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Abstract: The emergence of dengue fever in Kenya has been witnessed in the recent past,
leading to public health alerts and disruption of economic activities. The outbreaks have mainly
been restricted to the Northeastern and Coastal counties of the country. As such, this paper
has focused on an epidemiological model that incorporates an optimal control model of the
spread dynamics of dengue fever in Kenya. The objective of the study is to develop an optimal
control solution for the spread dynamics of dengue fever in Kenya. This study introduced three
time-dependent control variables, which were divided into long-term and short-term control
measures. The short-term control measures include prophylactics (treatment) and the use of
physical barriers (nets), while the long-term control measure is the treatment of Aedes aegypti
mosquitoes with Wolbachia bacteria. The basic reproduction number with the control variables
was determined. The set of adjoint points of the control systems was obtained together with
the optimal control set. The numerical solutions to the control problem were obtained by use
of the forward-backward sweep method and the Runge-Kutta order four method. The impact
of utilizing various strategies that employed the combination of the three control measures in
different combinations was examined. The control profile of the particular control measures
used was also investigated. It was determined that the short-term control measures had more
impact on the control of the spread dynamics of dengue fever when compared to the long-term
control measure. As such, it was determined that a strategy that incorporates both the long-term
and short-term control measures should be utilized for optimum control of dengue fever spread
dynamics in Kenya.

Keywords: adjoints; basic reproductive number; dengue fever; mathematical modelling;
numerical simulations; optimal control; Pontrayagin’s maximum principle; the Hamiltonian

1. Dengue fever in Kenya

In the recent past, dengue fever outbreaks in Kenya have become annual events
due to various factors affecting the coastal region [1]. Such multifactorial contributing
factors include increased population growth, increased urbanization, increased rapid
movement of people from place to place, and climate change that favours increased
activity of Aedes Aegyti and Aedes albopictus mosquitoes. These Aedes Aegyti and
Aedes albopictus are the principal mosquitoes responsible for the spread of dengue
fever in countries around the Indian Ocean [2].

The first reported cases of the latest outbreak of dengue fever were documented in
January 2021 in the coastal counties of Lamu and Mombasa [3]. The initial cases had
ballooned in Lamu County by April of the same year, indicating a high transmission
rate of about 51% of the targeted sample of the community [4]. Immediate interventions
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were sought from the Red Cross Society through the Medical Services and Public
Health Department of the county government of Lamu. Cases were on the rise in both
counties, necessitating public health awareness across the two counties with more focus
on Mvita sub-county, which accounted for a majority of the reported cases. However,
the reported cases are not a true reflection of the transmission dynamics due to the high
number of unreported cases and misdiagnoses that could have occurred [2]. These
dynamics are discussed extensively in [1] and formed the basis of the optimal control
problem studied in this publication.

Many studies have been conducted to examine the spread dynamics of dengue
fever in Kenya using deterministic epidemiological modeling. However, there are
few which have investigated the optimal control aspect of the managing the spread of
dengue fever in Kenya [5]. In particular, this area of study is important due to resources
scarcity experienced in the public health sector requiring high optimization of the
available resources [6]. Furthermore, the funding scarcity presents an opportunity for
exploration of less capital intensive control measures such as infection of mosquitoes
with Wolbachia bacteria. In particular, the infection of mosquitoes with wolbachia
bacteria is more Eco-friendly since it preserves the biodiversity of the mosquitoes [7,8].
As such, this study incorporated this approach of infecting mosquitoes with Wolbachia
bacteria to the mathematics deterministic model discussed in [1]. The main objective
of this study is to develop an optimal control solution of the spread dynamics of dengue
fever using both analytical and numerical methods.

2. Model description and formulation

The model is divided into two broad subpopulations of vectors (Female Aedes
egypti mosquitoes) and human beings. The female Aedes egypti mosquitoes will
be divided into sub-populations as follows: Aquatic phase mosquitoes (eggs, larva,
and pupa) (L(t)), Susceptible mosquitoes (Sv(t)), Exposed mosquitoes (Ev(t)), and
Infectious mosquitoes (Iv(t)). The exposed compartment contains all mosquitoes that
have been infected with dengue virus but are in the latent stage, where they are not
infectious yet. Once a mosquito is infected with the dengue virus, it does not recover
from it; it dies with the virus. The total population of the vectors is given by

Nv = L(t) + Sv(t) + Ev(t) + Iv(t)

The human subpopulation comprises the following compartments: the susceptible
humans (Sh(t)), the exposed humans (Eh(t)), the infectious humans (Ih(t)), and the
recovered (Rh(t)). The exposed humans are individuals already infected with dengue
fever but in the latent stage before they become infectious. The recovered humans
(Rh(t)) obtain temporary immunity from the serotype they have recovered from and a
temporary immunity from the other three serotypes. The total population of the human
beings is given by

Nh = S(t)h + Eh(t) + Ih(t) +Rh(t)
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2.1. Model formulation
The model subpopulations and their corresponding homogenous compartments

are illustrated by the schematic representation in Figure 1 below:

Sh Eh Ih Rh
αhEh (u1 + τh)Eh

ωhRh

Λh

µEh µIh

σIh

µRhµSh

(1− u2)ββhSh

L Sv Ev Iv
(1− u3)κL

(1− u2)ββvSv

τvEv

Λv

µvSv µvEv µvIvµvL

Figure 1. Dengue fever transmission dynamics model encompassing control
parameters.

The pace of advancement from one compartment to another is quantified by the
model parameters, which represent the illness development dynamics. The recruitment
rate of the human subpopulation is denoted by Λh and it encompasses the natural
birth rate as the dominating contributor. The recovery rate of human beings from
one serotype is represented by τh, while the rate at which human temporary immunity
wanes is represented by ωh. The rate of infection of susceptible humans is represented
by βh, while the rate of human beings moving from the intrinsic incubation phase
to the infectious phase is represented by αh, while the natural death rate of human
beings is represented by µh. Lastly, σh represents the disease-induced death. On the
vector subpopulation, τv represents the rate at which vectors leave the extrinsic latent
stage to become infectious. The egg-laying rate of Aedes aegypti, which dominates the
recruitment rate of vector, is represented by Λv, while the survival rate of mosquitoes
during the transition from pre-larvae to adults is represented by κ. βv represents the
infection rate of susceptible mosquitoes while the natural death rate of Aedes aegypti
mosquitoes is represented by µv. A summary of the parameters that were considered
for the study is presented in Table 1 below.
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Table 1. A summary of parameters, their values and sources.

Parameter Description Value (per day) Source

Λh Human Recruitment rate. 1538 [9]
τh Human recovery rate. 0.154 [10]
ωh Immunity waning rate of humans. 0.1 Estimated
βh Infection rate of the susceptible Humans 4.8× 10−8 [11]
αh Rate of humans moving from latent stage to infectious stage. 0.12 [10]
σh Dengue fever mortality rate 0.01969 [9]
µh Natural death rate of humans. 0.0138214021 Calculated
τv Rate of mosquitoes moving from latent stage to infectious stage 0.1
Λv Egg-laying rates of Aedes aegypti mosquitoes. 2938 [9]
κ Survival rates of mosquitoes at the pre-development stage. 0.19 [10]
βv Infection rate of susceptible mosquitoes. 1× 10−5 [11]
µv Natural death rate of Aedes aegypti mosquitoes. 0.0323 [10]

2.2. Model equations
The main objective of implementing optimal strategies in epidemiological models

is to identify possible disease elimination strategies from the society. To achieve
optimal control, we considered an elaborated dengue model with control variables. We
proposed two Short-term control variables that included prophylactics (treatment) (u1)
and physical barriers (nets) (u2) and one long-term control variable, treatment of Aedes
aegypti mosquito eggs with Wolbachia bacteria (u3). As a consequence, our system of
non-linear differential equations changed to account for the introduced control variables.
The system of differential equations is as follows:

dSh

dt
= Λh − ((1− u2)β βh + µh)Sh + ωhRh

dEh

dt
= (1− u2)β βh Sh − (αh + µh)Eh

dIh
dt

= αhEh − ((u1 + τh) + µh + σh) Ih

dRh

dt
= (u1 + τh) Ih − (ωh + µh)Rh

dL

dt
= Λv − ((1− u3)κ+ µv)L

dSv

dt
= (1− u3)κL− ((1− u2)β βv + µv)Sv

dEv

dt
= (1− u2)β βv Sv − (τv + µv)Ev

dIv
dt

= τv Ev − µv Iv

(1)

with initial conditions

Sh(0) ⩾ 0, Eh(0) ⩾ 0, Ih(0) ⩾ 0, Rh(0) ⩾ 0Sv(0) ⩾ 0, Ev(0) ⩾ 0, Iv(0) ⩾ 0, Rv(0) ⩾ 0 (2)
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2.3. The basic reproduction number
The basic reproduction number of the system of differential Equation (1) was

determined using the next generation matrix and established to be

R1 =
(αh Λh µv βh (τv + µv)µv (κ+ µv) + β2 κΛv τv (αh + µh) (ua + τh + µh + σh)µh) (1− ub)

µv (κ+ µv)µh µv (τv + µv) (αh + µh) (ua + τh + µh + σh)
(3)

2.4. Sensitivity analysis
Sensitivity analysis is conducted to determine the prominence of parameters

contributing to the basic reproductive number (R1), which consequently makes them
the most significant drivers of the disease in the spread dynamics [12, 13]. In this
study we considered the normalised forward-sensitivity index of the basic reproductive
number R1 with respect to a parameter x defined in Equation (4) [14].

SR0
x =

x

R0
· ∂R0

∂x
(4)

The numerical results of the local sensitivity indices calculated based on the basic
reproductive number R1 in Equation (3) using data in Table 1 are summarised in the
form of histograms, as shown in Figure 2 below.

Figure 2. Sensitivity indices of parameters constituting the basic reproductive number.

As such, it was illustrated that the most sensitive parameters are βv, which is the
infection rate of susceptible mosquitoes, κ, which is the survival rate of mosquitoes
at the pre-development stage, µv, which is the natural death rate of Aedes Aegypti
mosquitoes, τh, which is the Rate of mosquitoes moving from latent stage to infectious
stage, and Λv which is the egg-laying rate of Aedes aegypti. These parameters
are the best targets for optimal control measures. However, this study focused on
control measures that target the infection rate of susceptible mosquitoes, that is through
physical barriers such as nets, and controlling the number of mosquitoes susceptible to
dengue fever coming from the latent stage through infection with Wolbachia bacteria.
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The optimal control measures are discussed in detail in Section 3 below.

3. Optimal control

The objective of this study is to minimize the number of dengue-infected vectors
and hosts while managing the cost of implementing the controls u1, u2, and u3 at their
lowest possible levels. This objective can be summarized by the following objective
functional

J(u1, u2, u3) =

∫ tf

0

(
A1Ih +A2Eh +A3Ev +A4Iv +B1u

2
1 +B2u

2
2 +B3u

2
3

)
dt (5)

Where the terms B1u
2
1, B2u

2
2, and B3u

2
3 describe the cost incurred in administration

of prophylactics, distribution of nets, and administration of Wolbachia bacteria,
respectively.

The main aim will be to find the optimal control solution u∗1, u∗2, and u∗3 such that
[9,15]

J (u∗1, u
∗
2, u

∗
3) = min

u1,u2,u3

{J (u1, u2, u3) : u1, u2, u3 ∈ U} (6)

Where the control set of the optimal control problem is given by

U = {u1(t), u2(t), u3(t) : 0 ≤ u1(t) ≤ 0.5, 0 ≤ u2(t) ≤ 1, 0 ≤ u3(t) ≤ 1, 0 ≤ t ≤ tf , }.

3.1. The Pontryagin’s maximum principle
In order to establish the necessary condition for an optimal control problem, the

Pontryagin’s maximum principle was utilized [11, 16]. The principle converts the
system of differential Equations (1)–(6) to a minimising point-wise problem with the
HamiltonianHwith respect to u1, u2, and u3. The HamiltonianH of the minimization
problem is given by

H (Sh, Eh, Ih, Rh, L, Sv, Ev, Iv, t) = A1Ih +A2Eh +A3Ev +A4Iv +B1u
2
1 +B2u

2
2 +B3u

2
3

+λ1
dSh

dt
+ λ2

dEh

dt
+ λ3

dIh
dt

+ λ4
dRh

dt
+ λ5

dL

dt
+ λ6

dSv

dt
+ λ7

dEv

dt
+ λ8

dIv
dt

which can be further expanded using Equation 1 to obtain

H (Sh, Eh, Ih, Rh, L, Sv, Ev, Iv, t) = A1Ih +A2Eh +A3Ev +A4Iv +B1u
2
1 +B2u

2
2 +B3u

2
3

+λ1 {Λh − ((1− u2)β βh + µh)Sh + ωhRh}+ λ2 {(1− u2)β βh Sh − (αh + µh)Eh}

+λ3 {αhEh − ((u1 + τh) + µh + σh) Ih}+ λ4 {(u1 + τh) Ih − (ωh + µh)Rh}

+λ5 {Λv − ((1− u3)κ+ µv)L}+ λ6 {(1− u3)κL− ((1− u2)β βv + µv)Sv}

+λ7 {(1− u2)β βv Sv − (τv + µv)Ev}+ λ8 {τv Ev − µv Iv}

in which the adjoint variables were given by λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8. The
optimality condition requires that

dλi

dt
= − ∂H

∂x(t)
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Where x(t) = (Sh, Eh, Ih, Rh, L, Sv, Ev, Iv, t). As such, the partial differentiation
of the Hamiltonian, H (Sh, Eh, Ih, Rh, L, Sv, Ev, Iv, t), with respect to x(t) =

(Sh, Eh, Ih, Rh, L, Sv, Ev, Iv, t) was obtained as shown below as follows:

dλ1

dt
= − ∂H

∂Sh
= −β (λ1 − λ2) (−1 + u2)βh + µhλ1 (7)

dλ2

dt
= − ∂H

∂Eh
= λ2 (αh + µh)− λ3αh −A2 (8)

dλ3

dt
= −∂H

∂Ih
= (u1 + τh + µh + σh)λ3 − λ4 (u1 + τh)−A1 (9)

dλ4

dt
= − ∂H

∂Rh
= (ωh + µh)λ4 − λ1ωh (10)

dλ5

dt
= −∂H

∂L
= − (λ5 − λ6) (−1 + u3)κ+ λ5µv (11)

dλ6

dt
= − ∂H

∂Sv
= −λ6 (β (u2 − 1)βv − µv) (12)

dλ7

dt
= − ∂H

∂Ev
= (τv + µv)λ7 − λ8τv −A3 (13)

dλ8

dt
= −∂H

∂Iv
= λ8µv −A4 (14)

The transversality condition for the above adjoint equations
λ1, λ2, λ3, λ4, λ5, λ6, λ7, and λ8 was determined to be

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0, λ4(T ) = 0, λ5(T ) = 0, λ6(T ) = 0, λ7(T ) = 0, and λ8(T ) = 0

which guarantees the existence of an optimal control triple u∗1, u∗2, and u∗3 that justifies
the functional J (u∗1, u

∗
2, u

∗
3) = minu1,u2,u3 {J (u1, u2, u3) : u1, u2, u3 ∈ U} in the

control set U subject to the system of control differential Equation (1) and the
initial conditions Equation (2). Characterising the optimal control was obtained by
determining the solution to

∂H
∂ui

∣∣∣∣
ui=u∗

i

= 0

Where i = 1, 2, 3 and u∗ denotes the optimal control.
As such,

u∗1 = Ih(λ3−λ4)
2B1

u∗2 =
β (S∗∗

h (λ2 − λ1)βh − λ6S
∗∗
v βv + λ7S

∗∗
v βv)

2B2

u∗3 = −L∗∗(λ5−λ6)κ
2B3

Theorem 1. Let’s consider the state solution variables S∗∗
h , E∗∗

h , I∗∗h , R∗∗
h , L∗∗, S∗∗

v ,

E∗∗
v , and I∗∗v whose optimal control set is given by U∗ = (u∗1, u

∗
2, u

∗
3), which are the

control functions of the optimal control problem Equation (1). The adjoint variables
are given by λ1, λ2, λ3, λ4, λ5, λ6, λ7, and λ8 which are the solutions of Equations
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(7)–(14) respectively. The optimal control set (u∗1, u∗2, u∗3) was given by

u∗1 = max
{
0, min

(
0.5,

I∗∗h (λ3 − λ4)

2B1

)}
u∗2 = max

{
0, min

(
1,

β (S∗∗
h (λ2 − λ1)βh − λ6S

∗∗
v βv + λ7S

∗∗
v βv)

2B2

)}
u∗3 = max

{
0, min

(
1,

L∗∗ (λ5 + λ6)κ

2B3

)}
Proof. The convexity of the integral of the functional J (u∗1, u

∗
2, u

∗
3) guarantees the

existence of the optimal control of the 1 over the closed and convex control set
U∗ = (u∗1, u

∗
2, u

∗
3). The Lipschitz property of the state system is satisfied by the

system Equation (1) due to the priori boundedness of the state solutions [16]. Where
the boundedness is described by

u∗1 = ũ1 =
I∗∗h (λ3 − λ4)

2B1

u∗2 = ũ2 =
β (S∗∗

h (λ2 − λ1)βh − λ6S
∗∗
v βv + λ7S

∗∗
v βv)

2B2

u∗3 = ũ3 =
L∗∗ (λ5 + λ6)κ

2B3

which, by standard control argument, can be concluded to be as follows

u∗1 =


0, if ũ1 ≤ 0

ũ1, if 0 ≤ ũ1 ≤ 0.5

1, if ũ1 ≥ 0.5

u∗2 =


0, if ũ2 ≤ 0

ũ2, if 0 ≤ ũ2 ≤ 1

1, if ũ2 ≥ 1

u∗3 =


0, if ũ3 ≤ 0

ũ3, if 0 ≤ ũ3 ≤ 1

1, if ũ3 ≥ 1

For sufficiently small-time intervals of simulations, convectional techniques can
be used to the uniqueness of the optimal control system solution. In particular, this
approach was utilised for this work because the right side of both the adjoint and the
state variables are Lipschitz continuous. Furthermore, since the optimal control system
is bounded, the adjoint system contains linear bounded coefficients; thus, the system of
adjoints has upper bounds. The imposition of conditions that guarantee small time in
the time interval, guarantees the uniqueness of the optimal control of the system [17].
The application of the small-time condition is because of the reverse time orientation
of the optimal system, with the state problem having the initial values while the adjoint
problem has the final times [18]. □

4. Numerical results

In this section, we present the graphical solution of the optimal control problem
Equation (1) in comparison with the system of differential equations without the control
parameters. The methods also employed the parameters detailed in Table 1 above and
the following initial conditions.

The initial conditions are taken from the seventieth day of the simulation without
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control measures. That is,

Sh(0) = 100000, Eh(0) = 444, Ih(0) = 313, Rh(0) = 20,

L(0) = 13186, Sv(0) = 37577, Ev(0) = 6900, Iv(0) = 24371.

In order to minimise the spread of dengue fever, the exposed populations and
infectious populations of both human beings and mosquitoes needed to be minimised.
The relative importance coefficients A1 = A2 = A3 = A4 = 2 of each of the four
compartments to be minimised was assumed to be equal. The unit cost of treating
dengue fever in Kenya was taken to be B1 = 2990 [19], and the cost of nets as the
primary physical barrier was taken to beB2 = 786, which is the average cost of nets that
cost between $5 and $7 [20], and the unit cost of infecting mosquitoes with Wolbachia
bacteria was assumed to be B3 = 4494 [21].

Based on the above numerical simulations, various economic strategies for optimal
control were explored. These strategies included:
• Strategy 1: The combined utilization of physical barriers (bed nets ) and treatment

of pre-adult mosquitoes with Wolbachia bacteria, i.e., u1 = 0, u2 ̸= 0, u3 ̸= 0.
• Strategy 2: The combined utilization of prophylactics and treatment of pre -adult

mosquitoes with Wolbachia bacteria, i.e., u1 ̸= 0, u2 = 0, u3 ̸= 0.
• Strategy 3: The combined utilization of prophylactics and Physical barriers

(Nets), i.e., u1 ̸= 0, u2 ̸= 0, u3 = 0.
• Strategy 4 : The combined utilization of prophylactics, physical barriers, and

treatment of pre -adult mosquitoes with Wolbachia bacteria, i.e., u1 ̸= 0, u2 ̸=
0, u3 ̸= 0.
These strategies were further investigated as discussed below .

4.1. The combined utilization of physical barriers (bed nets) and treatment
of pre -adult mosquitoes with Wolbachia bacteria, i.e., u1 = 0, u2 ̸=
0, u3 ̸= 0

In this strategy, the susceptible human population increases slightly due to the
decrease in the infection rate occasioned by the treatment of the pre-adult mosquitoes
by Wolbachia bacteria, as illustrated in Figure 3a. The exposed human population
decreases to near zero in the first 50 days of the implementation of the strategy, as
illustrated in Figure 3b. The significant drop can be attributed to the compounding
effect of the two control measures. Figure 3c illustrates the impact of the compounded
effect of the two control measures that led to a significant drop in the infectious human
population. Specifically, the infectious population reduced to near zero values in the
first 80 days of the simulationwith the strategy. As a consequence, the recovered human
population under the strategy remained significantly lower when compared to when
there are no control interventions, as illustrated in Figure 3d.

9
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(a) Susceptible human population (b) Exposed human population

(c) Infectious human population (d) Recovered human population

Figure 3. Comparative graphs of dengue spread dynamics in the human population
under strategy 1 optimal control.

The mosquito population dynamics are also affected by the impact of the
compound effect of the two control measures. The aquaticmosquito population remains
fairly the same since the control measures do not include killing of mosquitoes, thus
maintaining biodiversity as illustrated in Figure 4a. Specifically, this is a sustainable
way to manage the spread of dengue fever. In Figure 4b, the susceptible mosquito
population remained high because of the reduced susceptibility to dengue fever. This
graph further emphasizes the impact of the control measures in ensuring the susceptible
mosquitoes remain harmless by eradicating dengue virus instead of eradicating the
mosquitoes. The exposed mosquito population reduced drastically to near zero in the
first 50 days of implementing the control measures under this strategy, as illustrated
in Figure 4c. The sustained low population of the exposed mosquito population
is attributed to the compounding effect of the two control measures. By extension,
the infectious mosquito population in Figure 4d has the same trend due to the same
compounding effect of the strategy.

This strategy utilizes physical barriers in the form of nets (u2) and treatment of
the aquatic mosquito population with Wolbachia bacteria (u3). The use nets should
be sustained at 100% for 135 days of the simulation, then dropped sharply to zero in
the remaining 5 days of the simulation, as illustrated in Figure 5a. At the same time,

10
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treatment with Wolbachia bacteria should continue at varying degrees on all the days
of the simulation, as illustrated in Figure 5b.

(a) Aquatic mosquito population (b) Susceptible mosquito population

(c) Exposed mosquito population (d) Infectious mosquito population

Figure 4. Comparative graphs of dengue spread dynamics in the vector population
under strategy 1 optimal control.

(a) Physical barriers (u2) (b)TreatmentwithWolbachia bacteria (u3)

Figure 5. Control profiles of the control measures values applied in strategy 1.
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4.2. The combined utilization of prophylactics and treatment of pre-adult
mosquitoes with Wolbachia bacteria, i.e., u1 ̸= 0, u2 = 0, u3 ̸= 0

In this strategy, the susceptible human population is slightly increased when
compared to the dynamics without control measures, while the exposed population
remain unchanged since both control measures do not target these compartment. From
Figure 6a the infectious population is significantly lower after the implementation of
the control measures when compared to the spread dynamics without control measures.

(a) Infectious human population (b) Recovered human population

Figure 6. Comparative graphs of dengue spread dynamics in the human population
under strategy 2 optimal control.

The vector population dynamics are not affected by the utilization of this strategy
since the utilization of prophylactics overshadows the infection of the pre-adult
population with Wolbachia bacteria. As a consequence, the spread dynamics are more
controlled by treating the infected human beings than focusing on containing the vector
population. The vector populations remain the same before and after control measures.

This strategy entails the utilization of Prophylactics (u1) and treatment of pre-adult
mosquitoes with Wolbachia bacteria (u3), which is a combination of a short-term
control measure and a long-term control measure. Their application dynamics are
illustrated in the Figure 7a,b, respectively. Prophylactics dominated this strategy
since it is best suited for effective short-term management of diseases, leading to no
contribution of treatment of pre-adult mosquitoes with Wolbachia bacteria.

12
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(a) Prophylactics (u1) (b)TreatmentwithWolbachia bacteria (u3)

Figure 7. Control profiles of the control measures values applied in strategy 2.

4.3. The combined utilization of prophylactics and physical barriers (Nets),
i.e., u1 ̸= 0, u2 ̸= 0, u3 = 0

This strategy has a small impact on the susceptible population. The exposed
human population is reduced to near zero values in the first 30 days of implementing
the control strategy, as illustrated in Figure 8a. The infectious human population is
reduced to very low manageable levels within the first 30 days of implementing the
control strategies as illustrated by Figure 8b.

(a) Exposed human population (b) Infectious human population

Figure 8. Comparative graphs of dengue spread dynamics in the human population
under strategy 3 optimal control.

The vector population dynamics are impacted differently. The aquatic mosquito
population is not affected by these two strategies, as shown by Figure 9a. The
susceptible mosquitoes increase much more after the implementation of the control
strategy when compared to before the implementation. These spread dynamics are
illustrated in Figure 9b. In Figure 9c, the exposed vector population reduces to near
zero level in the first 30 days of application of the control strategy. As a consequence,
the infectious vector population also follows a similar trend but over a long period of
time, as illustrated in Figure 9d. The population of the infectious mosquito population
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drops progressively to near zero levels in the 140 days of application of the control
strategy, while the population of the infectious population increases in the absence of
a control strategy. These dynamics are attributed to the compounding effect of the two
control measures in this strategy.

(a) Aquatic mosquito population (b) Susceptible mosquito population

(c) Exposed mosquito population (d) Infectious mosquito population

Figure 9. Comparative graphs of dengue spread dynamics in the vector population
under strategy 3 optimal control.

This strategy entailed the application of prophylactics (u1) and physical barriers
(u2) in the control of dengue fever spread dynamics. The use of nets was utilized
for the first 135 days out of the 140 days of the simulation, as illustrated in Figure
10a, and reduced progressively to zero in the last 5 days of the simulation. The
prophylactics were applied following a decay graph, as indicated by Figure 10b . The
decay graph is a result of the compounding impact of the two-control measure, which
complement each other. The use of physical barriers prevents new infections, while the
progressive application of prophylactics treats existing infectious individuals, leading
to the progressive eradication of the disease.
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(a) Prophylactics (u1) (b) Physical barriers (u2)

Figure 10. Control profiles of the control measures values applied in strategy 3.

4.4. The combined utilization of prophylactics, physical barriers, and
treatment of pre -adult mosquitoes withWolbachia bacteria, i.e.,u1 ̸=
0, u2 ̸= 0, u3 ̸= 0

This strategy consists of a combination of all the control measures investigated in
this study. The exposed human population drops drastically to near zero levels in the
first 30 days of implementing this strategy, as shown in Figure 11a. As a result, the
trend of the infectious human population is illustrated in Figure 11b. From the graph,
the infectious population drops to near zero levels after the 30th day of applying the
strategy.

(a) Exposed human population (b) Infectious human population

Figure 11. Comparative graphs of dengue spread dynamics in the human population
under strategy 4 optimal control.

The aquatic mosquito population dynamics remain the same before and after the
control measure strategies, as shown in Figure 12a, since the control measures do not
target to reduce this population. This strategy was designed to preserve biodiversity
by avoiding control measures that target killing of mosquitoes. The compounding
impact of the three control measures leads to the susceptible mosquito population
remaining very high after the application of the control strategy when compared to
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before the application of the control strategy, as shown in Figure 12b. The exposed
mosquito population drops drastically to near zero levels after the first 50 days of the
implementation of the control strategy, as illustrated in Figure 12c. As a consequence,
the infectious vector population reduces progressively in the 140 days of the application
of the strategy as illustrated in Figure 12d.

(a) Aquatic mosquito population (b) Susceptible mosquito population

(c) Exposed mosquito population (d) Infectious mosquito population

Figure 12. Comparative graphs of dengue spread dynamics in the vector population
under strategy 4 optimal control.

This strategy involved the combination of all the control parameters of the study,
that is, the two short-term control measures: Prophylactics (u1) and the use of physical
barriers such as nets (u2), and the long-term control measure, which is treatment of
pre-adult mosquitoes with Wolbachia bacteria (u3). The control profiles of the control
measures values are illustrated in Figure 13a–c above. These control profiles highlight
the complementary application of the control measure to achieve a compounding effect
on the control of dengue fever. The impact of the long-term control measure is very
low since it takes a lot of time before the effectiveness of the control measures can be
able to match the impact of the short-term control measures.
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(a) Prophylactics (u1) (b) Physical barriers (u2)

(c) Treatment with Wolbachia bacteria (u3)

Figure 13. Control profiles of the control measures values applied in strategy 4.

5. Conclusions and recommendations

5.1. Conclusions
In conclusion, a modified deterministic model that incorporate the control

parameters, that is, Prophylactics (u1), the use of physical barriers such as nets (u2),
and treatment of pre-adult mosquitoes with Wolbachia bacteria (u3) was developed.
The arising non-linear differential equations were formulated and used to determine
the basic reproduction number. The objective functional was developed by utilizing
the control parameters. The necessary conditions for establishing the optimal
control solutions were determined using the Pontryagin’s maximum principle. The
Hamiltonian of the minimizing problem was determined together with adjoints. A
numerical analysis of the optimal control problem was done based on various strategies
that combined the control measures. The output of the strategies was compared with
output without the control measures. A comparative analysis of these graphs was done.
It was determined that different combination of different control measures had different
impacts on the various sub-populations in the compartments.
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5.2. Limitations
This study was able to establish some key findings discussed in Section 5.1

above. However, there were some limitations associated with the study that would
refine the study. Some of the limitations include lack of sufficient data on the spread
dynamics in Kenya due to limited resources for health data management systems.
The implementation of long-term strategies such as the infection of Aedes aegypti
mosquitoes with wolbachia bacteria lack effective monitoring strategies thus its data
is limited in scope. As such, if these limitations are addressed this study can be refined
further to give more insights to the spread dynamics.

5.3. Recommendations
The study recommends that a cost-effective analysis of the strategies be conducted

to determine the most cost-effective strategy for combating the spread of dengue
fever in Kenya. The cost-effective analysis should also discuss economic feasibility
of the strategies on a resource scarce state like Kenya. It also recommends further
research on the impact of both short-term and long-term control measures on the overall
management of dengue fever. Furthermore, more analytical studies can be conducted
on the spread dynamics of dengue fever by carrying efficacy studies in scenarios where
these strategies will be conducted. In addition, the study recommends more widespread
experiments on the infection of mosquitoes with wolbachia bacteria to establish the cost
of implementation in various geographical locations. This would establish the true cost
of implementation thus refining optimal control methods by defining the true value of
the cost. Lastly, the study recommends allocation of more resource by both government
and non-government entities in the collection of data on the impact of the proposed
strategies of controlling the spread of dengue fever in Kenya to enhance improved
public health outcomes.
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