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Abstract: The SIQRB model is employed in this research to propose a Caputo-based fractional 

derivative optimal control model for the mitigation of cholera epidemics. Significant properties 

of the model, such as the non-negativity and boundedness of the solution, are verified. The 

basic reproduction number, ℛ0, is calculated using the spectral radius of the next-generation 

matrix. The stability analysis demonstrates that the disease-free equilibrium is locally 

asymptotically stable when ℛ0 < 1 , while the endemic equilibrium is stable when ℛ0 > 1 . 

Numerical simulations are conducted using Euler’s method to demonstrate the importance of 

the control function. These MATLAB-based simulations illustrate the impact of fractional-

order derivatives on cholera transmission dynamics and confirm the analytical results. The 

efficacy of fractional optimal control approaches in mitigating cholera epidemics is 

demonstrated. 
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1. Introduction 

Cholera is a severe gastrointestinal disease caused by the comma-shaped, highly 

mobile bacterium Vibrio cholerae. Though there are more than 200 serogroups of the 

bacterium Vibrio cholerae, the disease is exclusively caused by O1 and O139. Cholera 

is most common in areas with poor sanitation and limited access to clean water. John 

Snow demonstrated in 1854 that ingesting contaminated water could lead to cholera 

epidemics [1]. Ingestion of contaminated food or water is the primary mode of 

transmission, while person-to-person contact through infected food or surfaces is the 

secondary mode. Cholera takes 18 h to 5 days to incubate, and symptoms start to show 

up nearly immediately [2]. Abdominal cramps, vomiting, diarrhea, and dehydration 

are typical symptoms. Cholera is still a prevalent disease across Africa and Asia, with 

significant outbreaks in Haiti and Zimbabwe. 

Mathematical models play a crucial role in understanding the transmission 

dynamics of cholera and developing effective mitigation strategies. Traditional 

compartmental models, such as SIR, SEIR, and their extensions, have been widely 

used in epidemiological research. However, these integer-order models often fail to 

account for the memory-dependent nature of infectious disease dynamics, which is 

essential for accurately simulating long-term epidemics. 

The study of cholera epidemic dynamics began with the seminal research of 

Capasso and Paveri-Fontana [3], who used a model that focused on infected 

individuals and free-living pathogens to examine a Mediterranean cholera outbreak. 
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This important research served as the basis for other models, including Codeço’s [4] 

expansion, which included bacterial concentration in an epidemiological framework 

pertaining to humans and their environments. Hartley et al. [5] improved cholera 

modeling by adding nonlinear incidence and a hyper-infectious stage of Vibrio 

cholerae, and Mukandavire et al. [6], who calculated the reproduction number during 

the cholera epidemic in Zimbabwe. Chen et al. [7] extended these models by 

employing partial differential equations to study the spatial spread of cholera. 

Incorporating modern techniques into cholera modeling has been the focus of 

recent developments. For instance, researchers in Tanzania used machine learning to 

forecast cholera outbreaks based on seasonal weather patterns, while Purnawan and 

Cahyaningtias [8] proposed optimal control strategies, such as quarantine and water 

sanitation. 

Recent studies have demonstrated the advantages of fractional-order models in 

epidemiology. Unlike traditional models, fractional calculus accounts for memory 

effects and non-local interactions, making it particularly useful for modeling diseases 

such as tuberculosis, dengue, and COVID-19. The Caputo fractional derivative has 

been successfully applied in these contexts, offering better predictive accuracy and 

improved control strategies [9]. Cui et al. [10] developed a nonlinear fractional SVIR-

B model, incorporating faulty vaccination and saturation treatment, further 

demonstrating the effectiveness of fractional approaches. 

This study employs the SIQRB model to propose a Caputo-based fractional 

derivative optimal control framework for cholera epidemic mitigation. Unlike 

previous research that primarily focused on integer-order models, this study extends 

the analysis by incorporating fractional-order dynamics, which provide a more 

realistic representation of disease transmission patterns. 

To determine optimal intervention strategies, we use Pontryagin’s Maximum 

Principle, focusing on quarantine measures to minimize the number of infected 

individuals and bacterial concentration. Numerical simulations, based on data from 

the 2010 cholera outbreak in Haiti, demonstrate the superiority of fractional-order 

models in accurately capturing epidemic trends and optimizing control measures. 

This research contributes to the growing body of literature supporting fractional 

optimal control models for epidemic mitigation. By integrating memory effects and 

optimal intervention strategies, our findings reinforce the importance of fractional 

calculus in modern epidemiological modeling and provide a more effective approach 

to controlling cholera outbreaks. 

The paper is structured as follows: The preliminaries and model formulation are 

presented in Section 2, mathematical analysis of the fractional derivative model is 

presented in Section 3, the fractional optimal control problem is discussed in Section 

4, and the numerical simulation results are shown in Section 5 to support the analytical 

conclusions. Finally, Section 6 provides a conclusion. 

2. Preliminaries and model formulation 

This section describes some preliminary fractional calculus and fractional-order 

differential equations for the cholera model. 
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2.1. Preliminaries 

Fractional calculus extends an adaptable framework for modeling complex 

systems by extending the ideas of integrals and derivatives to non-integer orders. 

Riemann-Liouville fractional integral and derivative and Caputo fractional derivative 

are common fractional operators used in mathematical modeling and engineering 

applications. The following are important definitions: 

Definition 1. Left Riemann-Liouville fractional integral 𝐷𝑎
𝐿

𝑡
−𝛼𝑓 of order 𝛼 ∈ 𝑅+ is 

defined by 

𝐷𝑎
𝐿

𝑡
−𝛼𝑓(𝑡) =

1

Г(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑓(𝑠)𝑑𝑠,
𝑡

𝑎
𝑡𝜖[𝑎, 𝑏]. 

Definition 2. Right Riemann-Liouville fractional integral 𝐷𝑡
𝑅

𝑏
−𝛼𝑓 of order 𝛼 ∈ 𝑅+ is 

defined by 

𝐷𝑡
𝑅

𝑏
−𝛼𝑓(𝑡) =

1

Г(𝛼)
∫ (𝑠 − 𝑡)𝛼−1𝑓(𝑠)𝑑𝑠,
𝑏

𝑡
𝑡𝜖[𝑎, 𝑏]. 

Definition 3. Left Riemann-Liouville fractional derivative of order 𝛼 is defined by 

𝐷𝑥
𝛼

𝑎
𝐿 [𝑓(𝑥)] =

1

Γ(𝑛−𝛼)
(
𝑑

𝑑𝑥
)
𝑛

∫ (𝑥 − 𝑡)𝑛−1−𝛼𝑓(𝑡)𝑑𝑡,
𝑥

𝑎
𝜖[𝑎, 𝑏]. 

Definition 4. Right Riemann-Liouville fractional derivative of order 𝛼 is defined by 

𝐷𝑏
𝛼

𝑡
𝑅 [𝑓(𝑥)] =

1

Γ(𝑛−𝛼)
(−

𝑑

𝑑𝑥
)
𝑛

∫ (𝑡 − 𝑥)𝑛−1−𝛼𝑓(𝑡)𝑑𝑡,
𝑏

𝑥
𝑥𝜖[𝑎, 𝑏]. 

Definition 5. Left Caputo fractional derivative of order 𝛼 is defined by 

𝐷𝑥
𝛼

𝑎
𝐶 [𝑓(𝑥)] =

1

Γ(𝑛−𝛼)
(
𝑑

𝑑𝑥
)
𝑛

∫ (𝑥 − 𝑡)𝑛−1−𝛼𝑓(𝑡)𝑑𝑡, 𝑥
𝑥

𝑎
𝜖[𝑎, 𝑏]. 

Definition 6. Right Caputo fractional derivative of order 𝛼 is defined by 

𝐷𝑏
𝛼

𝑡
𝐶 [𝑓(𝑥)] =

1

Γ(𝑛−𝛼)
(−

𝑑

𝑑𝑥
)
𝑛

∫ (𝑡 − 𝑥)𝑛−1−𝛼𝑓(𝑡)𝑑𝑡,
𝑏

𝑥
𝑥𝜖[𝑎, 𝑏], 

where Г is a gamma function. 

Definition 7. The Laplace transform of Caputo fractional derivative is defined as 

𝐿{ 𝐷𝑡
𝛼

0
𝐶 𝑓(𝑡)} = λ𝛼𝐹(𝜆) − ∑ 𝜆𝛼−𝑘−1𝑓𝑘(0)𝑛−1

𝑘=0 , 

with 𝐹(𝜆) the Laplace transform of 𝑓(𝑡). 

Definition 8. The Mittag-Leffler function with two parameters for any complex 

number 𝑧 is defined as 

𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

Γ(𝛼𝑘+𝛽)
, 𝛼, 𝛽 > 0∞

𝑘=0 . 

where Г is a gamma function. 

Corollary 1. Corollary of Gershgorin’s Circle Theorem: Let B be an 𝑛 × 𝑛 matrix 

with real entries. If the diagonal elements 𝑎𝑖𝑖 of B satisfy 

𝑎𝑖𝑖 < −𝑟𝑖, 

where 

𝑟𝑖 = ∑ |𝑎𝑖𝑗|
𝑛
𝑗=1,𝑗≠𝑖 , 



Journal of AppliedMath 2025, 3(2), 2459. 
 

4 

For 𝑖 = 1, 2, 3, … , 𝑛, then the eigenvalues of B are negative or have negative real parts 

[11]. 

2.2. Model formulation 

In this section, we provide a deterministic mathematical model with cholera 

control strategies that are optimal. Following the SIQR (Susceptible–Infected–

Quarantined–Recovered) framework, the model concentrates on the dynamics of 

bacterial concentration. There are four compartments in the total population 𝑁(𝑡): 

Susceptible 𝑆(𝑡), Infected 𝐼(𝑡), Quarantined 𝑄(𝑡) and Recovered 𝑅(𝑡). Furthermore, 

the bacterial concentration is represented by 𝐵(𝑡) . Additionally, the model is 

formulated with the following assumptions: 

i) The model takes into account a positive recruitment rate Λ into the susceptible 

class 𝑆(𝑡). 

ii) A positive natural death rate is 𝜇. 

iii) The rate at which susceptible individuals get cholera is 
𝛽𝐵

𝜅+𝐵
, where 𝛽 > 0 

represents the rate at which bacteria are ingested. 

iv) 𝜅 represents the half-saturation constant. 

v) 𝛽 represents contact with contaminated materials. 

vi) Recovered individuals become susceptible again when their immunity loses at a 

rate of 𝜔. 

vii) Quarantined and treated at a rate of 𝛿. 

viii) Infected individuals recover at a rate of 𝜀. 

ix) The mortality rates associated with disease are 𝛼1 for infected individuals. 

x) The mortality rates associated with disease are 𝛼2 for quarantined individuals. 

xi) The rate at which each infected individual increases the concentration of bacteria 

is 𝜂. 

xii) The rate at which bacteria die is 𝑑. 

The following block diagram, in general, describes the dynamics of the human 

population susceptible to cholera epidemics and the specified assumptions. 

The mathematical model of the cholera epidemic with optimal control strategies 

is based on model assumptions and Figure 1. 

{
 
 
 

 
 
 𝑆(𝑡) = Λ − (

𝛽𝐵(𝑡)

𝜅 + 𝐵(𝑡)
− 𝜇) 𝑆(𝑡) + 𝜔𝑅(𝑡)             

𝐼(𝑡) =
𝛽𝐵(𝑡)

𝜅 + 𝐵(𝑡)
𝑆(𝑡) − 𝛿𝑢(𝑡)𝐼(𝑡) − (𝛼1 + 𝜇)𝐼(𝑡)

𝑄(𝑡) = 𝛿𝑢(𝑡)𝐼(𝑡) − (𝜀 + 𝛼2 + 𝜇)𝑄(𝑡)                     

𝑅(𝑡) = 𝜀𝑄(𝑡) − (𝜔 + 𝜇)𝑅(𝑡)                                      

𝐵(𝑡) = 𝜂𝐼(𝑡) − 𝑑𝐵(𝑡)                                                   

 (1) 

with non-negative initial conditions: 

𝑆(0) ≥ 0, 𝐼(0) ≥ 0, 𝑄(0) ≥ 0, 𝑅(0) ≥ 0 𝑎𝑛𝑑 𝐵(0) ≥ 0. 
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Figure 1. Block diagram of the cholera model. 

2.3. System of fractional order differential equations 

The following system of nonlinear equations defines the dynamics of the cholera 

epidemic in this study using the Caputo fractional derivative of order 𝛼 and 0 < 𝛼 ≤

1: 

{
 
 
 

 
 
 𝐷𝑡

𝛼
0
𝐶 𝑆(𝑡) = Λ − (

𝛽𝐵(𝑡)

𝜅 + 𝐵(𝑡)
− 𝜇)𝑆(𝑡) + 𝜔𝑅(𝑡)            

𝐷𝑡
𝛼

0
𝐶 𝐼(𝑡) =

𝛽𝐵(𝑡)

𝜅 + 𝐵(𝑡)
𝑆(𝑡) − (𝛿 + 𝛼1 + 𝜇)𝐼(𝑡)               

𝐷𝑡
𝛼

0
𝐶 𝑄(𝑡) = 𝛿𝐼(𝑡) − (𝜀 + 𝛼2 + 𝜇)𝑄(𝑡)                            

𝐷𝑡
𝛼

0
𝐶 𝑅(𝑡) = 𝜀𝑄(𝑡) − (𝜔 + 𝜇)𝑅(𝑡)                                     

𝐷𝑡
𝛼

0
𝐶 𝐵(𝑡) = 𝜂𝐼(𝑡) − 𝑑𝐵(𝑡)                                                  

 (2) 

with non-negative initial conditions subject to 

𝑆(0) ≥ 0, 𝐼(0) ≥ 0, 𝑄(0) ≥ 0, 𝑅(0) ≥ 0, 𝐵(0) ≥ 0. 

3. Mathematical analysis of fractional derivative model 

This section demonstrates the mathematical and biological viability of the 

fractional order derivative cholera model. This involves determining the non-

negativity and boundedness of the solution. 

3.1. Non-negativity and boundedness of solution 

Non-negativity of a solution means the population thrives; however, boundedness 

is the characteristic of population growth that is inherently constrained by limiting 

resources. First, we show that the solution of the system is always non-negative. From 

model (2), we have 

𝐷𝑡
𝛼

0
𝐶 𝑆(𝑡)|

𝑆=0
= Λ + 𝜔𝑅(𝑡) > 0, 

𝐷𝑡
𝛼

0
𝐶 𝐼(𝑡)|

𝐼=0
=

𝛽𝐵(𝑡)

𝜅+𝐵(𝑡)
𝑆(𝑡) > 0, 

𝐷𝑡
𝛼

0
𝐶 𝑄(𝑡)|

𝑄=0
= 𝛿𝐼(𝑡) > 0, 

𝐷𝑡
𝛼

0
𝐶 𝑅(𝑡)|

𝑅=0
= 𝜀𝑄(𝑡) > 0, 
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𝐷𝑡
𝛼

0
𝐶 𝐵(𝑡)|

𝐵=0
= 𝜂𝐼(𝑡) > 0. 

Hence, model (2) has a non-negative solution [12]. 

Next, we note that the two components that determine the boundedness of the 

solution are the number of humans in the community and its bacterial concentration. 

Consider 

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑅(𝑡). 

For the human population, the first four equations of system (2) are added up to 

give 

𝐷𝑡
𝛼

0
𝐶 𝑁(𝑡) = 𝐷𝑡

𝛼
0
𝐶 𝑆(𝑡) + 𝐷𝑡

𝛼
0
𝐶 𝐼(𝑡) + 𝐷𝑡

𝛼
0
𝐶 𝑄(𝑡) + 𝐷𝑡

𝛼
0
𝐶 𝑅(𝑡). 

We get 

𝐷𝑡
𝛼

0
𝐶 𝑁(𝑡) = Λ − 𝜇𝑁(𝑡) − 𝛼1𝐼(𝑡) − 𝛼2𝑄(𝑡). 

In the absence of infection, there is no quarantine. Thus 

𝐷𝑡
𝛼

0
𝐶 𝑁(𝑡) ≤ Λ − 𝜇𝑁(𝑡). 

Applying the Laplace transform method, we solve the inequality with the initial 

condition 𝑁(𝑡0) ≥ 0 to find 

L{ 𝐷𝑡
𝛼

0
𝐶 𝑁(𝑡)}(𝑠) ≤ L{Λ}(𝑠) − 𝜇L{𝑁(𝑡)}(𝑠). 

We get 

𝑠𝛼𝑁(𝑠) − ∑ 𝑠𝛼−1−𝑘𝑁𝑘(𝑡0)
𝑛−1
𝑘=0 ≤

Λ

𝑠
− 𝜇𝑁(𝑠), 

where L{𝑁(𝑡)}(𝑠) = 𝑁(𝑠). 

𝑁(𝑠)(𝑠𝛼 + 𝜇) ≤
Λ

𝑠
+ ∑ 𝑠𝛼−1−𝑘𝑁𝑘(𝑡0)

𝑛−1
𝑘=0 , 

𝑁(𝑠) ≤
Λ

𝑠(𝑠𝛼+𝜇)
+
∑ 𝑠𝛼−1−𝑘𝑁𝑘(𝑡0)
𝑛−1
𝑘=0

(𝑠𝛼+𝜇)
. 

Now we apply the inverse Laplace transform 

L−1{𝑁(𝑠)} ≤ L−1
Λ

𝑠(𝑠𝛼+𝜇)
+ ∑ 𝑁𝑘(𝑡0)

𝑛−1
𝑘=0 L−1

𝑠𝛼−1−𝑘

(𝑠𝛼+𝜇)
, 

𝑁(𝑡) ≤ Λ𝑡𝛼𝐸𝛼,𝛼+1(−𝜇𝑡
𝛼) + ∑ 𝑁𝑘(𝑡0)

𝑛−1
𝑘=0 𝑡𝛼−1−𝑘𝐸𝛼,𝛼−𝑘(−𝜇𝑡

𝛼), 

where 𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

Γ(𝛼𝑘+𝛽)
∞
𝑘=0  is Mittag–Leffler function with parameters 𝛼 and 𝛽. 

The Mittag-Leffler functions of the fractional differential equation decay to zero 

as 𝑡 → ∞, which causes 𝑁(𝑡) to asymptotically approach and stabilize at the upper 

bound 
Λ

𝜇
. It may be concluded that 𝑁(𝑡) ≤

Λ

𝜇
. 

For the concentration of bacteria, it follows that 

𝐷𝑡
𝛼

0
𝐶 𝐵(𝑡) = 𝜂𝐼(𝑡) − 𝑑𝐵(𝑡) ≤ 𝜂

Λ

𝜇
− 𝑑𝐵(𝑡). 

Then we have 



Journal of AppliedMath 2025, 3(2), 2459. 
 

7 

𝐵(𝑡) ≤
Λ𝜂

𝜇𝑑
. 

The analysis and discussion described above prove that the solutions of the 

system remain bounded. 

3.2. Equilibrium points and stability analysis 

To obtain the equilibrium points, we set all time fractional derivatives in the 

system of Equation (2) to zero and solve simultaneously. i.e., 

𝐷𝑡
𝛼

0
𝐶 𝑆(𝑡) = 𝐷𝑡

𝛼
0
𝐶 𝐼(𝑡) = 𝐷𝑡

𝛼
0
𝐶 𝑄(𝑡) = 𝐷𝑡

𝛼
0
𝐶 𝑅(𝑡) = 𝐷𝑡

𝛼
0
𝐶 𝐵(𝑡) = 0. 

There are two equilibrium points: 

Disease-free equilibrium point: A disease-free equilibrium (DFE) point in a 

cholera model is a steady state without Vibrio cholera (𝐼 = 0). So, DFE point (𝐸0) is 

given by 

𝐸0 = (𝑆0, 𝐼0, 𝑄0, 𝑅0, 𝐵0) = (
Λ

𝜇
, 0,0,0,0). 

Endemic equilibrium point: Equilibrium points are deemed endemic when the 

disease continues to spread throughout the population (𝐼 ≠ 0). Then the endemic 

equilibrium point (𝐸∗) is given as: 

𝐸∗ = (𝑆∗, 𝐼∗, 𝑄∗, 𝑅∗, 𝐵∗). 

where 

𝑆∗ =
𝑘1𝔢

𝜂𝔇
, 

𝐼∗ =
𝛽Λ𝑘2𝑘3

ℛ0𝔇
(ℛ0 − 1), 

𝑄∗ =
𝛽Λ𝛿𝑘3

ℛ0𝔇
(ℛ0 − 1), 

𝑅∗ =
𝛽Λ𝛿𝜀

ℛ0𝔇
(ℛ0 − 1), 

𝐵∗ =
𝛽Λ𝜂𝑘2𝑘3

ℛ0𝔇𝑑
(ℛ0 − 1), 

where 𝔢 = Λ𝜂𝑘2𝑘3 + 𝜅𝑑(𝑘1𝑘2𝑘3 − 𝛿𝜔𝜀), 𝑘1 = 𝛿 + 𝛼1 + 𝜇, 𝑘2 = 𝜀 + 𝛼2 + 𝜇, 𝑘3 =

𝜔 + 𝜇, and 𝔇 = 𝑘1𝑘2𝑘3𝜇 + 𝑘1𝑘2𝑘3𝛽 − 𝛽𝛿𝜔𝜀. 

3.3. Basic reproduction number (𝓡𝟎) 

One of the most significant quantities in epidemiology is the basic reproduction 

number (ℛ0). It is defined as the average number of secondary infections that occur 

when an infected individual comes into a host group where every individual is 

susceptible. To calculate (ℛ0), we use the next-generation matrix approach explained 

in [13]. Mathematically, (ℛ0) is the spectral radius of the product matrix. i.e., 

ℛ0 = 𝜌(𝐹0𝑉0
−1) =

𝛽Λη

𝜅𝜇𝑑𝑘1
, 

where 𝜌 denotes the spectral radius. 
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3.4. Stability analysis of equilibrium points 

To determine the stability analysis of equilibrium points, we compute the 

Jacobian matrix 𝐽(𝑠), which is obtained from system (2) and is given as 

𝐽(𝑠) =

[
 
 
 
 
 
 −

𝛽𝐵(𝑡)

𝜅+𝐵
− 𝜇 0 0 𝜔 −

𝛽𝜅𝑆(𝑡)

(𝜅+𝐵(𝑡))
2

𝛽𝐵(𝑡)

𝜅+𝐵
−𝑘1 0 0

𝛽𝜅𝑆(𝑡)

(𝜅+𝐵(𝑡))
2

0 𝛿 −𝑘2 0 0
0 0 𝜀 −𝑘3 0
0 𝜂 0 0 −𝑑 ]

 
 
 
 
 
 

. 

3.5. Local stability for the disease-free equilibrium 

Theorem. The disease-free equilibrium (𝐸0) is locally asymptotically stable if ℛ0 <

1. 

Proof. To analyze the local behavior of each equilibrium point, corollary of 

Gershgorin’s Circle Theorem is used to calculate the Jacobian matrix 𝐽(𝑠) at the 

equilibrium point 𝐸0. 

Substituting the disease-free equilibrium point 𝐸0 = (
Λ

𝜇
, 0,0,0,0)  into the 

Jacobian matrix 𝐽(𝑠), we get 

𝐽(𝐸0) =

[
 
 
 
 
 
 −𝜇 0 0 𝜔 −

𝛽Λ

𝜇𝜅

0 −𝑘1 0 0
𝛽Λ

𝜇𝜅

0 𝛿 −𝑘2 0 0
0 0 𝜀 −𝑘3 0
0 𝜂 0 0 −𝑑 ]

 
 
 
 
 
 

. 

The eigenvalues 𝜆 = −𝜇 , 𝜆 = −𝑘3  and 𝜆 = −𝑘2  are obtained sequentially by 

expansions and reductions along the first, third, and second columns, respectively, by 

matrix expansion. Finally, we have sub-matrix 

𝐽(𝐸0) = [
−𝑘1

𝛽Λ

𝜇𝜅

𝜂 −𝑑
]. 

Matrix 𝐽(𝐸0)  satisfies the corollary of Gershgorin’s Circle theorem if the 

following inequalities hold; 

𝑘1 >
𝛽Λ

𝜇𝜅
 (3) 

𝑑 > 𝜂 (4) 

Combining Equations (3) and (4) 

𝑘1𝑑 >
𝛽Λη

𝜇𝜅
, 

1 >
𝛽Λη

𝜅𝜇𝑑𝑘1
= ℛ0, 

ℛ0 < 1, 
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Hence, disease-free equilibrium point is locally asymptotically stable since ℛ0 <

1 [14]. □ 

3.6. Local stability for the endemic equilibrium 

Theorem. The endemic equilibrium (𝐸∗) is locally asymptotically stable if ℛ0 > 1. 

Proof. Eigenvalues of the Jacobian matrix 𝐽(𝑠) must have negative real part for the 

endemic equilibrium to be asymptotically stable. At endemic equilibrium point (𝐸∗), 

the Jacobian matrix is: 

𝐽(𝐸∗) =

[
 
 
 
 
 
 −

𝛽𝐵∗(𝑡)

𝜅+𝐵∗(𝑡)
− 𝜇 0 0 𝜔 −

𝛽𝜅𝑆∗(𝑡)

(𝜅+𝐵∗(𝑡))
2

𝛽𝐵∗(𝑡)

𝜅+𝐵∗(𝑡)
−𝑘1 0 0

𝛽𝜅𝑆∗(𝑡)

(𝜅+𝐵∗(𝑡))
2

0 𝛿 −𝑘2 0 0
0 0 𝜀 −𝑘3 0
0 𝜂 0 0 −𝑑 ]

 
 
 
 
 
 

. 

Consider 𝑋 =
𝛽𝐵∗(𝑡)

𝜅+𝐵∗(𝑡)
 and 𝑌 =

𝛽𝜅𝑆∗(𝑡)

(𝜅+𝐵∗(𝑡))
2. Then 

𝐽(𝐸∗) =

[
 
 
 
 
−𝑋 − 𝜇 0 0 𝜔 −𝑌
𝑋 −𝑘1 0 0 𝑌
0 𝛿 −𝑘2 0 0
0 0 𝜀 −𝑘3 0
0 𝜂 0 0 −𝑑]

 
 
 
 

. 

Following Jacobian matrix is obtained by elementary row operations and 

simplification: 

𝐽(𝐸∗) =

[
 
 
 
 
−𝑍1 0 0 𝜔 −𝑌
0 −𝑍1𝑘1 0 𝜔𝑋 𝜇𝑌
0 0 −𝑍1𝑘1𝑘2 𝛿𝜔𝑋 𝛿𝜇𝑌

0 0 0 −(𝑍2 − 𝑍3) 𝛿𝜀𝜇𝑌

0 0 0 0 −[𝑑(−𝑍2 + 𝑍3) + 𝑍4]]
 
 
 
 

, 

where 

𝑍1 = 𝑋 + 𝜇, 

𝑍2 = 𝑍1𝑘1𝑘2𝑘3, 

𝑍3 = 𝛿𝜀𝜔𝑋, 

𝑍4 = 𝑘2𝑘3𝜂𝜇𝑌. 

The characteristic polynomial of the Jacobian matrix 𝐽(𝐸∗) is 

𝑝(𝐸∗) = 𝑑𝑒𝑡(𝜆𝐼 − 𝐽(𝐸∗)) = 0, 

(𝜆 + 𝑍1)(𝜆 + 𝑍1𝑘1)(𝜆 + 𝑍1𝑘1𝑘2)(𝜆 + (𝑍2 − 𝑍3))(𝜆 + 𝑑(−𝑍2 + 𝑍3) + 𝑍4) = 0. 

that is, 

𝜆1 = −𝑍1 = −(𝑋 + 𝜇) < 0, 

𝜆2 = −𝑍1𝑘1 = −𝑘1(𝑋 + 𝜇) < 0, 

𝜆3 = −𝑍1𝑘1𝑘2 = −𝑘1𝑘2(𝑋 + 𝜇) < 0, 
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𝜆4 = −(𝑍2 − 𝑍3) = −(𝑍1𝑘1𝑘2𝑘3 − 𝛿𝜀𝜔𝑋) = −(𝑘1𝑘2𝑘3(𝑋 + 𝜇) − 𝛿𝜀𝜔𝑋) < 0, 

−𝑘1𝑘2𝑘3𝑋 − 𝑘1𝑘2𝑘3𝜇 + 𝛿𝜀𝜔𝑋 < 0, 

(−𝑘1𝑘2𝑘3 + 𝛿𝜀𝜔)
𝛽𝐵∗(𝑡)

𝜅+𝐵∗(𝑡)
− 𝑘1𝑘2𝑘3𝜇 < 0, 

(−𝑘1𝑘2𝑘3 + 𝛿𝜀𝜔)
𝛽𝜂𝐼∗

𝜅𝑑+𝜂𝐼∗
< 𝑘1𝑘2𝑘3𝜇, 

−𝔇𝜂 (
𝛽Λ𝑘2𝑘3

ℛ0𝔇
(ℛ0 − 1) ) − 𝑘1𝑘2𝑘3𝜇𝜅𝑑 < 0, 

𝜆4 = −
𝛽Λ𝜂

ℛ0
(ℛ0 − 1) − 𝑘1𝜇𝜅𝑑 < 0, 

If ℛ0 > 1 then 𝜆4 < 0. 

𝜆5 = −(𝑑(−𝑍2 + 𝑍3) + 𝑍4) = −𝑑𝜆4 − 𝑘2𝑘3𝜂𝜇𝑌 < 0. 

Since 𝜆4 < 0 then 𝜆5 will also be less than zero. 

By Routh Hurwitz’s criterion, all eigenvalues of 𝐽(𝐸∗) have negative real part. 

Therefore, the endemic equilibrium 𝐸∗ of the model is locally asymptotically stable if 

ℛ0 > 1 [15]. □ 

4. Fractional optimal control problem 

In this section, a fractional optimal control function 𝑢(𝑡) , representing the 

fraction of infected individuals treated and quarantined, is added to model (2) to 

develop strategies to minimize the cholera epidemic. Strict quarantine without 

optimization could result in economic disruptions, resource constraints, and social 

resistance. Increasing quarantine only proportionate to infection rates assumes an ideal 

scenario where enforcement and compliance are unlimited, which is unrealistic. The 

fractional optimal control approach balances disease mitigation with feasible 

intervention efforts, requiring the mathematical sophistication required for real-world 

applicability. Therefore, a control variable is necessary because quarantining everyone 

is neither practical nor cost-effective. 

The control variable 𝑢(𝑡) , restricted to the closed interval [0, 1] , optimizes 

intervention strategies to reduce cholera transmission. System (2) is modified as 

follows by adding this control: 

{
 
 
 

 
 
 𝐷𝑡

𝛼
0
𝐶 𝑆(𝑡) = Λ − (

𝛽𝐵(𝑡)

𝜅 + 𝐵(𝑡)
+ 𝜇) 𝑆(𝑡) + 𝜔𝑅(𝑡)             

𝐷𝑡
𝛼

0
𝐶 𝐼(𝑡) =

𝛽𝐵(𝑡)

𝜅 + 𝐵(𝑡)
𝑆(𝑡) − 𝛿𝑢(𝑡)𝐼(𝑡) − (𝛼1 + 𝜇)𝐼(𝑡)

𝐷𝑡
𝛼

0
𝐶 𝑄(𝑡) = 𝛿𝑢(𝑡)𝐼(𝑡) − (𝜀 + 𝛼2 + 𝜇)𝑄(𝑡)                     

𝐷𝑡
𝛼

0
𝐶 𝑅(𝑡) = 𝜀𝑄(𝑡) − (𝜔 + 𝜇)𝑅(𝑡)                                      

𝐷𝑡
𝛼

0
𝐶 𝐵(𝑡) = 𝜂𝐼(𝑡) − 𝑑𝐵(𝑡)                                                   

 (5) 

The non-negative initial condition in this case is 

𝑆(0) = 𝑆0, 𝐼(0) = 𝐼0, 𝑄(0) = 𝑄0, 𝑅(0) = 𝑅0, 𝐵(0) = 𝐵0. 

The set of admissible trajectories, denoted by ℘, is defined as 
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℘ = {𝑋(∙)𝜖𝐶1,1([0, 𝑇];ℝ5)}, 

where 𝑋 = (𝑆, 𝐼, 𝑄, 𝑅, 𝐵) and the control set Ս is defined as 

Ս = {𝑢 is Lebsegue measurable ([0, 𝑇];ℝ)|0 ≤ 𝑢(𝑡) ≤ 1, ∀𝑡𝜖[0, 𝑇]}. 

Our goal is to reduce the number of infected people and the presence of bacteria 

while simultaneously minimizing the cost of control measures like quarantine. Our 

model incorporates an intervention cost function into the optimal control framework, 

which not only shows the effectiveness of quarantine but also quantifies its impact. 

For a given time 𝑇 , the cost of intervention is factored in through an objective 

functional, typically formulated as: 

𝐽(𝑢) = ∫ (𝐼 + 𝐵 +
1

2
𝐶𝑢2)𝑑𝑡

𝑇

0
, 

where 𝐶 is a positive constant. Our goal is to find the optimal solution 𝑢∗𝜖𝑈 to control 

system (3) and achieve the minimum value for the objective function, i.e., 

𝐽(𝑢∗) = 𝑚𝑖𝑛 ∫ (𝐼 + 𝐵 +
1

2
𝐶𝑢2) 𝑑𝑡

𝑇

0
. 

According to Pontryagin’s maximum principle, if 𝑢∗ is the optimal solution for 

the objective functional, then there exists an adjoint vector 𝜆(𝑡) = (𝜆𝑆, 𝜆𝐼 , 𝜆𝑄, 𝜆𝑅 ,

𝜆𝐵)𝜖ℝ+
5  that satisfies the following conditions: 

(i) The control system is 

𝐷𝑡
𝛼𝑆(𝑡) =

𝜕𝐻

𝜕𝜆𝑆
0
𝐶 (𝑡), 𝐷𝑡

𝛼𝐼(𝑡) =
𝜕𝐻

𝜕𝜆𝐼
(𝑡)0

𝐶 , 𝐷𝑡
𝛼𝑄(𝑡) =

𝜕𝐻

𝜕𝜆𝑄
0
𝐶 (𝑡), 

𝐷𝑡
𝛼𝑅(𝑡) =

𝜕𝐻

𝜕𝜆𝑅
(𝑡)0

𝐶 , 𝐷𝑡
𝛼𝐵(𝑡) =

𝜕𝐻

𝜕𝜆𝐵
0
𝐶 (𝑡). 

(ii) The co-state system is 

𝐷𝑡
𝛼𝜆𝑆 = −

𝜕𝐻

𝜕𝑆0
𝐶 , 𝐷𝑡

𝛼𝜆𝐼 = −
𝜕𝐻

𝜕𝐼0
𝐶 , 𝐷𝑡

𝛼𝜆𝑄 = −
𝜕𝐻

𝜕𝑄0
𝐶 , 

𝐷𝑡
𝛼𝜆𝑅 = −

𝜕𝐻

𝜕𝑅0
𝐶 , 𝐷𝑡

𝛼𝜆𝐵 = −
𝜕𝐻

𝜕𝐵0
𝐶 . 

(iii) The stationary condition is 

𝜕𝐻

𝜕𝑢
= 0. 

(iv) The transversality conditions are 

𝜆𝑆(𝑇) = 0, 𝜆𝐼(𝑇) = 0, 𝜆𝑄(𝑇) = 0, 𝜆𝑅(𝑇) = 0, 𝜆𝐵(𝑇) = 0. 

and the Hamiltonian function is defined as 

𝐻(𝑡, 𝑋, 𝑢, 𝜆) = 𝐿(𝐼, 𝐵, 𝑢) + 𝜆𝑆 (Λ − (
𝛽𝐵(𝑡)

𝜅+𝐵(𝑡)
+ 𝜇) 𝑆(𝑡) + 𝜔𝑅(𝑡)) + 𝜆𝐼 (

𝛽𝐵(𝑡)

𝜅+𝐵
𝑆(𝑡) − 𝛿𝑢(𝑡)𝐼(𝑡) − (𝛼1 + 𝜇)𝐼(𝑡)) +

𝜆𝑄(𝛿𝑢(𝑡)𝐼(𝑡) − (𝜀 + 𝛼2 + 𝜇)𝑄(𝑡)) + 𝜆𝑅(𝜀𝑄(𝑡) − (𝜔 + 𝜇)𝑅(𝑡)) + 𝜆𝐵(𝜂𝐼(𝑡) − 𝑑𝐵(𝑡)), 

where 𝜆𝑆(𝑡), 𝜆𝐼(𝑡), 𝜆𝑄(𝑡), 𝜆𝑅(𝑡) and 𝜆𝐵(𝑡) are adjoint variables or co-state variables. 

Calculating the partial derivatives of the Hamiltonian 𝐻(𝑡, 𝑋, 𝑢, 𝜆) with respect to the 

related state variable yields the system solution. 
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Theorem. The optimal control of model (3) is such that the associated variables 

satisfy the following equation and the objective function on U is minimal. 

{
 
 
 
 

 
 
 
 𝐷𝑡

𝛼𝜆𝑆(𝑡) = 𝜆𝑆 (
𝛽𝐵(𝑡)

𝜅 + 𝐵(𝑡)
+ 𝜇) − 𝜆𝐼 (

𝛽𝐵(𝑡)

𝜅 + 𝐵(𝑡)
)0

𝐶                    

𝐷𝑡
𝛼𝜆𝐼(𝑡) = −1 + 𝜆𝐼0

𝐶 (𝛿𝑢∗(𝑡)+𝛼1 + 𝜇) − 𝜆𝑄𝛿𝑢
∗(𝑡) − 𝜆𝐵𝜂   

𝐷𝑡
𝛼𝜆𝑄(𝑡) = 𝜆𝑄0

𝐶 (𝜀 + 𝛼2 + 𝜇) − 𝜆𝑅𝜀                                            

𝐷𝑡
𝛼𝜆𝑅(𝑡)0

𝐶 = −𝜆𝑆𝜔 + 𝜆𝑅(𝜔 + 𝜇)                                                 

𝐷𝑡
𝛼𝜆𝐵(𝑡) = −1 + 𝜆𝑆0

𝐶
𝛽𝜅𝑆(𝑡)

(𝜅 + 𝐵(𝑡))
2 − 𝜆𝐼

𝛽𝜅𝑆(𝑡)

(𝜅 + 𝐵(𝑡))
2 + 𝜆𝐵𝑑

 (6) 

with transversality conditions 

𝜆𝑆(𝑇) = 0, 𝜆𝐼(𝑇) = 0, 𝜆𝑄(𝑇) = 0, 𝜆𝑅(𝑇) = 0, 𝜆𝐵(𝑇) = 0. 

Additionally, the optimal control 𝑢∗ can be expressed as 

𝑢∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,
𝛿𝐼(𝑡)(𝜆𝐼(𝑡)−𝜆𝑄(𝑡))

𝐶
} , 1}. 

Proof. The adjoint equation and transversal condition can be obtained by applying the 

Pontryagin Maximum Principle [16]. 

𝐷𝑡
𝛼𝜆𝑆(𝑡) = −

𝜕𝐻

𝜕𝑆
= 𝜆𝑆 (

𝛽𝐵(𝑡)

𝜅+𝐵(𝑡)
+ 𝜇) − 𝜆𝐼 (

𝛽𝐵(𝑡)

𝜅+𝐵(𝑡)
)0

𝐶 , 

𝐷𝑡
𝛼𝜆𝐼(𝑡) = −

𝜕𝐻

𝜕𝐼
= −1 + 𝜆𝐼0

𝐶 (𝛿𝑢∗(𝑡)+𝛼1 + 𝜇) − 𝜆𝑄𝛿𝑢
∗(𝑡) − 𝜆𝐵𝜂, 

𝐷𝑡
𝛼𝜆𝑄(𝑡) = −

𝜕𝐻

𝜕𝑄
= 𝜆𝑄0

𝐶 (𝜀 + 𝛼2 + 𝜇) − 𝜆𝑅𝜀, 

𝐷𝑡
𝛼𝜆𝑅(𝑡)0

𝐶 = −
𝜕𝐻

𝜕𝑅
= −𝜆𝑆𝜔 + 𝜆𝑅(𝜔 + 𝜇), 

𝐷𝑡
𝛼𝜆𝐵(𝑡) = −

𝜕𝐻

𝜕𝐵
= −1 + 𝜆𝑆0

𝐶 𝛽𝜅𝑆(𝑡)

(𝜅+𝐵(𝑡))
2 − 𝜆𝐼

𝛽𝜅𝑆(𝑡)

(𝜅+𝐵(𝑡))
2 + 𝜆𝐵𝑑. 

Initial conditions are 

𝑆(0) = 𝑆0, 𝐼(0) = 𝐼0, 𝑄(0) = 𝑄0, 𝑅(0) = 𝑅0, 𝐵(0) = 𝐵0. 

Solve the following equations to get the characteristic equation of optimal control 

(𝑢∗). 

𝜕𝐻

𝜕𝑢
= 𝐶𝑢∗ + 𝛿𝐼(𝑡) (𝜆𝑄(𝑡) − 𝜆𝐼(𝑡)) = 0. 

Therefore 

𝑢∗ =
𝛿𝐼(𝑡)(𝜆𝐼(𝑡)−𝜆𝑄(𝑡))

𝐶
. 

Considering the boundedness of control 𝑢, the optimal control solution 𝑢∗ can be 

expressed as 

𝑢∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,
𝛿𝐼(𝑡)(𝜆𝐼(𝑡)−𝜆𝑄(𝑡))

𝐶
} , 1}. 
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Further, the fractional optimal control 𝑢∗ are obtained by partial differentiation 

of the Hamiltonian 𝐻 with respect to 𝑢. 

𝑢∗(𝑡) =
𝜕𝐻

𝜕𝑢
=

𝛿𝐼(𝑡)(𝜆𝐼(𝑡)−𝜆𝑄(𝑡))

𝐶
. □ 

5. Numerical simulations 

The generalized Euler method is employed to determine the optimality 

framework of fractional-order differential problems, such as the state and adjoint 

equations. The analysis of the cholera model requires the following initial conditions 

and model parameter values: 

The fractional optimal control framework states that the number of infected 

individuals as well as the concentration of bacteria in the environment can be 

considerably reduced by putting strategies like quarantine treatment into place. 

The MATLAB simulations describe the dynamics of the SIQRB model using the 

parameters and initial conditions in Table 1, with C = 2000 and final time 𝑇 =

182 days. 

Table 1. Parameter values and initial conditions. 

Parameters Values References 

Λ 24.4N(0)/365 000(𝑑𝑎𝑦−1) [17] 

𝜇 2.2493 × 10−5(𝑑𝑎𝑦−1) [18] 

𝛽 0.8(𝑑𝑎𝑦−1) [19] 

𝜅 106(cell/mL) [20] 

𝜔 0.4/365(𝑑𝑎𝑦−1) [21] 

𝜀 0.2(𝑑𝑎𝑦−1) [22] 

𝛿 0.05(𝑑𝑎𝑦−1) Assumed 

𝛼1 0.015(𝑑𝑎𝑦−1) [22] 

𝛼2 0.0001(𝑑𝑎𝑦−1) [22] 

𝜂 10(cell/ml 𝑑𝑎𝑦−1 𝑝𝑒𝑟𝑠𝑜𝑛−1) [19] 

𝑑 0.33(𝑑𝑎𝑦−1) [19] 

𝑆(0) 5750(person) Assumed 

𝐼(0) 1700(person) [23] 

𝑄(0) 0(person) Assumed 

𝑅(0) 0(person) Assumed 

𝐵(0) 275 × 103(cell/mL) Assumed 

The sub-model is expressed as follows to compare the simulation results for 

bacterial concentration and cholera-infected individuals with and without control: 

{
 
 

 
 𝑆′(𝑡) = Λ − (

𝛽𝐵(𝑡)

𝜅 + 𝐵(𝑡)
+ 𝜇)𝑆(𝑡)   

𝐼′(𝑡) =
𝛽𝐵(𝑡)

𝜅 + 𝐵
𝑆(𝑡) − (𝛼1 + 𝜇)𝐼(𝑡)

𝐵′(𝑡) = 𝜂𝐼(𝑡) − 𝑑𝐵(𝑡)                       

 (7) 
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This simplified model represents cholera dynamics without optimal control and 

quarantine measures, assuming that 

𝜔 = 𝛿 = 𝜀 = 𝛼2 = 𝑄(0) = 𝑅(0) = 0. 

The cholera epidemic in the Artibonite region is accurately described by the sub-

model using the parameter values listed in Table 1. Simulations show that 

implementing a control method considerably reduces the concentration of bacteria and 

infectious individuals (see Figures 2–4). 

 

Figure 2. Optimal solutions for susceptible individuals with and without control. 

 

Figure 3. Optimal solutions for infected individuals, with and without control. 
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Figure 4. Optimal solutions for concentration of bacteria, with and without control. 

In Figures 5–9, the function of fractional derivatives (𝛼) in the dynamics of 

cholera is analyzed. The findings highlight memory effects (the influence of past states 

or events on the current behavior or dynamics of a system) importance and how they 

affect different subpopulations: 

Because of improved immunity or more successful management mechanisms, 

decreased values of 𝛼, which highlight memory effects, cause the susceptible 

population to diminish more slowly. 

As 𝛼 declines, disease transmission slows down and eventually fewer people 

become sick. 

Those under quarantine are more numerous when the values of 𝛼 are higher, 

indicating stricter quarantine regulations. More immunity or a more successful 

recovery process is indicated by a lower 𝛼 value, which over time leads to a bigger 

recovered population. Vibrio cholerae growth can be inhibited by the memory effect, 

which is affected by 𝛼. The concentration of bacteria in the environment is 

significantly reduced by higher values of 𝛼. 

 

Figure 5. Simulations of susceptible individuals with different values of alpha. 
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Figure 6. Simulations of infected individuals with different values of alpha. 

 

Figure 7. Simulations of quarantined individuals with different values of alpha. 

 

Figure 8. Simulations of recovered individuals with different values of alpha. 
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Figure 9. Simulations of the concentration of bacteria with different values of alpha. 

6. Conclusion 

This study investigates the use of fractional optimal control to mitigate cholera 

epidemics, emphasizing its potential to enhance the efficacy of intervention strategies. 

The key findings and outcomes are as follows: 

 A system of fractional-order differential equations was formulated to accurately 

capture the dynamics of cholera spread. 

 The mathematical analysis ensures the non-negativity and boundedness of 

solutions, confirming the ability of the model to accurately represent disease 

dynamics. 

 Quarantine is incorporated as a control measure to reduce both the number of 

infected individuals and the bacterial concentration in the environment. 

 Pontryagin’s Maximum Principle is applied to derive optimal control strategies, 

ensuring the interventions are cost-effective and impactful. 

 MATLAB-based simulations validate the effectiveness of the proposed control 

strategy, showing a significant reduction in the spread of disease and bacterial 

concentration. 

 The basic reproduction number (ℛ0 ) is computed using the next-generation 

matrix method. 

 Stability analysis demonstrates the local asymptotic stability of both disease-free 

and endemic equilibrium points, highlighting the robustness of the model. 

 Fractional calculus is successfully integrated into the control model, enhancing 

its precision and adaptability in cholera epidemic management. 

7. Future directions 

To build on the findings of this study, the following avenues can be explored: 

 Extend the model to include vaccination, water sanitation, and public awareness 

campaigns alongside quarantine. 

 Perform a detailed analysis of the economic and social costs associated with the 

interventions to assess their feasibility in resource-limited settings. 
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 Apply the model to real-world cholera outbreak data to validate its predictions 

and refine parameter estimates. 

 Extend the model to account for spatial heterogeneity, enabling the study of 

cholera dynamics across interconnected regions. 

By addressing these areas, the proposed framework can be further enhanced, 

providing a more comprehensive and practical approach to controlling cholera 

epidemics. 
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