 

Exploratory data analysis was carried out to provide insight into the provided dataset so as to 
ascertain readiness for implementation in building the classifier models. The data was first described via 
the df train.info() function and thereafter the datatypes pertaining to the various feature columns in the 
NSL-KDD trainset+ were investigated. The datatype (with number of associated features) distribution 
contained in the dataset included: float64 (15), int64 (24), object (4). The presence of missing values in 
the training dataset was investigated next via the df_train.isna().sum() function. The presence of missing 
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values in the dataset can affect the viability of the dataset when fitting is done by machine learning 
algorithms. Upon investigation, both training and test datasets contained no missing values. The next 
step was investigation for the presence of duplicate values in the training dataset that could also hinder 
the efficiency of the developed models, no duplicate values were found. This was carried out via the 
df_train.duplicated().sum() function. During the exploration of the dataset, outliers were discovered in 
the src_bytes and destination_bytes columns as shown in Figure 2. 

 
Figure 2. Distribution of outliers in training data. 

2.4. Feature engineering 

The prime deed at this stage was conversion of categorical variables represented with other datatypes 
to the ‘category’ datatype by employing the relevant function as shown in Figure 3. 

 
Figure 3. Conversion of categorical variables to ‘category’. 

The following columns affected by the conversion include ‘protocol_type’, ‘service’, ‘flag’, ‘land’, 
‘logged_in’, ‘root_shell’, ‘su_attempted’, ‘is_host_login’, ‘is_guest_login’ and ‘attack’. This engineering 
process resulted in a new distribution for the training dataset. 

The target label (i.e., attack) was also changed to binary form in order to realize the binary 
classification task. The four attack types present in the dataset (i.e., DOS, U2L, R2L and Probe) were 
grouped under one label (i.e., attack) against the normal label. The normal label was encoded with the 
binary value of “0” while attack label was encoded with the binary value of “1”. Further encoding during 
feature engineering addressed the skew present in the raw dataset (shown in Figure 4). A sufficient level 
of balance was obtained with 58,630 features for attack traffic and 67,343 features for normal traffic 
respectively.   
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Figure 4. High skew of attack attribute in raw dataset. 

Feature engineering resulted in a new target label dubbed ‘attack_binary’. The new data distribution 
after encoding is described by the pie chart in Figure 5, where 47% = 58,630 and 53% = 67,343, 
respectively. 

 
Figure 5. Plot of binary encoded data. 

2.5. Building the model 

After feature engineering, the hybrid decision tree model was built. The hybrid model developed 
was a three-fold classifier ensemble namely, a Classical Decision Tree-Light Gradient Boosting Machine-
CatBoost hybrid model. The predictions from the Classical Decision Tree were fed as inputs into Light 
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Gradient Boosting Machine, while the predictions from Light Gradient Boosting Machine were fed into 
the CatBoost classifier in a stacking design.  

2.5.1. Decision Tree classifier 

The hyperparameters tuned for the decision tree model were as follows: max_features = 10, 
max_depth = 4, random_state = 1. The number of features were set at a maximum of ten so that the 
classifier would have enough features out of the entire feature set to make sufficient and accurate 
predictions. The random state was set to 1 to ensure that any time the model is run, the output results 
remain the same. The Decision Tree model was trained via the preprocessed NSL-KDD Train+ dataset 
and thereafter evaluated by relevant metrics. The splitting of the Decision Tree model was by Gini index 
as described in Equation (1)[18]: 

Gini index: 푖(푛표푑푒) = 1 − ∑ 푝(푦�)�
�∈풴  (1)

where, 

i(node) = impurity of node i 

yi = class (normal and attack) 

p(yi) = probability of class occurrence 

The respective probabilities of the two classes were obtained using Equations (2) and (3). 

푃푟표푏푎푏푖푙푖푡푦 표푓 푎푡푡푎푐푘 =
푁푢푚푏푒푟 표푓 푎푡푡푎푐푘 푠푎푚푝푙푒푠

푁푢푚푏푒푟 표푓 푛표푟푚푎푙 푠푎푚푝푙푒푠 + 푁푢푚푏푒푟 표푓 푎푡푡푎푐푘 푠푎푚푝푙푒푠
 (2)

푃푟표푏푎푏푖푙푖푡푦 표푓 푛표푟푚푎푙 =
푁푢푚푏푒푟 표푓 푛표푟푚푎푙 푠푎푚푝푙푒푠

푁푢푚푏푒푟 표푓 푛표푟푚푎푙 푠푎푚푝푙푒푠 + 푁푢푚푏푒푟 표푓 푎푡푡푎푐푘 푠푎푚푝푙푒푠
 (3)

Table 1 describes the components of the Decision Tree splits while Figure 6 further displays the 
developed Decision Tree. 

Table 1. Components of Decision Tree splits. 

X_features Gini index N_samples N_values (Normal, Attack) 

x[12] 0.498 125,973 67,343, 58,630 

x[8] 0.298 77,789 63,586, 14,203 

x[15] 0.169 63,272 57,377, 5895 

x[41] 0.489 11,403 6536, 4867 

 0.067 4485 155, 4330 

 0.143 6918 6381, 537 

x[14] 0.039 51,869 50,841, 1028 

 0.004 50,855 50,764, 91 

 0.14 1014 77, 937 

'x[33] 0.49 14,517 6209, 8308 

'x[11] 0.419 6927 4860, 2067 

 0.266 5757 4846, 911 

 0.024 1170 14, 1156 

'x[5] 0.292 7590 1349, 6241 

 0.391 4607 1226, 3381 
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Table 1. (Continued). 

X_features Gini index N_samples N_values (Normal, Attack) 

 0.079 2983 123, 2860 

'x[43] 0.144 48,184 3757, 44,427 

'x[21] 0.018 44,619 414, 44,205 

'x[14] 0.011 44,431 244, 44,187 

 0.01 44,404 219, 44,185 

 0.137 27 25, 2 

'x[38] 0.173 188 170, 18 

 0.0 7 0, 7 

 0.114 181 170, 11 

'x[6] 0.117 3565 3343, 222 

'x[38] 0.06 3418 3313, 105 

 0.324 59 12, 47 

 0.034 3359 3301, 58 

'x[45] 0.325 147 30, 117 

 0.053 73 2, 71 

 0.47 74 28, 46 

2.5.2. Light gradient boosting machine (LGBM) classifier 

The hyperparameters for training the LGBM stage of the hybrid model were as follows: objective = 
‘binary’, learning_rate = 0.05, n_estimators = 100, max_depth = 6 and random_state = 1. The ‘objective’ 
hyperparameter specifies the learning task and corresponding learning objective at hand for the algorithm. 
In this case it was specified as ‘binary’ since the problem being considered is a binary classification 
problem of ‘0’ as normal traffic and ‘1’ as attack traffic in the network. The Decision Tree predictions 
were added to the data features and the LGBM model was thereafter trained with the preprocessed NSL-
KDD Train+ dataset, then evaluated.  

The LGBM algorithm was based on a hundred Decision Trees hence the model formed is described 
below: 

Given Training Data D (NSL-KDD Train+) = {퐱� , 푦����
� } (퐱� ∈ ℝ�, 푦� ∈ Y) where ‘m’ is the samples 

and ‘n’ is features. In order to get the estimation by the LGBM classifier, the Decision Trees predictions 
are combined as follows: 

푦��
�� = � 푓�(푥�)

���

�

 (4)

where the number of trees is 100 and 푓� represents the Decision Tree prediction. The goal in this instance 

is minimization of the objective function in Equation (5) to get 푓�. 

푓� = arg min
��

� 퐿(푦� ,
�

���

푦��
��(�)) + 훺(푓�) (5)

where L is the loss function and Ω is the regularization parameter. Ω is given by Equation (6). 
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Figure 6. Decision Tree model. 
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훺�푓�� = 훼푇 +
1
2

휆 � 푤�
�

�

���

 (6)

The arguments 훼 and 휆 are penalty parameters for ‘T’ leaves and the weight of leaves ‘w’, respectively. 
The loss function L is a squared error, such that, 

퐿(푦� , 푦��
��(���) + 푓�(푥) = (푦� − 푦��

��(���) − 푓�(푥)� = (푟 − 푓�(푥)� (7)

The parameter ‘r’ in Equation (7) is a residual that is fitted to get 푓�. A quadratic approximation is 

used to define the function for minimization of the objective function at iteration p as described in 
Equation (8). 

푓� ≅ arg min
��

� �푔�푓�(푥�) +
1
2

ℎ�푓�
�(푥�)� +

�

���

 훺�푓��, 

푔� = 휕����(���)퐿 �푦� , 푦��
��(���)�, 

ℎ� = 휕����(���)
� 퐿 �푦� , 푦��

��(���)�. 

(8)

Minimization of the objective function yields a new decision tree 푓�. Each node that has the largest 

information gain is divided by the tree. The variance gain that belongs to a node which separates a feature 
‘j’ at point ‘s’ is given by Equation (9). 

푍�|�(푠) =
1

푛�
�

�∑ 푔�{�∈�:�����} �
�

푛�|�
� (푠)

+
�∑ 푔�{�∈�:�����} �

�

푛�|�
� (푠)

� (9)

where, 

푛� is Decision Tree fixed node, 

푂 is samples on 푛�, 

푛�|�
� (푠) = ∑ 퐼�푥 ∈ 푂: 푥�� ≤ 푠� representing the left node, 

푛�|�
� (푠) = ∑ 퐼�푥 ∈ 푂: 푥�� > 푠� representing the right node. 

The decision tree therefore selects 푠�
∗ = 푎푟푔 max

�
푍�(푠) belonging to each feature ‘j’ and proceeds to 

compute the greatest gain 푍�(푠�
∗). The data was thus split into both left and right nodes in accordance 

with the feature 푗∗ and point 푠�∗. The entire data samples were scanned to locate the optimal point of split 

so as to deduce the information gain. The predictions of LGBM were fed into the final stage of the hybrid 
classifier model (i.e., CatBoost). 

2.5.3. CatBoost classifier   

The following hyperparameters were set: learning_rate = 0.05, verbose = 100, random_state = 1. 
The default number of decision trees for the classifier (i.e., 1000) was employed to develop the model. 
The verbose parameter was set to 100 so that the output can be displayed in steps of 100 as shown in 
Figure 7. The hybrid model was then trained and evaluated.  
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Figure 7. Iterations for CatBoost Classifier. 

The hybrid classifier was trained on all 125,973 samples as described in Table 2 and tested on all 
22,544 test samples as described in Table 3. Summary of hyperparameters tuned for the algorithms in 

Scikit-learn is described in Table 4. 

Table 2. Hybrid classifier training parameters. 

X_train Y_train 

N_samples N_features N_samples 

125,973 51 125,973 

Table 3. Hybrid classifier test parameters. 

X_test Y_test 

N_samples N_features N_samples 

22,544 51 22,544 

Table 4. Hyperparameter values for classifier training. 

Algorithm Hyperparameters Values 

Decision Tree max_features 10 

max_depth 4 

random_state 1 

LightGBoost objective ‘binary’ 

learning_rate 0.05 

n_estimators 100 

max_depth 6 

random_state 1 

CatBoost learning_rate 0.05 

verbose 100 

cat_features cat_cols 

random_state 1 

iterations Default (1000) 
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The stacking procedure for obtaining the hybrid decision tree model is given in Appendix. 

3. Results 
The performances of the machine learning (ML) models were compared based on Accuracy, Recall, 

Precision, F1-Score, Receiver Operating Characteristic curve and Confusion Matrix. Figures 8 to 10 are 
the confusion matrices for Decision Tree, LGBM and CatBoost classifiers respectively at final evaluation 
using the NSL-KDD test data. 

 
Figure 8. Decision Tree confusion matrix. 

The values shown in the confusion matrix of Figure 8 are True Negative (TN) = 8809, False Positive 
(FP) = 902, False Negative (FN) = 4371 and True Positive (TP) = 8462, respectively. 

 

Figure 9. LGBM confusion matrix. 

The values shown in the confusion matrix of Figure 9 are True Negative (TN) = 9437, False Positive 
(FP) = 274, False Negative (FN) = 4024 and True Positive (TP) = 8809, respectively. 
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Figure 10. CatBoost confusion matrix. 

The values shown in the confusion matrix of Figure 10 are True Negative (TN) = 9437, False 
Positive (FP) = 274, False Negative (FN) = 4013 and True Positive (TP) = 8820, respectively. 

From the confusion matrices, the accuracy, precision, recall and F1-Score metrices were obtained as 
described by Equation (10) to (13)[16]. 

퐴푐푐푢푟푎푐푦 =
푇푃 + 푇푁

푇푃 + 푇푁 + 퐹푃 + 퐹푁
 (10)

푃푟푒푐푖푠푖표푛 =
푇푃

푇푃 + 푇푁
 (11)

푅푒푐푎푙푙 =
푇푃

푇푃 + 퐹푁
 (12)

퐹1 − 푠푐표푟푒 = 2 ∗
푃푟푒푐푖푠푖표푛 ∗ 푅푒푐푎푙푙
푃푟푒푐푖푠푖표푛 + 푅푒푐푎푙푙

 (13)

Furthermore, the Receiver Operating Characteristic curves for each of the three classifiers at final 
evaluation are presented in Figures 11 to 13. The area under the curve (AUC) for the receiver operating 
characteristic curve is a measure of how the binary classifier distinguishes between classes[19]. The higher 
this value, the better the classifier can distinguish between positive and negative classes.  

Table 5 displays the summary of the performance results for all three classifier stages of the hybrid 
stacked model. 

Table 5. Summary of test results for individual stages of hybrid model. 

Metric Decision tree Decision Tree-LGBM Decision Tree-LGBM-CatBoost 

Precision 90% 97% 97% 

Recall 66% 69% 69% 

F1-score 76% 80% 80% 

Accuracy 77% 81% 81% 

False Negatives 4371 4024 4013 

False Positives 902 274 274 

Area Under Curve 0.94 0.93 0.96 
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Figure 11. Decision Tree receiver operating characteristic curve. 

 
Figure 12. LGBM receiver operating characteristic curve. 

 
Figure 13. CatBoost receiver operating characteristic curve. 
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4. Discussion 
This investigation was to determine the extent to which a hybrid variant of the Decision Tree 

algorithm would outperform the standard Decision Tree algorithm so as to develop a model capable of 
reducing the number of false positives in intrusion detection. The individual levels for the hybrid model 
were executed as follows. The NSL-KDD Train+ dataset was first fit with the Decision Tree algorithm 
and the predicted outcomes served as input to the LGBM classifier algorithm with the features of the 
NSL-KDD Train+ dataset. The predictions from the LGBM classifier further served as input for the 
CatBoost classifier, the final stage of the stacked model. The summary of results displayed in Table 5 are 
discussed as percentage values in this section. The hybrid model with precision score, recall score, F1-
score and accuracy scores of 97%, 69%, 80% and 81%, respectively was found to outperform the Classical 
Decision Tree model with corresponding values of 90%, 66%,76% and 77%, respectively. This outcome 
proved that hybridization of the Decision Tree classifier with boosted algorithms of LGBM and CatBoost 
leads to better performance results with the NSL-KDD dataset. Furthermore, the hybrid model presents 
a smaller number of False Positives and False Negatives which is desired in intrusion detection with 
values of 274 and 4013 respectively as against the Classical Decision Tree with values of 902 and 4371, 
respectively. Since a better intrusion detection model gives a reduced number of false predictions, the 
hybrid approach is proved to be better at detecting intrusions with the NSL-KDD dataset than the 
Classical Decision Tree model in this experiment. The area under curve (AUC) values displayed in Table 
5, present the hybrid approach with 0.96 and the Classical Decision Tree with 0.94. An AUC value which 
is closer to 1 means a better performing model than one which is less close, the hybrid model on this basis 
is further proven to outperform the Classical Decision Tree model.  

The results in this work were compared with the hybrid work by Alladi[15] in Table 6. The rationale 
for this comparison is that Alladi[15] also employed the NSL-KDD dataset as a benchmark. The 
percentage accuracy scores are compared below. 

Table 6. Results comparison. 

Author Classifier Accuracy % 

Alladi[15] MLP & k-means clustering 73.09 

Proposed hybrid model Decision Tree, LGBM and CatBoost 81 

As displayed in Table 6, the hybridization approach employed in this work outperforms the 
approach by Alladi[15]. Other works studied in literature were also surpassed in terms of accuracy. 

5. Conclusion 
This work involved the development of a hybrid model based on Decision Trees. Stacking approach 

was adopted where the predictions from one classifier were fed into another so as to improve performance. 
Three classifiers were adopted in developing the model namely, Standard or Classical Decision Tree, 
Light Gradient Boosting Machine and Catboost. The predictions from Decision Tree on the NSL-KDD 
dataset served as input for the LGBM algorithm while the predictions from the LGBM classifier 
algorithm were fed into the CatBoost classifier to form the final level of the stacked model. Results prove 
that the hybrid model had improved performance compared to the Standard Decision Tree in terms of 
precision, accuracy, recall and F1-score. The AUC value of the hybrid model was also an improvement 
as well as number of False Negatives and False Positives. 
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Appendix 
Algorithm for Implementation of Hybrid Stacking  

Input: Training Data D (NSL-KDD Train+) = {퐱� , 푦����
� } (퐱� ∈ ℝ�, 푦� ∈ Y) 

Output: A hybrid ensemble classifier H 
1: Step 1: Learn first-level classifiers (h1, h2) 

2: for t ←1 to 2 do 

3: Learn a classifier ht from D 

4: end for 
5: Step 2: Construct new data sets from D 

6: for i←1 to m do 

7:        Construct a new data set that contains {퐱�
�, 푦�}, where 퐱�

� = {ℎ�(퐱�), ℎ�(퐱�)} 

8: end for  
9: Step 3: Learn a final-level classifier  
10: Learn a new classifier ℎ� based on the newly constructed data set 
11: return H(x) = ℎ�(ℎ�(퐱), ℎ�(퐱)) 

 


