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ABSTRACT: This paper deals with the various definitions involved in 

the very old yet novel topic called fractional calculus. This survey 

intends to report some of the major works carried out in the arena of 

fractional calculus that took place since 2010. Fractional calculus is a 

prominent topic for research within the discipline of applied 

mathematics doe to its usefulness in solving problems in several 

different branches of science, engineering, medicine, finance, 

economics and the likes. With the various definitions involved in this 

field, we explore the various models taken into consideration to study 

the effect and impact of fractional calculus to understand how the 

dynamics of such models change. 
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1. Introduction

Historical background 

The onset of fractional calculus was marked by a question posed by L’Hopital in his letter to 

Leibniz in 1695. What might be a derivative of order 1/2? With this question in mind, Leibniz foresees 

the genesis of the field which is popularly known as fractional calculus (FC). In the classical calculus, 

the derivative has an important geometric interpretation; namely, it is associated with the concept of 

tangent, in opposition to what occurs in the case of FC. This difference can be seen as a problem for the 

slow progress of FC up to 1900. After Leibniz, it was Euler that noticed the problem for a derivative of 

non-integer order as can be understood from the study of Miller and Ross[1]. Fourier suggested an 

integral representation in order to define the derivative, and his version can be considered the first 

definition for the derivative of arbitrary (positive) order which is portrayed in the study of Miller and 

Ross[1] together with Machado et al.[2]. Abel solved an integral equation associated with the tautochrone 

problem, which is considered to be the first application of FC, portrayed in the study of Miller and 

Ross[1] alongwith Machado et al.[2]. Liouville, as can be understood in the study by Miller and Ross[1] 

together with Machado et al.[2], suggested a definition based on the formula for differentiating the 

exponential function. This expression is known as the first Liouville definition. The second definition 

formulated by Liouville is presented in terms of an integral and is now called the version by Liouville 

for the integration of non-integer order. Grunwald and Letnikov, independently, developed an 
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approach to non-integer order derivatives in terms of a convenient convergent series, conversely to the 

Riemann-Liouville approach, that is given by an integral. Letnikov showed that his definition coincides 

with the versions formulated by Liouville, for particular values of the order, and by Riemann, under a 

convenient interpretation of the so-called non-integer order difference. In the study of Machado et al.[2], 

Hadamard published a paper where the non-integer order derivative of an analytical function must be 

done in terms of its Taylor series. After 1900, the FC experiences a fast development and, in an attempt 

to formulate particular problems, other definitions were proposed. 

In the process of development of fractional calculus, the Caputo version is of utmost importance. 

The definition as proposed by Caputo inverts the order of integral and derivative operators with the 

non-integer order derivative of the Riemann-Liouville. The difference between these two formulations 

are summarized as follows: 

In the Caputo: first derivative of integer order is calculated and then integral of non-integer order is 

calculated. In the Riemann-Liouville: first the integral of non-integer order is calculated and then the 

derivative of integer order is calculated. It is important to cite that the Caputo derivative is useful to 

affront problems where initial conditions are done in the function and in the respective derivatives of 

integer order. In recent decades, the field of fractional calculus has attracted interest of researchers in 

several areas including mathematics, physics, chemistry, engineering and even finance and social 

sciences. 

Why is fractional calculus so significant? 

Until recent times, fractional calculus was considered as a rather esoteric mathematical theory 

without applications, but in the last (few) decade(s) there has been an explosion of research activities on 

the application of fractional calculus to very diverse scientific fields ranging from the physics of 

diffusion and advection phenomenon, to control systems to finance and economics. Indeed, at present, 

applications and/or activities related to fractional calculus have appeared in at least the following fields: 

1) Fractional control of engineering systems. 

2) Advancement of calculus of variations and optimal control to fractional dynamic systems. 

3) Fundamental explorations of the electrical and thermal constitutive relations and other properties 

of various engineering materials such as viscoelastic polymers, foams, gels, and animal tissues and 

their engineering and scientific applications. 

4) Fundamental understanding of wave and diffusion phenomenon, their measurements and 

verifications, including applications to plasma physics. 

5) Bioengineering and biomedical applications. 

6) Thermal modeling of engineering systems. 

7) Image and signal processing. 

In this paper, Section 2 constitutes of definitions related to fractional calculus. Section 3 deals with 

literature review. Section 4 deals with the analytical and numerical techniques employed for analyzing 

the dynamic behaviour of the model systems. Conclusion is incorporated in Section 5 and the paper 

ends with the list of legitimate references. 

2. Fractional Calculus: Definitions 

The theory of fractional calculus is a novel topic and attracts a lot of attention to understand the 

critical dynamics of models. To develop concrete understanding of fractional models, the following 

definitions need to be perceived: 
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2.1. Riemann Liouville (RL) fractional integral 

The RL integral provides the formula for fractional calculus in its traditional form. It is based on 

the Fourier series and calls for the disappearance of the constant Fourier coefficient (so, it is true for 

functions on the unit circle whose integrals are 0). The Weyl integral provides the theory of fractional 

integration for periodic functions, which includes the “border condition” of recurring after a period. 

There are two different versions of the R-L integral: upper and lower. The integrals are defined as for 

the range [a, b]. 

a𝐷𝑡
−𝛼 𝑓(𝑡) = a𝐼𝑡

𝛼 𝑓(𝑡) =  
1

𝛤(𝛼)
 ∫ (𝑡 −  𝜏)𝛼−1𝑡

𝑎
 𝑓(𝜏) d𝜏 (1) 

t𝐷𝑏
−𝛼  𝑓(𝑡) = t𝐼𝑏

𝛼 𝑓(𝑡) =  
1

𝛤(𝛼)
 ∫ (𝜏 − 𝑡)𝛼−1𝑏

𝑡
 𝑓(𝜏) d𝜏 (2) 

where, the former is applicable for t > a the latter being applicable for t < b which can be seen in the 

study of Hermann[3]. The Grunwald-Letnikov (G-L) derivative, in contrast, begins with the derivative 

rather than the integral. 

2.2. Riemann Liouville fractional derivative 

The Lagranges’s rule for differential operators is used to get the associative derivative. Calculating 

the n-th order derivative over the order integral (n α), the α obtaining order derivative. The fact that n is 

the lowest integer bigger than a should be noted (i.e., n = [α]). The definition of the derivative contains 

upper and lower variations, just as the R-L integral definitions which can be seen in the study of 

Hermann[3]. 

a𝐷𝑡
𝛼  𝑓(𝑡) =  

𝑑𝑛

𝑑𝑡𝑛  a𝐷𝑡
−(𝑛 − 𝛼)

𝑓(𝑡) =  
𝑑𝑛

𝑑𝑡𝑛  a𝐼𝑡
𝑛− 𝛼𝑓(𝑡) (3) 

t𝐷𝑏
𝛼  𝑓(𝑡) =  

𝑑𝑛

𝑑𝑡𝑛  t𝐷𝑏
−(𝑛 − 𝛼)

𝑓(𝑡) =  
𝑑𝑛

𝑑𝑡𝑛  t𝐼𝑏
𝑛− 𝛼𝑓(𝑡) (4) 

 

2.3. Hadamard fractional integral (HFI) 

Jacques Hadamard invented the HFI (see the study by Hadamard[4]) and is determined by the 

subsequent formula, 

a𝐷𝑡
−𝛼 𝑓(𝑡) =  

1

𝛤(𝛼)
 ∫ (log

𝑡

𝜏
 )

𝛼−1𝑡

𝑎
𝑓(𝜏)

𝑑𝜏

𝜏
 , 𝑡 > 𝛼 (5) 

2.4. Atangana-Baleanu (A-B) fractional integral 

A continuous function’s A-B fractional integral is defined as: 

𝐼𝑡
𝛼

𝑎
𝐴𝐵  𝑓(𝑡) =  

1− 𝛼

𝐴𝐵(𝛼)
𝑓(𝑡) + 

𝛼

𝐴𝐵(𝛼)𝛤(𝛼)
∫ (𝑡 −  𝜏)𝛼−1𝑡

𝑎
 𝑓(𝜏) d𝜏 (6) 

2.5. Caputo fractional derivative 

An additional technique for calculating fractional derivatives is referred to as the Caputo fractional 

derivative which was first mentioned in the article from 1967, referred in the study of Caputo[5]. When 

using Caputo’s concept to solve differential equations, it is not essential to define the fractional order 

initial conditions, in contrast to the R-L fractional derivative. Following is an illustration of Caputo’s 

definition, where once more n = [α]: 

C𝐷𝑡
𝛼𝑓(𝑡) =  

1

𝛤(𝑛 − 𝛼)
∫

𝑓𝑛(𝜏)𝛼+1−𝑛

(𝑡− 𝜏)
𝑑𝜏

𝑡

0
 (7) 

The Caputo fractional derivative is described as follows: 
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𝐷𝛼𝑓(𝑡) =  
1

𝛤(𝑛 − 𝛼)
∫ (𝑡 − 𝑢)𝑛−𝛼−1𝑡

0
𝑓𝑛(𝑢)𝑑𝑢, (𝑛 − 1) < 𝑣 < 𝑛  (8) 

It benefits from being zero when f(t) is constant and its Laplace transform is calculated using the 

function’s initial values and derivative. Additionally, the Caputo fractional derivative of dispersed order 

is described as: 

𝐷𝛼𝑓(𝑡) = ∫ 𝜙(𝛼)[𝐷𝛼𝑓(𝑡)]𝑑𝛼 =

𝑏

𝑎

𝑎
𝑏 ∫[

𝜙(𝛼)

𝛤(1 − 𝛼)
∫(𝑡 − 𝑢)−𝛼𝑓′(𝑢)𝑑𝑢

𝑡

0

]𝑑𝛼

𝑏

𝑎

 (9) 

where φ(α) is a weight function that is used to formally express the existence of different memory 

formalisms. 

2.6. Caputo-Fabrizio (C-F) fractional derivative 

M. Caputo and M. Fabrizio provided a definition of the FD with a non-singular kernel for the 

following function f(t) of the C1 in a study that was published in 2015. 

𝐷𝑡
𝛼

𝑎
𝐶𝐹  𝑓(𝑡) =  

1

1 − 𝛼
∫ 𝑓′(𝜏)𝑒

(−𝛼
𝑡 − 𝜏
1 − 𝛼

 )
𝑑𝜏 , 𝛼 𝜖 (0 , 1] 

𝑡

𝑎

 (10) 

2.7. Atangana-Baleanu (A-B) fractional derivative 

Differential operators based on the generalized Mittag-Leffler function were introduced by 

Atangana and Baleanu in 2016. The intention was to present non-singular, nonlocal fractional 

differential operators. The following lists their Riemann-Liouville and Caputo sense fractional 

differential operators, respectively. For a C1 function f(t) provided in the study of Alghatani[6] together 

with Atangana and Baleanu[7]. 

𝐷𝑡
𝛼

𝑎
𝐴𝐵𝐶  𝑓(𝑡) =

𝐴𝐵(𝛼)

1 −  𝛼
∫ 𝑓′(𝜏) 𝐸𝛼 (−𝛼

(𝑡 − 𝛼)𝛼

1 − 𝛼
) 𝑑𝜏

𝑡

𝑎

 (11) 

𝐷𝑡
𝛼

𝑎
𝐴𝐵𝐶  𝑓(𝑡) =

𝐴𝐵(𝛼)

1 −  𝛼

𝑑

𝑑𝑡
∫ 𝑓(𝜏) 𝐸𝛼 (−𝛼

(𝑡 − 𝛼)𝛼

1 − 𝛼
) 𝑑𝜏

𝑡

𝑎

 (12) 

Atangana-Baleanu fractional derivative’s kernel has certain characteristics of a cumulative 

distribution function. For instance, the function Eα is rising on the real line and converges to for every α 

∈ (0, 1]. 

3. Literature review (Techniques employed: Analytical and numerical 

approach) 

3.1. Approach on ecological models 

Qian et al.,[8] had made use of two-parameter Mittag-Leffler function and Gronwall inequality in 

their proposed paper. To deal with stability and asymptotic stability of fractional differential system of 

the form RL𝐷𝑎,𝑡
𝛼−1𝑥(𝑡) = 𝐴𝑥(𝑡), with initial condition RL𝐷𝑎,𝑡

𝛼−1𝑥(𝑡)|t=a = x0 = (x10, x20, ...xn0)
T, where x(t) = 

(x1(t), x2(t), ...xn(t))
T , α 𝜖  (0, 1) and A   𝜖  Rn×n we say that the mentioned system is said to be 

1) stable if f for any x0, there exists ϵ > 0 s.t. ǁx(t)ǁ ≤ ϵ for t ≥ 0; 

2) asymptotically stable if f limt→+∞ ǁx(t)ǁ = 0. 

Wei et al.,[9] followed the definition of sequential fractional derivative presented by Miller and Ross 
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in the proposed manuscript. In the mentioned paper, the authors have defined classical, lower and 

upper solution of problem as defined in the paper. The paper also utilizes properties of Mittag-Leffler 

function. Monotone iterative method and Lipschitz criteria is employed by the authors. El-Sayed[10] is 

concerned with the IVP of the non-linear fractional-order differential equation as follows: 

𝐷𝛼𝑥(𝑡) = ∑ 𝑎𝑘𝑡𝑓𝑘

𝑛

𝑘=0

𝑥(𝑡) (14) 

with the initial data 

x(0) = x0 (15) 

The above IVP is considered with the following assumptions: 

1) ak(t) ∈ C1 [0, T], k = 0, 1, ... where C1 [0, T] is the space of all continuously differential functions on 

[0, T], ak > sup|akt| and aJ
k > sup|

𝑑

𝑑𝑡
ak(t)|. 

2) F: D → R+, ∀t ∈ I, D ⊂ R+ where F (x(t)) = ∑ 𝑎𝑘(𝑡)𝑓𝑘(𝑥(𝑡))𝑛
𝑘=0  

3) Functions fk satisfy Lipschitz condition. 

With the help of the above assumptions, the existence and uniqueness of solutions of the IVP are 

established. Lyapunov uniform stability is employed to prove uniform stability of the IVP. Kansa 

incorporated the radial basis function (RBF) collocation method in order to solve the partial differential 

equations, which is now known as the Kansa method. Chen et al.,[11] discusses time fractional diffusion 

equation and time fractional derivative discretization. With reference to analogizing the time fractional 

derivative term, the authors have employed the finite different scheme method. In the numerical 

simulation segment, MQ function is employed and the method of Tadjeran is introduced in one-

dimensional case. In two-dimensional case, the authors had utilized TPS function. Li et al.,[12] proposed 

the generalized Mittag-Leffler stability and the generalized fractional Lyapunov direct method in this 

manuscript. This paper discusses extension of the application of Riemann-Liouville fractional-order 

systems by using Caputo fractional-order systems. The authors had introduced class-K functions to the 

fractional Lyapunov direct method and provided the fractional comparison principle. Abbas et al.,[13] 

establishes existence and uniqueness of solutions by defining an operator on the class of continuous 

functions. The operator having a fixed point establishes the uniqueness of solutions. For analyzing the 

proposed model system numerically, Adams-type predictor-corrector method is employed. Xiao[14] 

employs Routh-Hurwitz criteria for dealing with local asymptotic stability. The authors have made use 

of Adams-Bashforth-Moulton algorithm for performing numerical simulations. Abdelouahab et al.,[15] sets 

up fractional order Routh-Hurwitz (FR-H) conditions for verifying local asymptotic stability. The 

stability of the prescribed equilibrium points is carried out by calculating the variational matrix. In this 

manuscript, the authors have utilized the PECE (predict, evaluate, correct, evaluate) algorithm (time-

domain method) which is related to the Caputo definition while exploring the stated model numerically. 

Delavari et al.,[16] proves Bihari’s inequality and Gronwall-Bellman integral inequality. The authors 

have defined class KL function. Moreover, the authors have proved comparison theorem for fractional 

order system. In order to establish uniform asymptotic stability, local Lipschitz condition is performed. 

The authors have also put in use the Mittag-Leffler function. Rana et al.,[17] makes use of Lipschitz 

condition. Local stability of prescribed equilibrium points is performed with the aid of variational 

matrix. The authors also talk about local and non-local kernels. The authors have performed homotopy 

analysis method for finding approximate analytic solution. For estimation of the parameters, the 

authors have used the total least squares method, also known as orthogonal distance fitting (ODF). The 

numerical simulation segment uses the FDE12 package in MATLAB which is an implementation of 
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the Adams-Bashforth-Moulton predictor corrector method. The fmincon optimization algorithm in 

MATLAB is applied for data fitting of prescribed model. Agarwal et al.,[18] applies Euler’s discretization 

process in this paper. Having considered a variational matrix for one of the prescribed fixed points and 

calculating their characteristic roots, the authors have explored the stability of each fixed point. For 

identifying existence of chaos, the authors have computed Lyapunov characteristic exponents (LCEs) 

since the Lyapunov exponent is considered to be a good indicator of identifying existence of chaos. The 

local stability analysis has been done based on standard linearization technique and using the 

variational matrix in this paper presented by Javidi and Nyamoradi[19]. In order to solve the proposed 

fractional model, the authors have used a numerical method introduced by Atanackovic and Stankovic. 

Choi et al.,[20], in their paper, discusses Mittag-Leffler stability. The paper considers Volterra fractional 

differential equation. The authors have defined h-stable system and discusses h-stability. Zhou et al.,[21], 

in their paper, applies globally Mittag-Leffler stability. This paper discusses class-K function. The 

existence and uniqueness of solution is established using Lipschitz condition. In this manuscript, 

Elsadany and Matouk[22], achieves Euler-discretized fractional-order Lotka-Volterra system. The 

variational matrix is computed for verifying stability of equilibrium points. Matouk et al.,[23] determine 

the equilibrium points analyze stability conditions by computing variational matrix at the stated 

equilibrium points. Matignon’s results are employed for determining local asymptotic stability of 

equilibrium points. In the numerical simulation section, an effective method for solving fractional-order 

differential equation is applied which is PECE (predict, evaluate, correct, evaluate). For establishing 

global stability of equilibrium points, the system is linearized in this paper addressed by Rihan et al.,[24]. 

To study the stability of the prescribed system, Laplace transform is applied. The authors discuss 

Lyapunov globally asymptotical stability provided the equilibrium points exist. Here, in FODDEs, 

implicit Euler’s scheme is employed. The authors have deduced existence of unique solution with the 

aid of Lipschitz condition and Banach contraction principle. Caputo and Fabrizio[25], in this paper, 

presents Laplace transform of the NFDt. The authors have presented with a fractional gradient operator 

in order to describe non-local dependence in constitutive equations. The authors have also introduced 

fractional divergence in this paper. The authors have also presented Fourier transform of fractional 

gradient and divergence. Losada and Nieto[26] proposes the condition when a solution of the fractional 

differential equation CFDαf(t) = 0 becomes a constant function. This paper utilizes contraction map and 

Banach’s fixed point theorem. One of the most fascinating features of this paper is the application to 

fractional falling body problem. Ghaziani et al.,[27] discusses stability criterion for equilibrium points of 

the fractional order system taken into consideration by the aid of variational matrix. The authors have 

applied numerical technique put forward by Atanackovic and Stankovic in the segment of numerical 

analysis. Ji et al.,[28] have mentioned uniform asymptotic stability theorem. To investigate the stability 

conditions of equilibrium points, variational matrix has been evaluated at those points and Routh-

Hurwitz condition has also been employed. Uniform asymptotic stability of equilibrium points has been 

established using suitable positive definite Lyapunov function. Local stability of equilibrium points of a 

linearized fractional-order form of system proposed by Matouk and Elsadany[29], is determined by the 

very familiar Matignon’s conditions. The authors have found out the condition for existence and 

uniqueness of solutions with the assistance of contraction mapping. The numerical analysis deals with 

solving the fractional order differential equations using the predictor-correctors scheme or more 

precisely, predict, evaluate, correct, evaluate (PECE). A new control method has been introduced in 

this paper in order to stabilize the chaotic fractional-order GLV-system. Eulerian discretization has also 

been employed. Song et al.,[30] evaluates asymptotic stability of equilibrium points. The stability of the 

model under consideration is investigated with the introduction of time delay. The effect of harvesting 



Journal of  AppliedMath 2023; 1(4): 236. 

7  

is analyzed. The system model is thoroughly scrutinized numerically using MATLAB. The preliminary 

investigating tools are RL fractional integral operator using gamma function and Caputo fractional 

derivative. The manuscript addressed by Atangana and Koca[31] uses Atangana-Baleanu fractional 

derivative in Caputo sense. Laplace transform operator is employed in this paper. Moreover, while 

exploring the relation with the integral transforms Laplace, Sumudu, Fourier and Mellin transforms are 

put to use. Model of Lorenz attractor with Atangana-Baleanu derivative is explored thoroughly. For 

finding existence of solutions, Picard Lindelöf method is employed. The authors Li et al.,[32] have 

focused on the Feigenbaums constants in reverse bifurcation of fractional- order Rossler system. At first, 

the definition of Feigenbaums constants in reverse bifurcation has been investigated thoroughly. 

Secondly, the Feigenbaums constants in reverse bifurcation and the error percentage are obtained by 

analyzing a series of bifurcation diagrams of integer and fractional-order Rossler system. Khajanchi[33] 

makes use of Nagumo’s theorem to state that any solution with initial point shall remain positive 

throughout the prescribed region. The author establishes boundedness of solution. Also, in order to 

obtain global stability, Lyapunov function is employed. this paper derives the normal form theory to 

investigate the direction and stability of the limit cycle arising from Hopf bifurcation. To examine non-

existence of periodic orbits, the authors have utilized Bendixson-Dulac criteria. MATLAB software is 

used for exploring the model numerically. Nosrati and Shafiee[34] analyzes relation between fractional 

order derivatives and economic profits. The numerical analysis segment is established using 

Atanackovic and Stankovic. This paper introduces Grunwald-Letnikov (GL) fractional derivative 

operator for a continuous function. Moreover, the authors have considered the Fractional-order 

singular (FOS) model of predator-prey system. This manuscript tries to identify the conditions owing to 

which the FOS model can be regarded to be stable. This phenomenon uses linearization and variational 

matrix to achieve stability. In the segment dealing with local stability analysis, bifurcation and 

economic profit, the authors have defined AEP (admissible equilibrium point). In this paper, addressed 

by Owolabi and Atangana[35], the authors implemented the basic concepts of fractional derivatives, 

presented the spectral method for approximating the Riemann-Liouville fractional derivative and later 

proposed the pseudo-spectral method that can be used in conjunction with any higher-order time solver. 

The discussion in this paper is focused on general space fractional reaction diffusion equation. In order 

to achieve the collocation equation, the Gauss-Lobatto nodes are considered at first. Deshpande et 

al.,[36] proposes stability conditions due to Matignon’s stability condition. The authors have studied and 

critically analyzed fractional Bhalekar-Gejji system. Existence of fractional Hopf bifurcation is 

performed with two singular conditions and one transversality condition. For detection of chaotic 

behaviour of the model under consideration, maximum Lyapunov characteristic coefficient is plotted 

for a parameter.  For determining the long-term behaviour of the model system, the present paper 

employs fractional Adams method (FAM) along with Mathematica 10.0 software. Zou and He[37] 

employs Lipschitz condition to establish uniqueness of continuous solution. Abdeljawad[38] uses Banach 

contraction principle to proof uniqueness of solution for ABC and ABR initial value type problems. the 

author discusses Lyapunov inequality for the ABR boundary value problem. Properties of green 

function are employed in this paper. Liu et al.,[39] have utilized Lyapunov-Krasovskii function while 

dealing with asymptotic stability of fractional neural systems. Li and Wang[40] introduces a concept of 

delayed Mittag-Leffler matrix function similar to delayed exponential matrix. With the utilization of 

mathematical induction and mathematical properties the solution of fractional delay system has been 

set up. Finite time stability conditions are also achieved. Satriyantara et al.,[41] investigates a discrete 

fractional-order predator-prey model and searches for the equilibrium points. Moustafa et al.,[42], in this 

article, discusses existence and uniqueness of solution using the very well-known method of 
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implementation of Lipschitz condition. For ensuring non-negativity and boundedness of solutions of 

prescribed fractional order system, the standard comparison theorem using Mittag-Leffler function has 

been used. A suitable positive definite Lyapunov function is considered for establishing GAS of 

predator-extinction equilibrium point and coexistence equilibrium point. For the numerical simulation 

of R-M fractional-order system, the generalized Adams-Bashforth-Moulton type predictor-corrector 

scheme is employed. Baisad and Moonchai[43] uses Mittag-Leffler function while performing Laplace 

transform. The authors have introduced local Lipschitz condition to establish existence and uniqueness 

of solution. Existence of equilibrium points is investigated and their stability is analyzed using the 

linearization method. In this manuscript, the authors have used the Adams method to solve model the 

proposed model by the MATLAB software. Li et al.,[44] discusses existence of equilibrium points and 

employs variational matrix to analyze their stability. The PECE (predict, evaluate, correct, evaluate) 

scheme, regarded as a generalization of Adams-Bashforth-Moulton algorithm, is an effective technique 

to solve fractional-order differential equations. In the numerical analysis segment, the authors use the 

PECE scheme for finding the numerical solution of system under consideration. This paper addressed 

by Liang et al.,[45] provides with the representation of a solution of fractional linear system with pure 

delay using the fractional delayed matrix sine and cosine and the variation of parameters method. 

Alidousti and Ghahfarokhi[46] have incorporated final value theorem in this paper. Classical Routh-

Hurwitz criteria comes into play where asymptotic stability of equilibrium points is concerned. The 

authors have performed numerical simulation based on the fractional Adams-Bashforth-Moulton 

method. Moustafa et al.,[47] employs contraction mapping principle. Standard comparison theorem is 

applied in this paper in order to fetch uniform boundedness of solutions of fractional-order systems. The 

authors define a positive definite Lyapunov function to establish that the predator-free equilibrium 

point is GAS. In this process, inequalities involving arithmetic and geometric means are applied. For 

the numerical simulation of the prescribed fractional-order system, the generalized Adams-Bashforth-

Moulton type predictor-corrector scheme is employed. Suryanto et al.,[48] utilizes comparison theorem, 

Mittag-Leffler function and generalized Lasalle invariance principle. The authors implemented the 

predictor corrector scheme developed by Diethelm et al.,[49] to solve proposed fractional-order model 

and to perform some numerical simulations. 

Wang et al.,[50] uses Laplace transform while verifying non-negativity conditions of solutions of 

proposed system. Lipschitz condition is as usual employed for establishing uniqueness of solutions. The 

authors talk about w-limit point. Routh-Hurwitz criteria is used for examining LAS of equilibrium 

points and a suitable Lyapunov function is constructed for examining GAS of non-trivial positive 

equilibrium point. The stability of the positive equilibrium point has been studied using the Lyapunov 

direct method in this manuscript addressed by Xie et al.,[51]. The PECE (predict-evaluate and correct-

evaluate) method for numerical simulation is applied to confirm the results of this paper. Panja et al.,[52] 

utilizes convergence criteria of Mittag-Leffler function for verifying stability of equilibrium point. The 

author performs Hopf bifurcation analysis. While seeking sufficient condition for the existence and 

uniqueness of solutions of a fractional-order system, Lipschitz condition is employed. Panigoro et al.,[53] 

evaluates variational matrix at the equilibrium points to evaluate stability conditions for equilibrium 

points. Existence of Hopf bifurcation is examined considering Caputo fractional differential equation. 

The authors have performed numerical simulation using the predictor-corrector method for fractional-

order differential equations. Mondal et al.,[54] considers Mittag-Leffler function and standard 

comparison theorem for establishing uniform boundedness and non-negativity conditions. Lipschitz 

condition is applied to find whether the solution fetched from fractional differential equations is unique. 

Population free equilibrium point is stated to be unstable using Matignon’s conditions. For sensitivity of 
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parameters the approach of Latin hypercube sampling (LHS) and partial ranked correlation coefficient 

(PRCC). GAS is established using Lyapunov stability. While dealing with the numerical simulations, 

the authors have applied the PECE (predict, evaluate, correct, evaluate) method based on Adams-

Bashforth-Moulton algorithm in order to analyze the qualitative behaviour of the proposed fractional 

order system. Panigoro et al.,[55] applies local Lipschitz condition to determine uniqueness of solutions 

corresponding to the fractional order system. One-parameter Mittag-Leffler function is applied together 

with Standard Comparison theorem to determine non-negativity and boundedness of solutions of the 

model system under consideration. Matignon condition is stated to determine LAS. Existence of 

forward bifurcation is confirmed from stability conditions of respective equilibrium points. For 

establishment of GAS, generalized Lasalle invariance principle and construction of suitable positive 

definite Lyapunov function are employed. Moreover, the solution of the fractional-order model with 

ABC operator, under consideration, is explored by applying fixed-point theorem. The authors have 

applied the predictor corrector technique proposed by Diethelm et al.,[49]. to solve the Caputo fractional-

order model and the predictor corrector scheme proposed by Baleanu et al.,[56] to solve the Atangana-

Baleanu in Caputo sense model (ABC). Ghanbari et al.,[57] employs the Atangana-Baleanu derivative 

(AB) to analyze the effect of this derivative over the two prey and predator model. Mittag-Leffler 

function and Lipschitz condition are used in this paper. In search for numerical approximate solution, 

Newton’s method has been used efficiently in this paper. Yildz et al.,[58] constructs optimality system by 

defining the modified performance index. To evaluate the time fractional term, the method of 

integration by parts is employed. The optimality condition acts as a catalyst in order to find solution of 

fractional optimal control problem. For discretizing state equation, the authors have applied forward 

Euler method. Again, for discretizing adjoint equation, the authors have used backward Euler method. 

Gronwall’s lemma is applied in this paper. Singh et al.,[59] analyzes fractional fish model by HATM 

utilizing inverse Laplace transform. The authors use Picard-Lindeloff scheme to discuss an ES of 

fractional fish farm model. In pursuing this agenda, the fixed point postulate of Banach space has been 

employed. Moreover, the paper talks about Picard’s X-stability. The solution of fish farm model is 

determined by employing homotopy analysis transforms method (HATM). Existence and uniqueness 

of solution are studied through Picard Lindelöf approach. Mohammadi et al.,[60] have defined a 

condensing map and have applied Sadovskii’s fixed point theorem to determine a fixed point within a 

subset of a Banach space. The article utilizes endpoint theorem in order to determine unique endpoint. 

In the present manuscript, the authors are in search of at least one solution of proposed fractional Lio-

Cap-Bvp model on [0, 1] owing to which dominated convergence theorem of Lebesgue is put to use. To 

establish the inclusion version of the fractional Lio-Cap-Bvp, the notion of the approx-endpoint 

property is put to use. ul Rehman et al.,[61], in this manuscript, uses local boundedness and Lipschitz 

condition to establish existence and uniqueness of solutions of proposed fractional order model. The 

authors have found means of locating the biologically feasible region where the dynamical transmission 

of the prescribe system shall be analyzed. While dealing with this, Mittag-Leffler function was put to 

use. The authors have found it very hard to establish stability of equilibrium points of the model under 

consideration as the fractional derivatives do not abide by Leibnitz rule. Hence, an alternative 

transformation had been used. Local asymptotic stability of disease-free equilibrium is determined with 

the use of Routh-Hurwitz criteria. Control parameter is introduced to regulate the spreading of ailment 

by constructing a suitable objective function. In the final segment, the authors have discussed the 

approximate solution via numerical methods such as Runge-Kutta method of fourth order (RK4) and 

Laplace Adomian decomposition method (LADM) for the system taken into account. Bantaojai and 

Borisut[62], in this article, employs contraction mapping principle for fetching unique fixed point. 
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Moreover, Krasnoselskii’s fixed point theorem is applied to fetch at least one solution from the 

proposed BVP. The authors have applied Boyd and Wong fixed point theorem on a Banach space E to 

determine a unique fixed point in E. In this quest, application of Arzela-Ascoli theorem is worth 

mentioning. The authors Rahmi et al.,[63] uses Matignon condition to establish that an equilibrium point 

is LAS. Existence of Hopf bifurcation is determined analytically. The present article applies the 

predictor-corrector scheme for fractional-order system developed by Diethelm et al.,[49]. Ghosh et al.,[64] 

have modified the classical Rosenzweig-MacArthur model of prey-predator engagement to Bazykin 

prey-predator model to indulge with intra-specific competition among the predators. The proposed 

fractional differential system has a unique solution for any non-negative initial condition which has 

been proved by providing Lipschitz constant. GAS of axial and interior equilibrium point is established 

by constructing a positive Lyapunov function. For numerical analysis, the authors have solved the 

proposed model with the help of two-step Adams-Bashforth-Moulton algorithm for the system of two 

FODE. Panigoro et al.,[65] have achieved the discrete- time model by applying the piecewise constant 

arguments (PWCA) scheme. Moreover, a fixed point is defined and their stability conditions are 

studied by computing the variational matrix. The proposed article shows that the integral step-size(h) 

plays an important role in establishing the dynamical behaviour of the prescribed model. Existence of 

Neimark-Sacker bifurcation has been exhibited numerically in this article. Barman et al.,[66] investigated 

Hopf-bifurcation analysis with the discovery of existence of two complex-conjugate eigen values. In the 

numerical scheme, we have used modified predictor-corrector method based on Adams-Bashforth-

Moulton formula through a special module coding FDE12 in the mathematical software MATLAB 

(2020a version). Yousef et al.,[67] uses generalized mean value theorem, Mittag-Leffler function for 

determining non-negativity, boundedness, existence and uniqueness of the solution obtained from the 

proposed model. Hopf bifurcation is established by evaluating variational matrix. GAS corresponding 

to predator-free equilibrium point is set up by constructing a positive definite Lyapunov function. In 

order to carry out numerical analysis to scrutinize the qualitative behaviour of fractional order system 

taken into account, the authors have employed Adams type predictor-corrector method. Panigoro et 

al.,[68] have stated the standard comparison theorem for Caputo fractional-order derivative and 

generalized LaSalle invariance principle. GAS of predator extinction point is examined using 

Lyapunov stability. The authors have explored the dynamics of proposed model numerically by 

performing some numerical simulations using a Caputo fractional-order predictor-corrector scheme 

developed by Diethelm et al.,[49]. The influence of conversion efficiency rate of predation and order of 

the derivative have been investigated. Rahmi et al.,[69] have examined how biologically well behaved 

their proposed model is by determining the conditions for existence and uniqueness of solutions using 

Lipschitz condition. Equilibrium points are deter- mined and their stability conditions are evaluated 

under strong and weak Allee effect utilizing Routh-Hurwitz criterion. GAS of interior equilibrium point 

and predator-extinction point are established by defining a suitable Lyapunov function. In the paper 

addressed by Abbas et al.,[70] Lipschitz condition helps find conditions for existence and uniqueness of 

solutions. With the help of limit superior and limit inferior, permanence of the fractional model has 

been tackled. For convenience, the stated model has been discretized utilizing fractional Adams-

Bashforth-Moulton numerical methods. 

3.2. Approach on eco-epidemiological models 

The local stability of the equilibrium point have been determined by the absolute value of the 

argument eigen values of the Jacobian matrix equilibrium in this article addressed by Nugraheni et 

al.,[71]. In order to evaluate the numerical solutions of a fractional order eco-epidemiological model, the 
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authors use the Grunwald-Letnikov approximation method. Mondal et al.,[72], in this present paper, 

have stated generalized mean value theorem. To investigate how biologically well behaved the 

proposed system is, the authors have determined conditions for non-negativity and boundedness of the 

proposed fractional-order system. For performing extensive numerical investigations, both Adamas-

type predictor corrector method and PECE (predict, evaluate, correct, evaluate) method have been 

employed. The paper ad- dressed by Moustafa et al.,[73] investigates the local and global asymptotic 

stability of all equilibrium points of the prescribed fractional order model by using Matignon’s 

condition and constructing suitable Lyapunov functions respectively. The generalized Adams-

Bashforth-Moulton type predictor-corrector scheme is applied in order to determine an approximate 

solution for the proposed fractional-order system in this manuscript. Kumar et al.,[74] promotes an 

iterative scheme to find exact solution of non-linear fractional-order eco-epidemiological system by 

utilizing Sumudu transform and its inverse property. In the present article, the authors have ensured 

usage of three kinds of fractional operators: first of all, Caputo fractional operator based on the power-

law kernel, second Caputo-Fabrizio fractional operator based on exponential decay law, and lastly 

Atangana-Baleanu fractional operator based on Mittag-Leffler kernel. The authors have obtained the 

maximal bifurcation graph of the eco-epidemiological system which is numerically solved by adopting 

Atangana-Seda (AS) numerical method. Moreover, Newtons polynomial has been put to use. The 

Adams-Bashforth predictor corrector and a mathematical numerical technique dependent on the 

Lagrange polynomial has been employed in this manuscript. Mondal et al.,[75] have discretized the 

proposed fractional-order model with piecewise constant argument. This paper used the Jury criterion 

for determining local stability of the discrete fractional-order system. It is noticed that stability of the 

system depends on both the step-size and fractional order. With the aid of numerous examples, the 

authors have illustrated the stability of predator free, infection-free, and coexistence equilibrium points. 

Qi et al.,[76] analyzes Hopf bifurcation due to feedback delay. The L1 formula is established by a 

piecewise linear interpolation approximation for the integrand function on each small interval. At the 

same time, modified Adams-Bashforth-Moulton predictor corrector scheme is applied to find out how 

the dynamics of the prescribed model works. Ghosh et al.,[77] uses one-parameter Mittag-Leffler 

function for establishing non-negativity and boundedness of solutions. As usual, Matignon’s condition 

is utilized to establish stability criterion for fractional-order model system. Moustafa et al.,[78] provides 

with the proof of existence of transcritical bifurcation by utilizing Sotomayor’s theorem. Threshold 

parameters (R01 and R02) are used to determine the existence conditions of the equilibrium points. 

Rahmi et al.,[79] states comparison lemma and Volterra-type Lyapunov function. LAS of concerned 

equilibrium point is established using Matignon’s condition. The present article also mentions and uses 

generalized LaSalle invariance principle. The authors have demonstrated numerical simulations using 

Adams-Bashforth-Moulton predictor-corrector method provided by Diethelm et al.,[49]. 

4. Literature review: Recent advancements 

4.1. Survey on ecological models 

Qian et al.,[8] focused on establishing stability theorems for fractional differential system with 

Riemann-Liouville derivative, in particular our analysis covers the linear system, the perturbed system 

and the time-delayed system. Wei et al.,[9], discussed the properties of the well-known Mittag-Leffler 

function, and consider the existence and uniqueness of solution of the initial value problem for 

fractional differential equation involving Riemann-Liouville sequential fractional derivative by using 

monotone iterative method. El-Sayed[10] are concerned here with a class of nonlinear fractional-order 
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differential equations. We study the existence of a unique positive solution, its uniform stability and its 

global stability at the equilibrium points. The fractional-order logistic equation, replicator (hawk-dove 

(HD) game) equation, law of mass actions and some other examples will be considered as applications. 

This study addressed by Chen et al.,[11] makes the first attempt to apply the Kansa method in the 

solution of the time fractional diffusion equations, in which the multiquadrics and thin plate spline 

serve as the radial basis function. In the discretization formulation, the finite difference scheme and the 

Kansa method are respectively used to discretize time fractional derivative and spatial derivative terms. 

The numerical solutions of one- and two-dimensional cases are presented and discussed, which agree 

well with the corresponding analytical solution. Stability of fractional-order nonlinear dynamic systems 

is studied using Lyapunov direct method with the introductions of Mittag-Leffler stability and 

generalized Mittag-Leffler stability notions in the paper presented by Li et al.,[12]. With the definitions of 

Mittag-Leffler stability and generalized Mittag-Leffler stability proposed, the decaying speed of the 

Lyapunov function can be more generally characterized which include the exponential stability and 

power-law stability as special cases. Finally, four worked out examples are provided to illustrate the 

concepts. Abbas et al.,[13] studied a fractional differential equation model of the single species 

multiplicative Allee effect. First the stability of equilibrium points is studied. Further, some sufficient 

conditions are established ensuring the existence and uniqueness of integral solution. In the last section, 

several numerical simulations are performed to validate the analytical findings. Xiao[14] studies the 

dynamical behaviors of a fractional order Hindmarsh-rose neuronal model. First, based on the stability 

theory of fractional order systems, some sufficient conditions for the stability and Hopf-type bifurcation 

are given for such fractional order system. Then, the frequency and amplitude of periodic oscillations 

are determined by numerical simulations. It has been shown that the frequency of oscillations incurs a 

small variation with respect to different values of the order, while the amplitude of oscillations gets 

larger as the order is increased. Abdelouahab et al., [15] presents a chaotic fractional-order modified hybrid 

optical system. Some basic dynamical properties are further investigated by means of Poincare mapping, 

parameter phase portraits, and the largest Lyapunov exponents. Fractional Hopf bifurcation conditions 

are proposed; it is found that Hopf bifurcation occurs on the proposed system when the fractional-order 

varies and passes a sequence of critical values. The chaotic motion is validated by the positive 

Lyapunov exponent. In this paper stability analysis of fractional-order nonlinear systems is studied by 

Delavari et al.,[16]. An extension of Lyapunov direct method for fractional-order systems using Biharis 

and Bellman-Gronwalls inequality and a proof of comparison theorem for fractional-order systems are 

proposed. Rana et al.,[17] formulated the fractional counterpart of the Rosenzweig model and analyze 

the stability behaviour of a system. It has been concluded that there is a threshold for the memory effect 

parameter beyond which the Rosenzweig model is stable and may be used as a potential agent to 

resolve PoE from a new perspective via fractional differential equations. Agarwal et al.,[18] are interested 

in the fractional-order form of Chua’s system. A discretization process will be applied to obtain its 

discrete version. Fixed points and their asymptotic stability are investigated. Chaotic attractor, 

bifurcation and chaos for different values of the fractional-order parameter are discussed. It has been 

shown that the proposed discretization method is different from other discretization methods, such as 

predictor-corrector and Euler methods, in the sense that our method is an approximation for the right-

hand side of the system under study. Javidi and Nyamoradi[19] introduced a fractional-order prey-

predator model and deals with the mathematical behaviors of the model. The dynamical behavior of 

the system is investigated from the point of view of local stability. A detailed analysis on the stability of 

equilibrium has been studied thoroughly. Numerical simulations are presented to illustrate the results. 

Choi et al.,[20] introduced the notion of h-stability for fractional differential equations. Then, the 
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boundedness and h-stability of solutions of Caputo fractional differential systems are investigated by 

using fractional comparison principle and fractional Lyapunov direct method. Stability analysis of 

nonlinear fractional differential systems has been an open problem since the 1990s of the last century. 

Apparently, Lyapunov’s second method seems to be invalid for nonlinear fractional differential systems 

(equations). In this paper, Zhou et al.,[21] are concerned with this open problem and have solved it partly. 

Based on Lyapunov’s second method, a novel stability criterion for a class of nonlinear fractional 

differential system is derived. Our result is simple, global and theoretically rigorous. The conditions to 

guarantee the stability of the nonlinear fractional differential system are convenient for testing. 

Compared with the stability criteria in the literature, our criterion is straightforward and suitable for 

application. Several examples are provided to illustrate the applications of our result. Elsadany and 

Matouk[22] have studied the dynamical behaviour of fractional-order Lotka-Volterra predator-prey 

system and its discretized counterpart. It is shown that the discretized system exhibits much richer 

dynamical behaviors than its corresponding fractional-order form; in the discretized system, many types 

of bifurcations (transcritical, flip, Neimark-Sacker) and chaos are obtained however the dynamics of 

fractional-order counterpart is included only stable (unstable) equilibria. The dynamical behaviour of 

fractional-order Hastings-Powell food chain model is investigated by Matouk et al.,[23] and a new 

discretization method of the fractional-order system is introduced. A sufficient condition for existence 

and uniqueness of the solution of the proposed system is obtained. Local stability of the equilibrium 

points of the fractional-order system is studied. Furthermore, the necessary and sufficient conditions of 

stability of the discretized system are also studied. It is shown that the systems fractional parameter has 

effect on the stability of the discretized system which shows rich variety of dynamical behaviors such as 

Hopf bifurcation, an attractor crisis and chaotic attractors. Numerical simulations show the tea-cup 

chaotic attractor of the fractional-order system and the richer dynamical behavior of the corresponding 

discretized system. In this paper by Rihan et al.,[24], a fractional dynamical system of predator-prey with 

Holling type-II functional response and time delay is studied. Local and global stability of existence 

steady states and Hopf bifurcation with respect to the delay is investigated, with fractional order 0 < α ≤ 

1. It is found that Hopf bifurcation occurs when the delay passes through a sequence of critical values. 

Unconditionally, stable implicit scheme for the numerical simulations of the fractional-order delay 

differential model is introduced. The numerical simulations show the effectiveness of the numerical 

method and confirm the theoretical results. The presence of fractional order in the delayed differential 

model improves the stability of the solutions and enrich the dynamics of the model. In the paper, 

Caputo and Fabrizio[25] presented a new definition of fractional derivative with a smooth kernel which 

takes on two different representations for the temporal and spatial variable. The first works on the time 

variables; thus, it is suitable to use the Laplace transform. The second definition is related to the spatial 

variables, by a non-local fractional derivative, for which it is more convenient to work with the Fourier 

transform. The interest for this new approach with a regular kernel was born from the prospect that 

there is a class of non-local systems, which have the ability to describe the material heterogeneities and 

the fluctuations of different scales, which cannot be well described by classical local theories or by 

fractional models with singular kernel. Losada and Nieto[26] introduced the fractional integral 

corresponding to the new concept of fractional derivative recently introduced by Caputo and Fabrizio 

and we study some related fractional differential equations. Ghaziani et al.,[27] introduced a fractional 

order Leslie-Gower prey-predator model, which describes interaction between two populations of prey 

and predator. Stability and dynamical behaviors of the equilibria of this system are determined. The 

dynamical behaviour consists of quasi-periodic and limit cycles. Further by numerical solution of the 

fractional system and numerical simulations, more dynamical behaviour of the model are explored and 
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established. Ji et al.,[28] introduced a fractional order two-species cooperative systems with harvesting. 

By using the Routh-Hurwitz conditions and the Lyapunov method, we provide several sufficient 

conditions to ensure the stability of the equilibriums for the system. Finally, a numerical example is 

presented in the paper to demonstrate the validity and feasibility of the theoretical result. Matouk and 

Elsadany[29] investigates quantitatively the fractional-order generalized Lotka-Volterra (GLV) model 

and its discretization. A sufficient condition for existence and uniqueness of the solution of the 

proposed system is shown. Analytical conditions of the stability of the systems three non-negative 

steady states are proved. The conditions of the existence of Hopf bifurcation in the fractional-order 

GLV system are discussed. The necessary conditions for this system to remain chaotic are obtained. 

Based on the stability theory of fractional-order differential systems, a new control scheme is introduced 

to stabilize the fractional order GLV system to its steady states. Furthermore, the analytical conditions 

of stability of the discretized system are also studied. It is shown that the systems fractional parameter 

has effect on the stability of the discretized system which shows rich variety of dynamical analysis such 

as bifurcations, an attractor crisis and chaotic attractors. Song et al.,[30] considered a fractional order 

delayed predator-prey system with harvesting terms. The discussion is divided into two cases in this 

paper. Without harvesting, the stability of the model is investigated, as well as some criteria by 

analyzing the associated characteristic equation is derived. With harvesting, the dynamics of the system 

is examined from the aspect of local stability and the influence of harvesting to prey and predator is 

analyzed. Finally, numerical simulations are presented to verify our theoretical results. In addition, 

using numerical simulations, the effects of fractional order and harvesting terms are explored on 

dynamic behaviour. The numerical results show that fractional order can affect not only the stability of 

the system without harvesting terms, but also the switching times from stability to instability and to 

stability. The harvesting can convert the equilibrium point, the stability and the stability switching times. 

Recently, Atangana and Baleanu proposed a derivative with fractional order to answer some 

outstanding questions that were posed by many researchers within the field of fractional calculus. Their 

derivative has a non-singular and nonlocal kernel. In this paper, Atangana and Koca[31] presented 

further relationship of their derivatives with some integral transform operators. New results are 

presented. This derivative has been applied to a simple nonlinear system. It has been shown in detail, 

the existence and uniqueness of the system solutions of the fractional system. A chaotic behaviour was 

obtained which was not obtained by local derivative. Li et al.,[32] demonstrates the existence of 

Feigenbaums constants in reverse bifurcation for fractional order Rossler system. First, the numerical 

algorithm of fractional-order Rossler system is presented. Then, the definition of Feigenbaums 

constants in reverse bifurcation is provided. Third, in order to observe the effect of fractional-order to 

Feigenbaums constants in reverse bifurcation, a series of bifurcation diagrams are computed. The 

Feigenbaums constants in reverse bifurcation are measured and the error percentage in fractional-order 

Rossler system is presented. The simulation results show that Feigenbaums constants exist in reverse 

bifurcation for fractional-order Rossler system. Especially, the Feigenbaums constants still exist in the 

periodic windows. A summary on previous others works about Feigenbaums constants is proposed. 

This paper draws a conclusion that the constants are universal in both period-doubling bifurcation and 

reverse bifurcation for both integer and fractional-order system. A stage-structure predator prey model 

is proposed and analyzed in this paper by Khajanchi[33] in which predators are divided into juvenile and 

mature predators using Monod-Haldane-type response function. The dynamical behavior of this system 

both analytically and numerically is investigated from the view point of stability and bifurcation. We 

investigate global stability around the interior equilibrium point E by constructing suitable Lyapunov 

function. Our model simulation indicates that the conversion of prey population to juvenile predators 
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can destabilize the model system which lead to limit cycle oscillations. We also investigate that the rate 

of juvenile predators becoming mature predators play an important role to destabilize the model system 

for the stable coexistence of both the populations. In this paper, presented by Nosrati and Shafiee[34] a 

fractional-order singular (FOS) predator-prey model with Holling type II functional response has been 

introduced, and the mathematical behavior of the model from the aspect of local stability is investigated. 

Through the fractional calculus and economic theory, a new and more realistic predator-prey model 

has been extended, and the solvability condition is presented. Besides, numerical simulations are 

considered to illustrate the effectiveness of the numerical method and confirm the theoretical results to 

explore the impacts of fractional-order and economic interest on the presented system in biological 

context. It is found that the presence of fractional-order in the differential model can improve the 

stability of the solutions and enrich the dynamics of system. In addition, singular models exhibit more 

complicated dynamics rather than standard models, especially the bifurcation phenomena, which can 

reveal the instability mechanism of systems. In this paper, addressed by Owolabi and Atangana [35], 

pseudo-spectral method have been proposed as an efficient and easy to adapt method for solving the 

space fractional reaction-diffusion system. A fractional predator-prey system has been studied where the 

predator has a life history that takes through the immature and mature stages. Sufficient feasible 

conditions are obtained for the global asymptotic of the equilibrium state of the system. The main 

advantage of this approach is that it gives a full diagonal representation of the fractional operator, being 

able to achieve spectral convergence regardless of the fractional power in the problem. Additional 

advantage is that the application of the proposed method to two and three spatial dimensions requires a 

straightforward extension to the one-dimensional case. Numerical simulation results of the space 

fractional reaction-diffusion system, especially in two and three dimensions provide some amazing 

dynamics when compared to the classical reaction-diffusion equation, and as such consider as a 

powerful modelling approach for understanding the various aspects of heterogeneity in excitable media. 

Numerical experiments justify that the results obtained by the proposed method agree well with the 

theoretical findings. Fractional order dynamical systems admit chaotic solutions and the chaos 

disappears when the fractional order is reduced below a threshold value which is exhibited in the study 

of Grigorenko and Grigorenko. Thus, the order of the dynamical system acts as a chaos controlling 

parameter. Hence it is important to study the fractional order dynamical systems and chaos. Study of 

fractional order dynamical systems is still in its infancy and many aspects are yet to be explored. In 

pursuance to this in the present paper, Deshpande et al.,[36] proved the existence of fractional Hopf 

bifurcation in case of fractional version of a chaotic system introduced by Bhalekar and Daftardar-Gejji. 

We numerically explore the (A, B) parameter space and identify the regions in which the system is 

chaotic. Further we find (global) threshold value of fractional order below which the chaos in the 

system disappears regardless of values of system parameters A and B. Zoua and He[37] are concerned 

with the uniqueness of solutions for the following nonlinear fractional boundary value problem: 

𝐷𝑝𝑥(𝑡) + 𝑓(𝑡 , 𝑥(𝑡)) = 0 , 𝑝 𝜖 (2 , 3] , 𝑡 𝜖 (0 , 1) 

𝑥(0) = 𝑥′(0) = 0 , 𝑥(1) = 0  
(13) 

where Dp denotes the standard Riemann-Liouville fractional derivative. Our analysis relies on the 

theory of linear operators and the ǁ . ǁe norm. 

Abdeljawad[38], in this paper, extended fractional operators with nonsingular Mittag-Leffler kernels, 

a study initiated recently by Atangana and Baleanu, from order α ∈ [0, 1] to higher arbitrary order and 

we formulate their correspondent integral operators. We prove existence and uniqueness theorems for 

the Caputo (ABC) and Riemann (ABR) type initial value problems by using the Banach contraction 
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theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value 

problems of order 2 < α ≤ 3 in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed 

and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional 

calculus is given as well. Liu et al.,[39] investigated the asymptotical stability of Riemann-Liouville 

fractional neutral systems. Applying Lyapunov direct method, new sufficient conditions on 

asymptotical stability are presented in terms of linear matrix inequality (LMI) which can be easily 

solved. The advantage of our employed method is that one may directly calculate integer-order 

derivatives of the Lyapunov functions. Finally, two simple examples are given to show that the 

proposed method is computationally flexible and efficient. Li and Wang[40] firstly introduced a concept 

of delayed Mittag-Leffler type matrix function, an extension of Mittag-Leffler matrix function for linear 

fractional ODEs, which shall help to seek explicit formula of solutions to fractional delay differential 

equations by using the variation of constants method. Secondly, the finite time stability results are 

presented by virtue of delayed Mittag-Leffler type matrix. In this paper, a fractional-order predator-prey 

model with prey refuge and additional food for predator is solved numerically by Satriyantara et al.,[41]. 

For that aim, the model is discretized using a piecewise constant argument. The equilibrium points of 

the discrete fractional-order model are investigated. Numerical simulations are conducted to see the 

stability of each equilibrium point. The numerical simulations show that stability of the equilibrium 

points is dependent on the time step. Moustafa et al.,[42] considered a fractional order Rosenzweig-

MacArthur (R-M) model incorporating a prey refuge. The model is constructed and analyzed in detail. 

The existence, uniqueness, non-negativity and boundedness of the solutions as well as the local and 

global asymptotic stability of the equilibrium points are studied. Sufficient conditions for the stability 

and the occurrence of Hopf bifurcation for the fractional order R-M model are demonstrated. The 

resolution of the paradox of enrichment is investigated. The impact of fractional order and the prey 

refuge effects on the stability of the system are also studied both theoretically and by using numerical 

simulations. The Kolmogorov model has been applied to many biological and environmental problems. 

In this paper, the authors Baisad and Moonchai[43] are particularly interested in one of its variants, that 

is, a Gauss-type predator-prey model that includes the Allee effect and Holling type-III functional 

response. Instead of using classic first order differential equations to formulate the model, fractional 

order differential equations are utilized. The existence and uniqueness of a nonnegative solution as well 

as the conditions for the existence of equilibrium points are provided. We then investigate the local 

stability of the three types of equilibrium points by using the linearization method. The conditions for 

the existence of a Hopf bifurcation at the positive equilibrium are also presented. To further affirm the 

theoretical results, numerical simulations for the coexistence equilibrium point are carried out. In this 

paper, a kind of fractional-order predator-prey (FOPP) model with a constant prey refuge and feedback 

control is considered by Li et al.,[44]. By analyzing characteristic equations, detailed discussion with 

respect to stability of equilibrium points of the considered FOPP model is carried out. Besides, the 

effects of prey refuge and feedback control are also studied by numerical analysis. The present study 

reveals that prey refuge and feedback control can be used to adjust the biomass of prey species and 

predator species such that prey species and predator species finally reach a better state level. Liang et 

al.,[45] gave a representation of a solution to the Cauchy problem for a fractional linear system with pure 

delay. The fractional delayed matrices cosine and sine of a polynomial of degree are determined and 

some properties are established. Then, the variation of constants method is used to obtain the solution 

and our results extend those for second order linear system with pure delay. As an application, the 

representation of a solution is used to obtain a finite time stability result. Alidousti and Ghahfarokhi [46] 

considered a fractional delayed predator-prey model with Holling type II functional response which 
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incorporates prey refuge and diffusion. The conditions of the Hopf bifurcation existence are obtained by 

analyzing the associated characteristic equation. The influence of fractional order and time delay to 

control the system is considered. By applying analytic and numerical method, in order to locate all 

unstable poles and determine the locus crosses the imaginary axis, the conditions under which the 

positive equilibrium becomes asymptotically stable are derived. Furthermore, the impulsive 

perturbation of the fractional system is introduced and dynamics of this system is revealed using a 

numerical scheme. Numerical simulation of the fractional system indicates that the system experiences 

the process of cycles, period-doubling bifurcation, period-halving bifurcation. Finally, it concludes that 

the fractional system exhibits periodic solution with shorter period comparing to that of the classical 

case and the stability domain can be extended under the fractional order. A fractional order prey-

predator model with stage structure incorporating a prey refuge is established and analyzed by 

Moustafa et al.,[47]. The predation is modelled using a Hollings type II functional response. The 

existence, uniqueness, non-negativity and boundedness of the solutions of the model is established. In 

addition to investigating the stability of the equilibrium points, conditions for the stability and Hopf 

bifurcation are obtained. The impact of fractional order, prey refuge and conversion coefficient on the 

stability of the fractional-order system are theoretically and numerically investigated. Suryanto et al.,[48] 

considered a model of predator-prey interaction at fractional-order where the predation obeys the ratio-

dependent functional response and the prey is linearly harvested. For the proposed model, the existence, 

uniqueness, non-negativity and boundedness of the solutions are shown. Conditions for the existence of 

all possible equilibrium points and their stability criteria, both locally and globally, are also investigated. 

The local stability conditions are derived using the Matignon’s theorem, while the global stability is 

proven by formulating an appropriate Lyapunov function. The occurrence of Hopf bifurcation around 

the interior point is also shown analytically. At the end, the predictor corrector scheme is implemented 

to perform some numerical simulations. Wang et al.,[50] considered a delayed generalized fractional-

order prey-predator model with interspecific competition. The existence of the nontrivial positive 

equilibrium is discussed, and some sufficient conditions for global asymptotic stability of the 

equilibrium are developed. Meanwhile, the existence of Hopf bifurcation is discussed by choosing time 

delay as the bifurcation parameter. A fractional-order diffused prey-predator model with prey refuges is 

considered by Xie et al.,[51]. The existence, uniqueness, non-negativity and boundedness of the solutions 

for the model are proved. Moreover, some sufficient conditions are given to ensure the existence and 

uniform asymptotic stability of the equilibrium point of the studied system by using Lyapunov method 

and graph theoretic approach. 

In this paper, a fractional order predator-prey mathematical model has been developed by Panja[52]. 

In this model, the concept of intraguild predation has been introduced. It is assumed that intermediate 

predator consumes only prey and intraguild predator consumes prey as well as intermediate predator. 

Also, intraspecific competition of prey, intermediate predator and intraguild predator has been 

considered. Uniqueness, boundedness and non-negativity of solutions of our proposed model have been 

discussed. Different possible equilibrium points are determined and the stability of our proposed model 

around these equilibrium points has been studied. It is found that fractional order system can show 

some interesting dynamics of our proposed model. Panigoro et al.,[53] focused on studying the effects of 

continuous predator threshold harvesting policy on the dynamical behavior of a fractional-order Gause-

type predator-prey system. This policy is applied to ensure that harvesting does not occur when the 

population density is less than a specified threshold. The dynamical analysis is done to study the local 

stability of equilibrium points and the existence of Hopf bifurcation. Plants send signals through 

releasing volatile organic compounds (VOCs), to attract beneficial natural carnivorous insects as 
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reinforcement against harmful herbivorous insects which are responsible for hampering the growth of 

plants. In this work, Mondal et al.,[54] explored the dynamical behavior of a volatile mediated plant-

herbivore-carnivore system with fractional order differential equations. Basic results on the existence, 

uniqueness, non-negativity and boundedness of the solutions, local and global stability of coexistence 

equilibrium points and limit cycles emerging through Hopf bifurcation are investigated. Stability 

behavior around coexistence equilibrium point changes with varying fractional order (α). Also, the 

existence of Hopf bifurcation is established by considering the fractional order α as a bifurcation 

parameter. Moreover, the attraction factor of plant volatile to carnivore and predation rate for plant-

herbivore are responsible for changing the system dynamics. The harvesting management is developed 

to protect the biological resources from over-exploitation such as harvesting and trapping. Panigoro et 

al.,[55] considered a predator-prey interaction that follows the fractional-order Rosenzweig-MacArthur 

model where the predator is harvested obeying a threshold harvesting policy (THP). The THP is 

applied to maintain the existence of the population in the prey-predator mechanism. We first consider 

the Rosenzweig-MacArthur model using the Caputo fractional-order derivative (that is, the operator 

with the power-law kernel) and perform some dynamical analysis such as the existence and uniqueness, 

non-negativity, boundedness, local stability, global stability, and the existence of Hopf bifurcation. The 

same model is reconsidered involving the Atangana-Baleanu fractional derivative with the Mittag-

Leffler kernel in the Caputo sense (ABC). The existence and uniqueness of the solution of the model 

with ABC operator are established. The dynamics of the model is explored with both fractional 

derivative operators numerically and confirm the theoretical findings. In particular, it is shown that 

models with both Caputo operator and ABC operator undergo a Hopf bifurcation that can be controlled 

by the conversion rate of consumed prey into the predator birth rate or by the order of fractional 

derivative. However, the bifurcation point of the model with the Caputo operator is different from that 

of the model with the ABC operator. Ghanbari et al.,[57] studied a dynamic system that models the 

interactions between two densities of immature and mature prey and predator populations. In the 

model, prey population is divided into two populations, including mature prey and immature prey. 

Another feature of the model is that predator depends on mature prey only and it followed by Crowley-

Martin type functional response. Moreover, the fractional operator used in this model as derivative is of 

the Atangana-Baleanu AB type. Using this kind of fractional derivative causes the results to depend on 

the fractional order of the derivative. The addition of the concept of memory to the model is another 

highlight of using this type of derivative for the biological model. This helps the model to apply all the 

essential information of the phenomenon from the beginning to the desired time in the calculations. 

Existence and uniqueness of solutions to the fractional model are also investigated in this manuscript. 

The numerical method used in the article is also one of the most efficient patterns in solving problems 

with fractional derivatives. Using this effective method makes the results very consistent with what we 

actually expect to happen. Many simulations have been carried out to investigate the effect of 

parameters in the model on its overall behavior. Numerical results show the impressive performance of 

the fractional operator on the dynamic behavior of the considered predator-prey model. This efficient 

fractional operator can also be tested in the structure of other existing biological models. This paper 

addressed by Yildz et al.,[58] deals with a new formulation of time fractional optimal control problems 

governed by Caputo-Fabrizio (CF) fractional derivative. The optimality system for this problem is 

derived, which contains the forward and backward fractional differential equations in the sense of CF. 

These equations are then expressed in terms of Volterra integrals and also solved by a new numerical 

scheme based on approximating the Volterra integrals. The linear rate of convergence for this method is 

also justified theoretically. Three illustrative examples are presented to show the performance of this 
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method. These examples also test the contribution of using CF derivative for dynamical constraints and 

we observe the efficiency of this new approach compared to the classical version of fractional operators. 

Singh et al.,[59] analyzed the dynamical behavior of fish farm model related to Atangana-Baleanu 

derivative of arbitrary order. The model is constituted with the group of non-linear differential 

equations having nutrients, fish and mussel. We have included discrete kind gestational delay of fish. 

The solution of fish farm model is determined by employing homotopy analysis transforms method 

(HATM). Existence of and uniqueness of solution are studied through Picard Lindelöf approach. The 

influence of order of new non-integer order derivative on nutrients, fish and mussel is discussed. The 

complete study reveals that the outer food supplies manage the behavior of the model. Moreover, to 

show the outcomes of the study, some numerical results are demonstrated through graphs. 

Mohammadi et al.,[60] first investigated the existence of solutions for a new fractional boundary value 

problem in the Liouville Caputo setting with mixed integro-derivative boundary conditions. To do this, 

Krakowski’s measure of noncompactness and Sadoski’s fixed point theorem are the proposed tools to 

reach this aim. In the sequel, the continuous dependence of solutions on parameters are discussed by 

means of the generalized Gronwall inequality. Moreover, an inclusion version of the given boundary 

problem is considered in which its existence are studied by means of the endpoint theory. ul Rehman et 

al.,[61] presented a paper that deals with a fractional-order mathematical epidemic model of malaria 

transmission accompanied by temporary immunity and relapse. The model is revised by using Caputo 

fractional operator for the index of memory. The utilization of temporary immunity and the possibility 

of relapse is also recommended. The theory of locally bounded and Lipschitz is employed to inspect the 

existence and uniqueness of the solution of the malaria model. It is shown that temporary immunity 

has a great effect on the dynamical transmission of host and vector populations. The stability analysis of 

these equilibrium points for fractional-order derivative α and basic reproduction number R0 is discussed. 

The model will exhibit a Hopf-type bifurcation. The two control variables are introduced in this model 

to decrease the number of populations. Mandatory conditions for the control problem are produced. 

Two types of numerical method via Laplace Adomian decomposition and Runge-Kutta of fourth order 

for simulating the proposed model with fractional-order derivative are presented. Bantaojai and 

Borisut[62] studied and investigated the following implicit Caputo fractional derivative and non-local 

fractional integral conditions of the form: 

C𝐷0+
𝑞 𝑢(𝑡) = 𝑓(𝑡 , 𝑢(𝑡)) , C𝐷0+

𝑞 𝑢(𝑡) , t 𝜖 [0 , 𝑇] 

u(0) = 𝜂 , 𝑢(𝑇) = RL𝐼0+
𝑝 𝑢(κ) , κ ϵ (𝟎 , T) 

where 1 < q ≤ 2, 0 < p ≤ 1, η ∈ R, 𝐷0+
𝑞 𝑢(𝑡) is the Caputo fractional derivative of order; q, RL𝐼0+

𝑝
 is the 

Riemann-Liouville fractional integral of order p and f: [0, T] × R × R → R is continuous function by 

using Krasnoselskii’s fixed point theorem and Boyd-Wong non-linear contraction. Also, the existence 

and uniqueness of this problem has been studied. Rahmi et al.,[63] investigates the dynamics of a 

fractional-order Leslie-Gower model with Allee effect in predator. Firstly, the existing condition and 

local stability of all possible equilibrium points are determined. The model has four equilibrium points, 

namely both prey and predator extinction point, the prey extinction point, the predator extinction point, 

and the interior point. Furthermore, it has been shown that dynamic change around the interior point 

due to the changing of the order of the fractional derivative, namely the Hopf bifurcation. At the end, 

some numerical simulations are demonstrated to illustrate the dynamics of the model. Heere, the local 

stability, the occurrence of Hopf bifurcation, and the impact of the Allee effect to the prey and predator 

densities are shown numerically. Ghosh et al.,[64] deals with a system of two fractional order differential 

equations for prey-predator interaction with intra-specific competition among predators. The fractional 
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order differential equation is considered in the sense of Caputo derivative and the derivation of the 

fractional order model is explained in terms of memory effect on population growth. Detailed 

mathematical results are provided to establish the positiveness, existence uniqueness and boundedness 

of the solutions. The conditions required for local asymptotic stability of various equilibrium points and 

global stability of coexistence equilibrium are derived along with the Hopf-bifurcation condition for 

coexistence equilibrium. The effect of memory on the system dynamics through the shift of Hopf-

bifurcation threshold is demonstrated with the help of exhaustive numerical simulations. This study 

also reveals the effect of memory-based growth on global bifurcation threshold. Panigoro et al.,[65] 

studied the dynamical behaviors of a discrete-time fractional-order Rosenzweig-MacArthur model with 

prey refuge. The piecewise constant arguments scheme is applied to obtain the discrete time model. All 

possible fixed points and their existence conditions are investigated as well as the local behaviour of 

nearby solutions in various contingencies. Numerical simulations such as the time series, phase 

portraits, and bifurcation diagrams are portrayed. Three types of bifurcations are shown numerically 

namely the forward, the period-doubling, and Neimark-Sacker bifurcations. Some phase portraits are 

depicted to justify the occurrence of those bifurcations. In this article, addressed by Barman et al.,[66], a 

predator-prey model has been evolved in the form of a system of fractional order differential equations 

incorporating two important factors, namely, fear factor and prey refuge factor. Here, the fractional 

calculus has been taken into consideration to investigate the dynamical behaviour of the solutions of the 

proposed model system as the changes in life cycle of prey species are of memory bound. Biological 

validation and well-posedness such as positivity and boundedness of solutions of the model system have 

been proved analytically. Stability analysis of all the feasible equilibrium points of the model system has 

been performed in a systematic way. Some important dynamical features of the model system (such as 

transition of stability of the system) have been demonstrated through rigorous numerical simulation. It 

is observed that our proposed model system experiences Hopf-bifurcation around the interior 

equilibrium point with respect to both the parameters f and m1, which are linked with amount of 

predator induced fear and rate of prey refuge, respectively. The system dynamics is more likely to be 

stable in the framework of fractional order derivative in comparison to integer-order derivative. The 

high amount of predator induced fear f and prey refuge rate m1 are independently capable to make the 

system dynamics to be stable in integer order model system. On the other hand, the dynamics of the 

model system shifts towards the stability from its unstable behaviour when we continuously reduce the 

order of the model system; especially under the scenario of low level of predator induced fear and prey 

refuge rate. Thus, our comprehensive mathematical findings reveal the fact that fading memory can 

play a contributory role towards stable coexistence of the predator-prey system whereas strong memory 

of the species deteriorates the stable coexistence of the model system. Yousef et al.,[67] have formulated 

a fractional-order predator-prey system with fear effect, where the death rate of the prey population is 

predator density-dependent. Generally, most of the ecological study considers the direct killing of prey 

in a predator’s presence, but they ignore the effect of predator’s presence on prey. Some experimental 

studies confirmed that fear affects the reproduction rate of the prey population, but a few studies are 

there, which conclude that fear also affects the death rate of the prey population. Thus, the main aim in 

this work is to investigate the influence of the fear effect produced by a predator on the reproduction 

rate and death rate of the prey population. At first, the existence, uniqueness, non-negativity, and 

boundedness of the considered model solutions are proved. After that, detailed analysis of different 

equilibria and their stability criteria based on some conditions are shown where the global stability of 

the interior equilibrium point has also been investigated. Besides that, the existence of Hopf bifurcation 

and the persistence of the system is derived. It has been also observed how fractional-order derivative 
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also has an impact on the proposed system. Finally, some numerical simulation is performed to validate 

the findings. Lyapunov function gives a major contribution in studying the dynamics of biological 

models. Panigoro et al.,[68], in this paper, studied the global stability of a fractional-order Gause-type 

predator-prey model with threshold harvesting policy in predator by using Lyapunov function. The 

present work is initiated by investigating the existence and uniqueness of solution, and then the non-

negativity and boundedness of solution is proved. Furthermore, it has been shown that the model has 

four equilibrium points, where the non-trivial equilibrium points are conditionally globally 

asymptotically stable. At the end, some numerical simulations are demonstrated by using the 

generalized Adam-Basforth-Moulton method to support theoretical results. Numerically it has been 

shown that the conversion efficiency rate of predation and the order of the derivative influence the 

dynamics of the model. Also, the existence of forward and Hopf bifurcation are presented numerically 

driven by conversion efficiency rate of predation and the order of the derivative respectively. Rahmi et 

al.,[69] proposed a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional 

response and double Allee effect in the growth rate of a predator population. In order to consider 

memory effect on the proposed model, we employ the Caputo fractional-order derivative. We 

investigate the dynamic behaviors of the proposed model for both strong and weak Allee effect cases. 

The existence, uniqueness, non-negativity, and boundedness of the solution are discussed. Then, the 

existing condition and local stability analysis of all possible equilibrium points are determined. 

Necessary conditions for the existence of the Hopf bifurcation driven by the order of the fractional 

derivative are also determined analytically. Furthermore, by choosing a suitable Lyapunov function, 

the sufficient conditions to ensure the global asymptotic stability for the predator extinction point for 

the strong Allee effect case as well as for the prey extinction point and the interior point for the weak 

Allee effect case are derived. Finally, numerical simulations are shown to confirm the theoretical results 

and can explore more dynamical behaviour of the system, such as the bi-stability and forward 

bifurcation. Abbas et al.,[70] presented a fractional model of interacting phytoplankton species in which 

one species produces chemical which is stimulatory in nature to the other species. We study existence, 

uniqueness, permanence, persistence and stability of the solution. A new method has been introduced 

to prove permanence and persistence, which may be applicable to several ecological models of 

fractional order. At the end we propose a discretization method and perform some numerical 

simulations to validate our analytical findings. 

4.2. Survey on eco-epidemiological models 

Nugraheni et al.,[71] discussed a fractional order eco-epidemiological model. The aim of 

considering the fractional order is to describe effect of time memory in the growth rate of the three 

populations. Analytically the dynamical behaviour of the model is investigated and then simulated 

using the Grunwald-Letnikov approximation to support our analytical results. It is found that the 

model has five equilibrium points, namely the origin, the survival of susceptible prey, the predator-free 

equilibrium, the infected prey free equilibrium and the interior equilibrium. Numerical simulations 

show that the order of fractional derivative affects the behavior of solutions. Mondal et al.,[72] 

introduced fractional order into an eco-epidemiological model, where predator consumes 

disproportionately large number of infected preys following type II response function. We prove 

different mathematical results like existence, uniqueness, non-negativity and boundedness of the 

solutions of fractional order system. We also prove the local and global stability of different equilibrium 

points of the system. A fractional-order eco-epidemiological model with disease in the prey population 

is formulated and analyzed by Moustafa et al.,[73]. Mathematical analysis and numerical simulations are 
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performed to clarify the characteristics of the proposed fractional-order model. The existence, 

uniqueness, non-negativity and boundedness of the solutions are proved. The local and global 

asymptotic stability of all equilibrium points are investigated. Finally, numerical simulations are 

conducted to illustrate the analytical results. The occurrence of Hopf bifurcations and transcritical 

bifurcations for the fractional-order eco-epidemiological model are demonstrated. It is observed that the 

fractional order has a stabilization effect and it may help to control the coexistence between susceptible 

prey, infected prey and predator populations. Kumar et al.,[74] explored the dynamical aspects of the 

arbitrary order eco-epidemiological model. The authors have employed power law kernel, exponential 

decay kernel, and generalized Mittag-Leffler kernel functions for treatment of arbitrary order eco-

epidemiological model where the considered eco-epidemiological model is a non-linear dynamical 

system with three population species. The uniqueness and existence of the solutions by adopting the 

fixed point theory. The authors have examined the possibility for finding new dynamical phase portraits 

with singular and non-singular arbitrary order operator and demonstrate the dynamical phase portraits 

at various values of arbitrary order. Mondal et al.,[75] have taken initiative to understand the dynamics 

of a three-dimensional discrete fractional-order eco-epidemiological model with Holling type II 

functional response. At first, a fractional-order predator-prey-parasite system with piecewise constant 

arguments has been discretized. Analytical conditions for the local stability of different fixed points 

have been determined. the critical value of the step-size, where the switching of stability occurs, 

decreases as the order of the fractional derivative decreases. Numerical simulation results claim that the 

discrete fractional-order system may also exhibit complex dynamics, like chaos, for higher step-size. Qi 

et al.,[76] investigates a delayed fractional eco-epidemiological model with extended feedback controller. 

The stability and Hopf bifurcation of the system in the controller-free and controller states are discussed 

with regarding the digestion delay as a parameter, respectively, and the existence conditions of periodic 

solution are given. Ghosh et al.,[77] have scrutinized a fractional-order eco-epidemiological model 

incorporating fear, treatment, and hunting cooperation effects to examine memory effect in the 

ecological system by means of Caputo-type fractional-order derivative. The present paper studies the 

behaviour of different equilibrium points with memory effect. The proposed system undergoes through 

Hopf bifurcation with respect to the memory parameter as the bi- furcation parameter. In the numerical 

results, it appears that the system is exhibiting a stable behavior from a period or chaotic nature with 

the increase in the memory effect. The system also exhibits two transcritical bifurcations with respect to 

the growth rate of the prey. At low values of prey growth, all species go to extinction, at moderate 

values of prey’s growth, only preys (susceptible and infected) can survive, and at higher values of preys 

growth, all species survive simultaneously. Moustafa et al.,[78] examines global stability criterion of a 

fractional-order eco-epidemiological model with infected predator and harvesting. Rahmi et al.,[79] 

proposes a fractional-order modified Leslie-Gower predator-prey model with ailment and the double 

Allee effect in predator population. Numerically, it has been interpreted that there exists risk of 

extinction for the predator with a strong Allee effect which is higher when the spread of ailment is 

relatively high. 

5. Conclusion 

Fractional models are a widely studied topic in biomathematics. In this study, we presented novel 

fractional derivatives to the literature that are closely connected to the predator-prey models in history. 

We have reviewed some recent works focusing on the implementation of fractional order in Caputo 

sense, Riemann-Liouville sense, Caputo-Fabrizio sense, Atangana-Baleanu sense and the likes. 

Fractional models are regarded as realistic models from which rich dynamics of systems can be studied 



Journal of  AppliedMath 2023; 1(4): 236. 

23  

and analyzed. 
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