
Journal of AppliedMath 2023; 1(4): 271.
Original Research Article

1

Development of a stacked hybrid Decision Tree model leveraging
the NSL-KDD dataset
Edosa Osa1,*, Patience Orukpe1, Iruansi Usiholo2

1 Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Benin, P.M.B. 1154, Benin City,

Nigeria
2 Department of Computer Engineering, Faculty of Engineering, University of Benin, P.M.B. 1154, Benin City, Nigeria

* Corresponding author: Edosa Osa, edosa.osa@uniben.edu

ABSTRACT: Intrusion detection in information technology as well as

operational technology networks is highly required in modern day

systems due to the increased spate of cyber-attacks in both number and

complexity. Anomaly-based intrusion detection systems which have the

capacity to detect novel or zero-day attacks are highly employed in this

regard. One important component of anomaly-based intrusion detection

systems which ensures their behaviour is artificial intelligence in general

and machine learning in particular. The burden in modern day

cybersecurity research is to investigate and develop models that can

outperform existing ones. This paper is aimed at developing a hybrid

decision tree model using the stacking ensemble approach. Performances

were measured on the basis of recall, precision, accuracy, F1-score,

receiver operating characteristics and confusion matrices. The hybrid

model presented a precision of 97%, accuracy of 81%, F1-score of 80%

and AUC score of 0.96, respectively.

KEYWORDS: machine learning; decision tree; hybrid; intrusion;

detection

1. Introduction
The advent of the third industrial revolution saw the rise of computers as well as internet technology.

This development came with many potential enhancements for existing human engagements[1]. Thus,
many processes that used to involve human contact now are based on both human and electronic
interaction or are entirely digital. Governance for instance can now be electronic hence the term e-
governance, and banking does not always have to take place within the premises of a banking hall since
financial transactions could be carried out by simply pressing buttons or manipulating interfaces of digital
devices that are connected to relevant networks, among other benefits. These developments are however
shadowed by the prevalence of cybercrime in computer networks and the Internet. Malicious actors probe
such networks on a constant basis seeking for easy targets so as to deploy various threats and attacks in
compromising the safe and efficient functioning of computer networks[2]. Such threats and attacks include
worms, viruses, denial of service (DoS) attacks, distributed denial of service (DDoS) attacks, trojan,
injection attacks, and the like[3,4] which tend to compromise the confidentiality, integrity and availability
of networks[5–7]. One peculiar intervention being employed to defend networks is the intrusion detection
system (IDS). An intrusion detection system is a software and hardware system combination that is
implemented to detect intrusions or unauthorized access into computer networks[8,9]. Such a system
operates by scanning traffic in order to detect unauthorized access and then report such, based on

ARTICLE INFO

Received: 19 October 2023
Accepted: 7 December 2023
Available online: 21 December 2023

doi: 10.59400/jam.v1i4.271

Copyright © 2023 Author(s).

Journal of AppliedMath is published by
Academic Publishing Pte. Ltd. This article
is licensed under the Creative Commons
Attribution License (CC BY 4.0). https://
creativecommons.org/licenses/by/4.0/

Journal of AppliedMath 2023; 1(4): 271.

2

preconfigured detection parameters[10]. IDS classifications on basis of habitation scope are Host-based
Intrusion Detection Systems (HIDS) and Network Intrusion Detection Systems (NIDS). A host-based
system could be a single workstation which monitors very crucial operating system files and protects such
files from attack. A NIDS operates by analyzing designated network traffic so as to detect malicious
signatures in the network[11]. IDSs could also be classified according to their detection approach, into
Signature-based IDS (SIDS) and Anomaly-based IDS (AIDS). A Signature-based IDS carries out
detection by searching for patterns in the traffic such as byte sequences or instruction sequences and
matches the discovered patterns against a pre-existing signature database[12]. SIDs however are limited in
detecting novel or zero-day attacks[12]. Anomaly-based intrusion detection systems (AIDSs) on the other
hand are capable of monitoring network traffic and making continuous comparison with an established
normal behaviour baseline. Such systems detect anomalous traffic across the network plane, in devices,
ports, protocols, bandwidth, etc.[13]. Highly efficient anomaly-based intrusion detection systems (AIDSs)
are developed by implementing machine learning which is the process of programming or instructing
computing devices so that they can learn from data[14]. This approach to intrusion detection involves
training relevant machine learning algorithms to develop models of trustworthy activity which could be
deployed for intrusion detection. Such AIDSs can be used to expose evolving threats and zero-day attacks
thereby overcoming a major limitation of the signature-based system[13]. The NSL-KDD dataset is a
popular benchmark in the machine learning intrusion detection ecosystem and several authors have
employed this dataset for binary classification problems (i.e., normal or attack traffic). In the work by
Alladi[15], a hybrid classifier model for intrusion detection which was composed of the K-means clustering
algorithm and the neural network Multilayer Perceptron algorithm was investigated and an accuracy of
73.09% was obtained. In the work by Sapre et al.[16], the authors compared the performances of KDD’99
and NSL-KDD datasets with four classifiers, namely Support Vector Machine, Artificial Neural Network,
Random Forest and Naïve Bayes classifier. For NSL-KDD, their approach resulted in accuracy values
of 71.32%, 78.51%, 74.41% and 61.08% for Support Vector Machine, Artificial Neural Network,
Random Forest and Naïve Bayes, respectively. By leveraging on Apache Spark, Vinayakumar et al.[17]
proposed Deep Neural Network (DNN) for intrusion detection systems. Their model achieved an
accuracy score of 79.42% when tested with the NSL-KDD test dataset. However, more efficient AIDs
are required in order to improve performance and reduce the number of false positives during prediction
by the machine learning models. Ensemble techniques such as stacking could be implemented to develop
a hybrid approach to intrusion detection where disparate machine learning models are stacked together
so as to underline new and improved anomaly-based intrusion detection systems for better performance.
Hence, this work employs a stacking approach to improve on the prediction level of the decision tree
model when used to fit the NSL-KDD Dataset. The aim of this work was achieved, since a hybrid
classifier model capable of improved prediction and lower number of false positives was developed.

2. Materials and methods

2.1. Experimental environment

The experimental environment for this research was the Google Colaboratory environment in which
a single Jupyter notebook was populated with the necessary python codes. The operating system
provisioned was Linux-5.15.107+-x86_64-with-glibc2.31. Libraries that were provisioned include Python
3.10.12, Pandas 1.5.3, NumPy 1.22.4, Seaborn 0.12.2, SciPy 1.10.1 and Scikit-Learn 3.7.1. The flow
diagram for the hybrid model design is presented in Figure 1.

Journal of AppliedMath 2023; 1(4): 271.

3

Figure 1. Flow diagram of hybrid model design.

2.2. Install and import

The necessary python packages for the Catboost and LightGBM classifiers were installed onto the
Jupyter notebook environment. Also, the necessary software libraries for developing the machine
learning models such as pandas for data manipulation, seaborn with matplotlib for visualization as well
as numpy for numerical processes were imported at this point in the experiment. Libraries for data
preprocessing such as StandardScaler, MinMaxScaler and OneHotEncoder were also imported. The
machine learning algorithms employed in this work were imported from scikit-learn collection, namely
DecisionTreeClassifier, LGBMClassifier and CatboostClassifier. Evaluation metrics for the developed
models such as accuracy_score, confusion_matrix, recall_score, precision_recall_curve, auc_roc_curve,
roc_auc_score, classification_report, and RocCurveDisplay were also imported. The training data, i.e.,
NSL-KDD Train+ which consists of 125,973 samples and the NSL-KDD test dataset which consists of
22544 samples respectively were imported as well. These datasets were adopted from the official website
of the University of New Brunswick, Canada.

2.3. Exploratory data analysis (EDA)

Exploratory data analysis was carried out to provide insight into the provided dataset so as to
ascertain readiness for implementation in building the classifier models. The data was first described via
the df train.info() function and thereafter the datatypes pertaining to the various feature columns in the
NSL-KDD trainset+ were investigated. The datatype (with number of associated features) distribution
contained in the dataset included: float64 (15), int64 (24), object (4). The presence of missing values in
the training dataset was investigated next via the df_train.isna().sum() function. The presence of missing

Journal of AppliedMath 2023; 1(4): 271.

4

values in the dataset can affect the viability of the dataset when fitting is done by machine learning
algorithms. Upon investigation, both training and test datasets contained no missing values. The next
step was investigation for the presence of duplicate values in the training dataset that could also hinder
the efficiency of the developed models, no duplicate values were found. This was carried out via the
df_train.duplicated().sum() function. During the exploration of the dataset, outliers were discovered in
the src_bytes and destination_bytes columns as shown in Figure 2.

Figure 2. Distribution of outliers in training data.

2.4. Feature engineering

The prime deed at this stage was conversion of categorical variables represented with other datatypes
to the ‘category’ datatype by employing the relevant function as shown in Figure 3.

Figure 3. Conversion of categorical variables to ‘category’.

The following columns affected by the conversion include ‘protocol_type’, ‘service’, ‘flag’, ‘land’,
‘logged_in’, ‘root_shell’, ‘su_attempted’, ‘is_host_login’, ‘is_guest_login’ and ‘attack’. This engineering
process resulted in a new distribution for the training dataset.

The target label (i.e., attack) was also changed to binary form in order to realize the binary
classification task. The four attack types present in the dataset (i.e., DOS, U2L, R2L and Probe) were
grouped under one label (i.e., attack) against the normal label. The normal label was encoded with the
binary value of “0” while attack label was encoded with the binary value of “1”. Further encoding during
feature engineering addressed the skew present in the raw dataset (shown in Figure 4). A sufficient level
of balance was obtained with 58,630 features for attack traffic and 67,343 features for normal traffic
respectively.

Journal of AppliedMath 2023; 1(4): 271.

5

Figure 4. High skew of attack attribute in raw dataset.

Feature engineering resulted in a new target label dubbed ‘attack_binary’. The new data distribution
after encoding is described by the pie chart in Figure 5, where 47% = 58,630 and 53% = 67,343,
respectively.

Figure 5. Plot of binary encoded data.

2.5. Building the model

After feature engineering, the hybrid decision tree model was built. The hybrid model developed
was a three-fold classifier ensemble namely, a Classical Decision Tree-Light Gradient Boosting Machine-
CatBoost hybrid model. The predictions from the Classical Decision Tree were fed as inputs into Light

Journal of AppliedMath 2023; 1(4): 271.

6

Gradient Boosting Machine, while the predictions from Light Gradient Boosting Machine were fed into
the CatBoost classifier in a stacking design.

2.5.1. Decision Tree classifier

The hyperparameters tuned for the decision tree model were as follows: max_features = 10,
max_depth = 4, random_state = 1. The number of features were set at a maximum of ten so that the
classifier would have enough features out of the entire feature set to make sufficient and accurate
predictions. The random state was set to 1 to ensure that any time the model is run, the output results
remain the same. The Decision Tree model was trained via the preprocessed NSL-KDD Train+ dataset
and thereafter evaluated by relevant metrics. The splitting of the Decision Tree model was by Gini index
as described in Equation (1)[18]:

Gini index: 푖(푛표푑푒) = 1 − ∑ 푝(푦�)�
�∈풴 (1)

where,

i(node) = impurity of node i

yi = class (normal and attack)

p(yi) = probability of class occurrence

The respective probabilities of the two classes were obtained using Equations (2) and (3).

푃푟표푏푎푏푖푙푖푡푦 표푓 푎푡푡푎푐푘 =
푁푢푚푏푒푟 표푓 푎푡푡푎푐푘 푠푎푚푝푙푒푠

푁푢푚푏푒푟 표푓 푛표푟푚푎푙 푠푎푚푝푙푒푠 + 푁푢푚푏푒푟 표푓 푎푡푡푎푐푘 푠푎푚푝푙푒푠
 (2)

푃푟표푏푎푏푖푙푖푡푦 표푓 푛표푟푚푎푙 =
푁푢푚푏푒푟 표푓 푛표푟푚푎푙 푠푎푚푝푙푒푠

푁푢푚푏푒푟 표푓 푛표푟푚푎푙 푠푎푚푝푙푒푠 + 푁푢푚푏푒푟 표푓 푎푡푡푎푐푘 푠푎푚푝푙푒푠
 (3)

Table 1 describes the components of the Decision Tree splits while Figure 6 further displays the
developed Decision Tree.

Table 1. Components of Decision Tree splits.

X_features Gini index N_samples N_values (Normal, Attack)

x[12] 0.498 125,973 67,343, 58,630

x[8] 0.298 77,789 63,586, 14,203

x[15] 0.169 63,272 57,377, 5895

x[41] 0.489 11,403 6536, 4867

 0.067 4485 155, 4330

 0.143 6918 6381, 537

x[14] 0.039 51,869 50,841, 1028

 0.004 50,855 50,764, 91

 0.14 1014 77, 937

'x[33] 0.49 14,517 6209, 8308

'x[11] 0.419 6927 4860, 2067

 0.266 5757 4846, 911

 0.024 1170 14, 1156

'x[5] 0.292 7590 1349, 6241

 0.391 4607 1226, 3381

Journal of AppliedMath 2023; 1(4): 271.

7

Table 1. (Continued).

X_features Gini index N_samples N_values (Normal, Attack)

 0.079 2983 123, 2860

'x[43] 0.144 48,184 3757, 44,427

'x[21] 0.018 44,619 414, 44,205

'x[14] 0.011 44,431 244, 44,187

 0.01 44,404 219, 44,185

 0.137 27 25, 2

'x[38] 0.173 188 170, 18

 0.0 7 0, 7

 0.114 181 170, 11

'x[6] 0.117 3565 3343, 222

'x[38] 0.06 3418 3313, 105

 0.324 59 12, 47

 0.034 3359 3301, 58

'x[45] 0.325 147 30, 117

 0.053 73 2, 71

 0.47 74 28, 46

2.5.2. Light gradient boosting machine (LGBM) classifier

The hyperparameters for training the LGBM stage of the hybrid model were as follows: objective =
‘binary’, learning_rate = 0.05, n_estimators = 100, max_depth = 6 and random_state = 1. The ‘objective’
hyperparameter specifies the learning task and corresponding learning objective at hand for the algorithm.
In this case it was specified as ‘binary’ since the problem being considered is a binary classification
problem of ‘0’ as normal traffic and ‘1’ as attack traffic in the network. The Decision Tree predictions
were added to the data features and the LGBM model was thereafter trained with the preprocessed NSL-
KDD Train+ dataset, then evaluated.

The LGBM algorithm was based on a hundred Decision Trees hence the model formed is described
below:

Given Training Data D (NSL-KDD Train+) = {퐱� , 푦����
� } (퐱� ∈ ℝ�, 푦� ∈ Y) where ‘m’ is the samples

and ‘n’ is features. In order to get the estimation by the LGBM classifier, the Decision Trees predictions
are combined as follows:

푦��
�� = � 푓�(푥�)

���

�

 (4)

where the number of trees is 100 and 푓� represents the Decision Tree prediction. The goal in this instance

is minimization of the objective function in Equation (5) to get 푓�.

푓� = arg min
��

� 퐿(푦� ,
�

���

푦��
��(�)) + 훺(푓�) (5)

where L is the loss function and Ω is the regularization parameter. Ω is given by Equation (6).

Journal of AppliedMath 2023; 1(4): 271.

8

Figure 6. Decision Tree model.

Journal of AppliedMath 2023; 1(4): 271.

9

훺�푓�� = 훼푇 +
1
2

휆 � 푤�
�

�

���

 (6)

The arguments 훼 and 휆 are penalty parameters for ‘T’ leaves and the weight of leaves ‘w’, respectively.
The loss function L is a squared error, such that,

퐿(푦� , 푦��
��(���) + 푓�(푥) = (푦� − 푦��

��(���) − 푓�(푥)� = (푟 − 푓�(푥)� (7)

The parameter ‘r’ in Equation (7) is a residual that is fitted to get 푓�. A quadratic approximation is

used to define the function for minimization of the objective function at iteration p as described in
Equation (8).

푓� ≅ arg min
��

� �푔�푓�(푥�) +
1
2

ℎ�푓�
�(푥�)� +

�

���

 훺�푓��,

푔� = 휕����(���)퐿 �푦� , 푦��
��(���)�,

ℎ� = 휕����(���)
� 퐿 �푦� , 푦��

��(���)�.

(8)

Minimization of the objective function yields a new decision tree 푓�. Each node that has the largest

information gain is divided by the tree. The variance gain that belongs to a node which separates a feature
‘j’ at point ‘s’ is given by Equation (9).

푍�|�(푠) =
1

푛�
�

�∑ 푔�{�∈�:�����} �
�

푛�|�
� (푠)

+
�∑ 푔�{�∈�:�����} �

�

푛�|�
� (푠)

� (9)

where,

푛� is Decision Tree fixed node,

푂 is samples on 푛�,

푛�|�
� (푠) = ∑ 퐼�푥 ∈ 푂: 푥�� ≤ 푠� representing the left node,

푛�|�
� (푠) = ∑ 퐼�푥 ∈ 푂: 푥�� > 푠� representing the right node.

The decision tree therefore selects 푠�
∗ = 푎푟푔 max

�
푍�(푠) belonging to each feature ‘j’ and proceeds to

compute the greatest gain 푍�(푠�
∗). The data was thus split into both left and right nodes in accordance

with the feature 푗∗ and point 푠�∗. The entire data samples were scanned to locate the optimal point of split

so as to deduce the information gain. The predictions of LGBM were fed into the final stage of the hybrid
classifier model (i.e., CatBoost).

2.5.3. CatBoost classifier

The following hyperparameters were set: learning_rate = 0.05, verbose = 100, random_state = 1.
The default number of decision trees for the classifier (i.e., 1000) was employed to develop the model.
The verbose parameter was set to 100 so that the output can be displayed in steps of 100 as shown in
Figure 7. The hybrid model was then trained and evaluated.

Journal of AppliedMath 2023; 1(4): 271.

10

Figure 7. Iterations for CatBoost Classifier.

The hybrid classifier was trained on all 125,973 samples as described in Table 2 and tested on all
22,544 test samples as described in Table 3. Summary of hyperparameters tuned for the algorithms in

Scikit-learn is described in Table 4.

Table 2. Hybrid classifier training parameters.

X_train Y_train

N_samples N_features N_samples

125,973 51 125,973

Table 3. Hybrid classifier test parameters.

X_test Y_test

N_samples N_features N_samples

22,544 51 22,544

Table 4. Hyperparameter values for classifier training.

Algorithm Hyperparameters Values

Decision Tree max_features 10

max_depth 4

random_state 1

LightGBoost objective ‘binary’

learning_rate 0.05

n_estimators 100

max_depth 6

random_state 1

CatBoost learning_rate 0.05

verbose 100

cat_features cat_cols

random_state 1

iterations Default (1000)

Journal of AppliedMath 2023; 1(4): 271.

11

The stacking procedure for obtaining the hybrid decision tree model is given in Appendix.

3. Results
The performances of the machine learning (ML) models were compared based on Accuracy, Recall,

Precision, F1-Score, Receiver Operating Characteristic curve and Confusion Matrix. Figures 8 to 10 are
the confusion matrices for Decision Tree, LGBM and CatBoost classifiers respectively at final evaluation
using the NSL-KDD test data.

Figure 8. Decision Tree confusion matrix.

The values shown in the confusion matrix of Figure 8 are True Negative (TN) = 8809, False Positive
(FP) = 902, False Negative (FN) = 4371 and True Positive (TP) = 8462, respectively.

Figure 9. LGBM confusion matrix.

The values shown in the confusion matrix of Figure 9 are True Negative (TN) = 9437, False Positive
(FP) = 274, False Negative (FN) = 4024 and True Positive (TP) = 8809, respectively.

Journal of AppliedMath 2023; 1(4): 271.

12

Figure 10. CatBoost confusion matrix.

The values shown in the confusion matrix of Figure 10 are True Negative (TN) = 9437, False
Positive (FP) = 274, False Negative (FN) = 4013 and True Positive (TP) = 8820, respectively.

From the confusion matrices, the accuracy, precision, recall and F1-Score metrices were obtained as
described by Equation (10) to (13)[16].

퐴푐푐푢푟푎푐푦 =
푇푃 + 푇푁

푇푃 + 푇푁 + 퐹푃 + 퐹푁
 (10)

푃푟푒푐푖푠푖표푛 =
푇푃

푇푃 + 푇푁
 (11)

푅푒푐푎푙푙 =
푇푃

푇푃 + 퐹푁
 (12)

퐹1 − 푠푐표푟푒 = 2 ∗
푃푟푒푐푖푠푖표푛 ∗ 푅푒푐푎푙푙
푃푟푒푐푖푠푖표푛 + 푅푒푐푎푙푙

 (13)

Furthermore, the Receiver Operating Characteristic curves for each of the three classifiers at final
evaluation are presented in Figures 11 to 13. The area under the curve (AUC) for the receiver operating
characteristic curve is a measure of how the binary classifier distinguishes between classes[19]. The higher
this value, the better the classifier can distinguish between positive and negative classes.

Table 5 displays the summary of the performance results for all three classifier stages of the hybrid
stacked model.

Table 5. Summary of test results for individual stages of hybrid model.

Metric Decision tree Decision Tree-LGBM Decision Tree-LGBM-CatBoost

Precision 90% 97% 97%

Recall 66% 69% 69%

F1-score 76% 80% 80%

Accuracy 77% 81% 81%

False Negatives 4371 4024 4013

False Positives 902 274 274

Area Under Curve 0.94 0.93 0.96

Journal of AppliedMath 2023; 1(4): 271.

13

Figure 11. Decision Tree receiver operating characteristic curve.

Figure 12. LGBM receiver operating characteristic curve.

Figure 13. CatBoost receiver operating characteristic curve.

Journal of AppliedMath 2023; 1(4): 271.

14

4. Discussion
This investigation was to determine the extent to which a hybrid variant of the Decision Tree

algorithm would outperform the standard Decision Tree algorithm so as to develop a model capable of
reducing the number of false positives in intrusion detection. The individual levels for the hybrid model
were executed as follows. The NSL-KDD Train+ dataset was first fit with the Decision Tree algorithm
and the predicted outcomes served as input to the LGBM classifier algorithm with the features of the
NSL-KDD Train+ dataset. The predictions from the LGBM classifier further served as input for the
CatBoost classifier, the final stage of the stacked model. The summary of results displayed in Table 5 are
discussed as percentage values in this section. The hybrid model with precision score, recall score, F1-
score and accuracy scores of 97%, 69%, 80% and 81%, respectively was found to outperform the Classical
Decision Tree model with corresponding values of 90%, 66%,76% and 77%, respectively. This outcome
proved that hybridization of the Decision Tree classifier with boosted algorithms of LGBM and CatBoost
leads to better performance results with the NSL-KDD dataset. Furthermore, the hybrid model presents
a smaller number of False Positives and False Negatives which is desired in intrusion detection with
values of 274 and 4013 respectively as against the Classical Decision Tree with values of 902 and 4371,
respectively. Since a better intrusion detection model gives a reduced number of false predictions, the
hybrid approach is proved to be better at detecting intrusions with the NSL-KDD dataset than the
Classical Decision Tree model in this experiment. The area under curve (AUC) values displayed in Table
5, present the hybrid approach with 0.96 and the Classical Decision Tree with 0.94. An AUC value which
is closer to 1 means a better performing model than one which is less close, the hybrid model on this basis
is further proven to outperform the Classical Decision Tree model.

The results in this work were compared with the hybrid work by Alladi[15] in Table 6. The rationale
for this comparison is that Alladi[15] also employed the NSL-KDD dataset as a benchmark. The
percentage accuracy scores are compared below.

Table 6. Results comparison.

Author Classifier Accuracy %

Alladi[15] MLP & k-means clustering 73.09

Proposed hybrid model Decision Tree, LGBM and CatBoost 81

As displayed in Table 6, the hybridization approach employed in this work outperforms the
approach by Alladi[15]. Other works studied in literature were also surpassed in terms of accuracy.

5. Conclusion
This work involved the development of a hybrid model based on Decision Trees. Stacking approach

was adopted where the predictions from one classifier were fed into another so as to improve performance.
Three classifiers were adopted in developing the model namely, Standard or Classical Decision Tree,
Light Gradient Boosting Machine and Catboost. The predictions from Decision Tree on the NSL-KDD
dataset served as input for the LGBM algorithm while the predictions from the LGBM classifier
algorithm were fed into the CatBoost classifier to form the final level of the stacked model. Results prove
that the hybrid model had improved performance compared to the Standard Decision Tree in terms of
precision, accuracy, recall and F1-score. The AUC value of the hybrid model was also an improvement
as well as number of False Negatives and False Positives.

Journal of AppliedMath 2023; 1(4): 271.

15

Author contributions
Conceptualization, EO and PO; methodology, EO and PO; software, EO; validation, EO, PO and

IU; formal analysis, IU; investigation, EO; resources, PO; data curation, EO; writing—original draft
preparation, EO; writing—review and editing, PO and IU; visualization, IU; supervision, PO; project
administration, PO; funding acquisition, PO and IU. All authors have read and agreed to the published
version of the manuscript.

Conflict of interest
The authors declare no conflict of interest.

References
1. Mohajan HK. Third industrial revolution brings global development. Journal of Social Sciences and Humanities

2021; 7(4): 239–251.
2. Orukpe PE, Erhiaguna TO, Agbontaen FO. Computer security and privacy in wireless local area network in

Nigeria. International Journal of Engineering Research in Africa 2013; 9: 23–33. doi:
10.4028/www.scientific.net/jera.9.23

3. Shruti M. Types of cyber attacks you should be aware of in 2023. Available online:
https://www.simplilearn.com/tutorials/cyber-security-tutorial/types-of-cyber-attacks (accessed on 11
August 2023).

4. FORTINET. Types of cyber attacks. Available online:
https://www.fortinet.com/resources/cyberglossary/types-of-cyber-attacks (accessed on 11 August 2023).

5. DNV. The three-pillar approach to cyber security: Data and information protection. Available online:
https://www.dnv.com/article/the-three-pillar-approach-to-cyber-security-data-and-information-protection-
165683 (accessed on 11 August 2023).

6. James K. What are the 5 pillars of cybersecurity? Available online: https://cybersecurityforme.com/what-
are-the-5-pillars-of-cybersecurity (accessed on 11 August 2023).

7. Osa E. Cyber security terminologies and concepts. In: SMART-IEEE-ACity-ICTU-CRACC-ICTU-Foundations
Series Book Chapter on Web of Deceit. Creative Research Publishers; 2022. pp. 231–236.

8. Rama Devi R, Abualkibash M. Intrusion detection system classification using different machine learning
algorithms on KDD-99 and NSL-KDD datasets—A review paper. International Journal of Computer Science and
Information Technology 2019; 11(3): 65–80. doi: 10.5121/ijcsit.2019.11306

9. Abuh A, Orukpe PE. Development of an integrated campus security alerting and access control system. In:
Emerging Trends in Engineering Research and Technology Vol. 9. Book Publisher International; 2020. pp. 57–67.

10. Chudasma P. Network Intrusion Detection System using Classification Techniques in Machine Learning [Master’s
thesis]. Dublin Business School; 2020.

11. Sangfor Technologies. What is an intrusion detection system and how does it work. Available online:
https://www.sangfor.com/glossary/cybersecurity/what-is-intrusion-detection-system-and-how-does-it-work
(accessed on 11 August 2023).

12. Velimirovic A. What is an intrusion detection system? Available online:
https://phoenixnap.com/blog/intrusion-detection-system (accessed on 11 August 2023).

13. FORTINET. Intrusion Detection System (IDS). Available online:
https://www.fortinet.com/resources/cyberglossary/intrusion-detection-system (accessed on 11 August
2023).

14. Géron A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media, Inc.; 2019.
15. Alladi SK. Effectively Improving the Efficiency and Performance of an Intrusion Detection System Using Hybrid

Machine Learning Models [Master’s thesis]. National College of Ireland; 2020.
16. Sapre S, Ahmadi P, Islam K. A robust comparison of the KDDCup99 and NSL-KDD IoT network intrusion

detection datasets through various machine learning algorithms. arXiv 2019; arXiv:1912.13204. doi:
10.48550/arXiv.1912.13204

17. Vinayakumar R, Alazab M, Soman KP, et al. Deep learning approach for intelligent intrusion detection
system. IEEE Access 2019; 7: 41525–41550. doi: 10.1109/access.2019.2895334

18. Li Y, Gao J, Li Q, Fan W. Ensemble learning. In: Data Classification Algorithms and Applications’ Data Mining
and Knowledge Discovery Series. CRC Press; 2015. pp. 498–500.

19. Bhandari A. Guide to AUC ROC Curve in machine learning: What is specificity? Available online:
www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-learning/ (accessed on 8 June 2023).

Journal of AppliedMath 2023; 1(4): 271.

16

Appendix
Algorithm for Implementation of Hybrid Stacking

Input: Training Data D (NSL-KDD Train+) = {퐱� , 푦����
� } (퐱� ∈ ℝ�, 푦� ∈ Y)

Output: A hybrid ensemble classifier H
1: Step 1: Learn first-level classifiers (h1, h2)

2: for t ←1 to 2 do

3: Learn a classifier ht from D

4: end for
5: Step 2: Construct new data sets from D

6: for i←1 to m do

7: Construct a new data set that contains {퐱�
�, 푦�}, where 퐱�

� = {ℎ�(퐱�), ℎ�(퐱�)}

8: end for
9: Step 3: Learn a final-level classifier
10: Learn a new classifier ℎ� based on the newly constructed data set
11: return H(x) = ℎ�(ℎ�(퐱), ℎ�(퐱))

