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ABSTRACT: A Halin graph is a graph constructed by embedding a tree
with no vertex of degree two in the plane and then adding a cycle to
join the tree’s leaves. The Halin Turán number of a graph F , denoted as
exH(n, F ), is the maximum number of edges in an n-vertex Halin graph.
In this paper, we give the exact value of exH(n,C4), where C4 is a cycle
of length 4. We also pose a conjecture for the Halin Turán number of
longer cycles.
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1. Introduction
Let F be a fixed graph. A graph G is called F -free if it contains no isomorphic copy of F as a subgraph.

For the graph F and a positive integer n, the Turán number of F , denoted by ex(n, F ), is the maximum number
of edges in an n-vertex F -free graph, i.e.,

ex(n, F ) = max{e(G) : G is an n-vertex F -free graph}.

One of the classical results in extremal graph theory is the Turán’s Theorem [1], which gives the exact value
ex(n,Kr), whereKr is an r-vertex complete graph. This result is the generalization of the Mantel’s Theorem [2]

for the case ofK3. A major breakthrough in the study of Turán number of graphs came in 1966, with the proof
of the famous theorem by Erdős, Stone and Simonovits [3, 4]. They determined an asymptotic value of the Turán
number of any fixed non-bipartite graph F . In particular, they proved ex(n, F ) =

(
1− 1

χ(F )−1

) (
n
2

)
+ o(n2),

where χ(F ) is the chromatic number of F . Since these results, researchers have been interested in working
on the Turán number of class of bipartite (degenerate) graphs and extremal problems in a particular family of
graphs. In 2016, Dowden [5] initiated the study of Turán-type problems in the family of planar graphs.

Definition 1. Let F be a fixed graph and n be a positive integer. The planar Turán number of F , denoted by
exP(n, F ), is the maximum number of edges an n-vertex F -free planar graph contains, i.e.,

exP(n, F ) = max{e(G) : G is an n-vertex F -free planar graph}.

Dowden [5] determined sharp upper bounds of exP(n,C4) and exP(n,C5), where Ck is a cycle of length
k.

Theorem 1. [5] (1) For n ≥ 4,

exP(n,C4) ≤
15(n− 2)

7
.
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(2) For n ≥ 11,
exP(n,C5) ≤

12n− 33

5
.

Extending the Dowden’s result, Lan, Shi and Song [6] obtained an upper bound for exP(n,C6), and later Ghosh,
Győri, Martin, Paulos and Xiao [7], improved the bound and gave a sharp upper bound with some interesting
constructions realizing their bound. However exP(n,Ck) is still open for general k. We refer [8–11] for a quick
survey and conjectures on planar Turán numbers of graphs.

Theorem 1. [7] For all n ≥ 18,

exP(n,C6) ≤
5

2
n− 7.

Recently, Fang and Zhai [12] initiated the study of Turán numbers in the family of outerplanar numbers. For
a positive integer n and fixed graph F , the outerplanar Turán number of F , denoted by exOP(n, F ), is the
maximum number of edges in an n-vertex outerplanar graph containing no isomorphic copy of F as a subgraph.
They completely determined the outerplanar Turán numbers of cycles and paths.

In this paper, we initiate the study of Turán number of cycles in the family of Halin graphs. A Halin graph
H is constructed as follows: Start with a tree T in which each non-leaf has degree at least 3, i.e., every non-leaf
of T is with degree at least 3. Embed the tree in the plane in a planar fashion and then add new edges to form a
cycle C containing all the leaves of T in such a way that the resulting graphH is planar. We writeH = T ∪C,
and we call T and C respectively as characteristic tree and outer cycle of the Halin graph H .

Halin graphs were studied by Halin [13]. A Halin graph has at least four vertices. The wheel graph,Wn, is
an example of Halin graph with the characteristic tree being a star on n leaves. Halin graphs are, edge-minimal
and 3-connected [14]. Every edge of a Halin graph is part of some Hamiltonian cycle [15].

Definition 2. Let n be a positive integer and F be a fixed graph. The Halin Turán number of F , denoted by
exH(n, F ), is the maximum number of edges in an n-vertex F -free Halin graph, i.e.,

exH(n, F ) = max{e(H) : H is an n-vertex F -free Halin graph}.

Bondy and Lovasz [16] have shown that Halin graphs are almost pancyclic. More precisely, they showed
that if a Halin graph H on n vertices does not have any vertex of degree three in its characteristic tree, then it
has all cycles of length ℓ, where, 3 ≤ ℓ ≤ n. If the characteristic tree contains a vertex of degree three, then
cycles of all lengths will still be there with a possible exception of an even-length cycle. In a different study, He
and Liu explored the maximum count of short paths in a Halin graph, as discussed in [17].

The almost pancyclic property of Halin graphs makes them interesting from a theoretical perspective, as it
implies that these graphs are highly connected and can be used to model a wide variety of complex systems and
phenomena. As a result, much research in this area focuses on developing efficient algorithms and techniques
for analyzing the structure and properties of Halin graphs.

Concerning cycles, it is still interesting to study and distinguish the extremal graph structures and the Halin
Turán number of cycles of even length. In this paper, we determine the exact value of the Halin Turán number
of the 4-cycle, and later we pose our conjecture for longer cycles. The following theorem states our main result.
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Theorem 3. For n ≥ 16,

exH(n,C4) =


5
3(n− 1), 3|(n− 1),

5
3(n− 2) + 1, 3|(n− 2),

5
3(n− 3) + 3, 3|(n− 3).

The following notations and terminologies are needed. Let G be a graph. We denote the vertex and the
edge sets ofG by V (G) andE(G) respectively. The number of vertices and edges inG respectively are denoted
by v(G) and e(G). For a vertex v in G, the degree of v is denoted by dG(v). We may omit the subscript if the
underlying graph is clear. The set of all vertices in G which are adjacent to v is denoted as NG(v) or simply
N(v) when the underlying graph is clear. For the sake of simplicity, we use the terms k-cycle and k-path to
mean a cycle of length k and a path of length k respectively. We denote a k-cycle with vertices v1, v2, . . . , vk
in sequential order by (v1, v2, . . . , vk, v1). We denote a k-path with vertices v0, v2, . . . , vk in sequential
order by (v0, v1, . . . , vk). A (u, v)-path is a path with end vertices u and v. Given a k-path (v0, v1, . . . , vk),
we may describe v1 and vk−1 as semi-pendant vertices of the path. For a plane graph G, the length of a cycle
C in G is denoted by |C|. Similarly, the size of a face F in G is denoted by |F |.

LetH be a Halin graph and T be its characteristic tree. A non-leaf v ∈ V (T ) is an interior vertex if every
vertex inNT (v) is not a leaf. A non-leaf u ∈ V (T ) is a branching vertex if it has at most one non-leaf inNT (u).
A semi-branching vertex w ∈ V (T ) is a non-leaf that is neither an interior nor a branching vertex. Sometimes
we may call a leaf in T a pendant vertex.

2. Proof of Theorem 3
The following lemmas and observations are important to complete the proof of the theorem.

Lemma 1. Let H be a C4-free Halin graph and T be its characteristic tree. For a longest path L in T , each
semi-pendant vertex of L is a branching vertex and is adjacent to only two leaves.

Proof. Let L = (v0, v1, v2, . . . , vk). Since L is a longest path, vk−1 can not be adjacent to a non-leaf vertex
except vk−2. Moreover, from the definition of a Halin graph, dT (vk−1) ≥ 3. ThusNT (vk−1)\{vk−2} contains
leaves. If NT (vk−1)\{vk−2} contains three leaves, say u1, u2, and u3 in sequential order in counterclockwise
direction, thenH contains a 4-cycle, namely (vk−1, u1, u2, u3, vk−1), and hence a contradiction.

Lemma 2. Let H = T ∪C be a Halin graph, and u1 and u2 be leaves in T such that u1u2 ∈ E(C). Let F be
the bounded face incident to u1u2. If C is a cycle in H containing u1u2 we have, |C| ≥ |F |.

Proof. Let the boundary cycle of F be (u1, u2, u3, . . . , uk, u1). DenoteR = {u3, u4, . . . , uk}. Each vertex
in R is not a leaf in T , since H is a Halin graph and the degree of each vertex is at least three. For each vertex
u ∈ R, there is a unique leaf u′ in T such that we have a (u, u′)-path with the set of interior vertices disjoint
from R. We may call u′ s as child-pendant vertices of u. Any (u1, u2)-path other than the edge u1u2 must
contain either u or some child-pendant vertex u′ for each u ∈ R. This implies |C| ≥ |F |.

Lemma 3. Let H be a Halin graph with a characteristic tree T . Let e = uv ∈ E(T ) such that both u and v

are non-leaf in T . If F1 and F2 are the two bounded faces incident to e, then for a cycle C in T containing e,
then |C| ≥ min{|F1|, |F2|}.

Proof. Since u and v are non-leaf andH is a Halin graph, then dT (u), dT (v) ≥ 3. Therefore, we have vertices
u1, u2 ∈ N(u) and v1, v2 ∈ N(v) such that (u1, u, v, v1) and (u2, u, v, v2) are paths incident to F1 and
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F2 respectively. Moreover, we have vertices u′1, v′1 and u′2, v′2, which are leaves in T such that e1 = u′1v
′
1

and e2 = u′2v
′
2 are edges incident to F1 and F2 respectively. Notice that, u′1 can be u1 and v′1 can be v1, and

similarly for u′2 and v′2 with u2 and v2. Clearly, C contains either e1 or e2, but not both. If C contains e1, then
by Lemma 2, |C| ≥ |F1|. Moreover if C contains e2, the |C| ≥ |F2|. Therefore, |C| ≥ min{|F1|, |F2|}.

Lemma 4. Let H be an n-vertex C4-free Halin graph with the characteristic tree T . If T contains a semi-
branching vertex of degree at least 4, then there is an (n− 1)-vertex C4-free Halin graphH ′ such that e(H) =

e(H ′) + 2.

Proof. Let C be the outer cycle of H . Let v ∈ V (T ), with dH(v) ≥ 4, be a semi-branching vertex and
u ∈ NT (v) be a leaf. Let the path (u1, u, u2) be the portion of C in the clockwise direction and denote F1 and
F2 as faces inH incident to the paths (v, u, u1) and (v, u, u2) respectively. It can be seen that either |F1| and
|F2| is at least 5. Indeed, sinceH is a C4-free graph, no face is of size 4. On the other hand if |F1| = |F2| = 3,
then (v, u1, u, u2, v) is in H and this contradicts the C4-free assumption of H . Now obtain the graph H ′

by deleting u and joining the vertices u1 and u2 with an edge. H ′ is a Halin graph with characteristic tree
T ′ = T − u, as dT ′(v) ≥ 3 and dT ′(w) = dT (w) for every w ∈ V (T )\{v}. Let C ′ be the characteristic tree
and the outer cycle ofH ′. H ′ is C4-free as the bounded face, say F , incident to the edge u1u2 is of size at least
5, and by Lemma 2 the boundary cycle of F is the smallest cycle containing u1u2.

Lemma 5. Let H be an n-vertex C4-free Halin graph with characteristic tree T . Let (u, v, w) be a path in T

such that v is a semi-branching vertex with dT (v) = 3. If the bounded face incident to the path is with size at
least 6, then there is an (n− 2)-vertex C4-free Halin graph H ′ such that e(H) = e(H ′) + 3.

Proof. Let v′ ∈ N(v) and F1, F2 and F3 as the faces incident to the paths (u, v, w), (u, v, v′) and (v′, v, w)
respectively. By assumption |F1| ≥ 6. SinceH isC4-free and v is a semi-branching vertex, then |F2|, |F3| ≥ 5.
Denote u′ and w′ as the leaves in T such that v′u′ is incident to F2 and v′w′ is incident to the face F3. Let H ′

be a graph obtained from H by deleting v and adding the edges uw and u′w′. It can be checked that H ′ is an
(n− 2)-vertex Halin graphs, with the two faces incident to uw with size at least 5 and at least 6, and hence by
Lemma 2 H ′ contains no 4-cycle and e(H) = e(H ′) + 3.

Lemma 6. LetH be an n-vertexC4-free Halin graph with characteristic tree T . Let e ∈ E(T ) such that its end
vertices are non-leaf in T . If the two faces incident to e are with size at least 6, then there is an (n− 1)-vertex
C4-free Halin graph, H ′, such that e(H) = e(H ′) + 1.

Proof. Denote H = T ∪ C, where C is the outer cycle of H . Let e = vu and F1 and F2 be the two bounded
faces in H incident to e. u and v by assumption are non-leaf, and hence dT (u) ≥ 3 and dT (v) ≥ 3. Let T ′ be
the graph obtained after contracting e in T . Clearly, T ′ an (n − 1)-vertex tree and a leaf in T ′ is a leaf in T .
Moreover, for each non-leaf vertex w ∈ V (T ′), dT ′(w) ≥ 3. Therefore by contracting e in H we get a Halin
graph H ′ = T ′ ∪ C.

Since |F1|, |F2| ≥ 6, then by Lemma 3, for each cycle C containing e we have |C| ≥ 6. Hence, by
contracting e, every cycle inH ′ is with no 4-cycle. Therefor,H ′ is an (n−1)-vertex C4-free Halin graph. This
completes the proof of Lemma 6.
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Lemma 7. For n ≥ 16, we have

exH(n,C4) ≥


5
3(n− 1), 3|(n− 1),

5
3(n− 2) + 1, 3|(n− 2),

5
3(n− 3) + 3, 3|(n− 3).

Proof. We give extremal constructions to verify the bounds. First, we give constructions of the characteristic
tree of the Halin graph, when n = 16, 17, and n = 18. For the sake of simplicity, we may call the trees as
base-tree and denote them by T16, T17 and T18. Denote also the corresponding Halin graphs byH16, H17 and
H18 respectively. It is easy to see the Halin graphs are C4-free (see Figure 1).

T16 T17 T18

Figure 1. Characteristic trees of Halin graphs on 16, 17, and 18 vertices.

Now let n ≥ 19. We define an n-vertex Halin graphsHn
16, H

n
17 andHn

18 based on the base-trees T16, T17

and T18 as follows. The star K1,3, which is shown in Figure 2, is an important component in describing the
constructions. For simplicity reasons, we call it star. Notice the dark-spotted vertices in both the base-trees and
the star.

For n ≡ 0 ( mod 3), the Halin graphHn
18 is obtained by having n−18

3 copies of the star and identifying any
of the dark-spotted vertices of T18 and the dark-spotted vertex of the star. Similarly, when n ≡ 1 ( mod 3) and
n ≡ 2 ( mod 3), we respectively getHn

16 andHn
17 by having n−16

3 and n−17
3 copies of the star and identifying

the dark-spotted vertices of the corresponding base-trees and the star.

It is easy to see that the Halin graphs,Hn
16, H

n
17 andHn

18 are C4-free. Moreover it is easy to calculate and
check that e(Hn

16) =
5
3(n− 1), e(Hn

17) =
5
3(n− 2) + 1 and e(Hn

18) =
5
3(n− 3) + 3. Therefore, for n ≡ 0 (

mod 3), n ≡ 1 ( mod 3) and n ≡ 2 ( mod 3), we have exH(n,C4) ≥ e(Hn
18), exH(n,C4) ≥ e(Hn

16), and
exH(n,C4) ≥ e(Hn

17) respectively.

Figure 2. StarK1,3.

Observation 1. Let H be an n-vertex C4-fee Halin graph with a characteristic tree T . Let L =

(v0, v1, v2, . . . , vk−2, vk−1, vk) be a longest path in T . From Lemma 1, both v1 and vk−1 are branching
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vertices, and each of them is adjacent to two leaves. Denote the leaf, other than v0, adjacent to v1 by v′0. De-
note also the leaf, other than vk, adjacent to vk−1 by v′k. Since each non-leaf in T is with a degree at least
3, there must be a vertex, say u, adjacent to v2 such that either both v0v1 and v2u or both v1v

′
0 and v2u are

incidents to the same bounded face in H . Without loss of generality assume the latter case holds. It can be
seen that u can not be a leaf in T . Otherwise, (v1, v2, u, v′0, v1) is a 4-cycle in H , which is a contradic-
tion. Hence u is non-leaf in the characteristic tree. Therefore, dT (u) ≥ 3. From the assumption that L is
of maximum length in T , u is adjacent to exactly two leaves, and say u1 and u2. For a similar argument,
vk−2 is adjacent to a non-leaf w, which is adjacent to two leaves w1 and w2, see Figure 3. When k ≥ 5,

vk

v′k

vk−1vk−2vk−3

w

w2w1

v0

v′0

v1 v2 v3

u

u1 u2

Figure 3. Distribution of vertices on a longest path of a Halin graph.

S = {v0, v′0, v1, v2, u, u1, u2, vk, v′k, vk−1, vk−2, w, w1, w2} gives the 14 labeled vertices in T . If k = 4, v2 and
vk−2 are identical vertices and the stars attached at v2 and vk−2 could be identical.

Lemma 8. Let H be an n-vertex C4-free Halin graph, where n ≥ 19. Then

exH(n,C4) ≤


5
3(n− 1), 3|(n− 1),

5
3(n− 2) + 1, 3|(n− 2),

5
3(n− 3) + 3, 3|(n− 3).

Proof. Our proof relies on induction on the number of vertices. The base cases are shown in the upcoming
section. Let L = (v0, v1, v2, . . . , vk) be a longest path in T . It is easy to check that k ≥ 4. Next, we prove
the following sequence of lemmas as part of the proof.

Claim 1. If k = 4, then 3|(n− 1) and e(H) = 5
3(n− 1).

Proof. From observation 1, S = {v0, v′0, v1, v2, u, u1, u2, v3, v4, v′4}. For each vertex v ∈ V (T )\S and is
incident to L, v ∈ N(v2). Moreover, v is not a leaf in T . Indeed, suppose for contradiction v is a leaf. Since
L is the longest path, then the two faces incident to the edge v2v are with size either 3 or 4. The latter, can not
happen asH isC4-free. Thus we may assume both faces are with size three. Hence we get two triangles sharing
the same edge v2v. However, this also results in a 4-cycle, which is a contradiction. Hence, each vertex in T

adjacent to v2 is a non-leaf. Since L is a longest path, each vertex adjacent to v2 is a branching vertex. That
means the vertex is adjacent to two pendant vertices. Therefore, H is obtained by identifying the dark-spotted
vertex of n−7

3 copies of stars with v2. It can be checked that e(H) = 5
3(n− 1), and this completes the proof of

Claim 1.

Claim 2. If k = 5, then 3|(n− 2) and e(H) = 5
3(n− 2) + 1.

Proof. From Observation 1, S = {v0, v′0, v1, v2, u, u1, u2, v3, w, w1, w2, v4, v5, v
′
5}. We verify that each vertex
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v ∈ V (T )\S incident to v2 or v3 is a branching vertex. Indeed, without loss of generality assume v ∈ N(v2).
Since L is a longest path in T , the faces incident to v2v and located on its left side must be either a 3-face or
a 4-face. The latter can not happen, as H is a C4-free graph. Thus we may assume the face is a 3-face and
let the leaf forming the 3-face be v′, i.e., the 3-face is (v2, v, v′, v2). For the same reason, we have a leaf
v′′ adjacent to v2 such that (v2, v′, v′′, v2) is the 3-face incident to the edge v′v. However this results a 4-
cycle (v2, v, v′, v′′, v2), which is a contradiction. Therefore, each vertex in V (T )\S adjacent to v2 or v3 is a
branching vertex. This implies, H is obtained by identifying the black-spotted vertex of n−8

3 copies of the star
to either v2 or v3. It can be checked that e(H) = 5

3(n− 2) + 1. This completes the proof of Claim 2.

Claim 3. For k ≥ 6, then H meets either the conditions of Lemma 4 or the conditions of Lemma 5 or the
conditions of Lemma 6.

Proof. Consider the longest path L = (v0, v1, v2, v4, . . . , vk). As L is a longest path, v1 is a branching vertex
and hence it is adjacent to two leaves where v0 is one of the two vertices. Let the other vertex be v′0. From the
degree condition of Halin graph, dT (v2) ≥ 3. Moreover, every vertex adjacent to v2 is not a leaf. Since again
L is a longest path, each vertex adjacent to v2 must be a branching vertex. If v3 is a semi-branching vertex of
degree at least 4, then H satisfies the condition of Lemma 4 and we are done. So we may assume that v3 is
not a semi-branching vertex or a semi-branching vertex with dT (v3) = 3. In the former case, the edge v2v3 is
an edge with the property that its end vertices are non-leaf and the two faces incident to the edge are with size
at least 6, and hence H satisfies the conditions of Lemma 6. In the latter case, since L is a longest path in T ,
v2 is not a semi-branching vertex. Hence, the path (v2, v3, v4) is with a size of at least 6, and hence H meets
conditions of Lemma 5. This completes the proof of Claim 3.

Notice that we finish the proof of Lemma 8 if 3|(n − 3) or 3|(n − 1). Indeed, if conditions of Lemma 4
or Lemma 6 happen, then e(H) ≤ e(H ′) + 2, whereH ′ is an (n− 1)-vertex C4-free Halin graph. If 3|(n− 1),
then by induction we have e(H) = e(H ′) + 2 ≤

(
5
3 [(n− 1)− 3] + 3

)
+ 2 = 5

3(n− 1) and we are done. On
the other hand if 3|(n − 3), then by induction we have, e(H) = e(H ′) + 2 ≤

(
5
3 [(n− 1)− 2] + 1

)
+ 2 =

5
3(n − 3) + 3 and we are done. On the other hand, suppose conditions of Lemma 5 meet by H . In this case,
e(H) = e(H ′)+3, whereH ′ is an (n−2)-vertex C4-free Halin graph. If 3|(n−1), then e(H) = e(H ′)+3 ≤(
5
3 [(n− 2)− 2] + 1

)
+3 ≤ 5

3(n−1). If 3|(n−3), then e(H) = e(H ′)+3 ≤ 5
3 [(n− 2)− 1]+3 = 5

3(n−3)+3,
and we are again done by induction.

Next, we give our argument on how we finish the proof when k ≥ 6 and 3|(n − 2). Since H is a Halin
graph and vk−3 is a non-leaf vertex, dT (vk−3) ≥ 3.

If dT (vk−3) = 3, then there is a vertex, say x such that x ∈ NT (vk−3). If x is a leaf in T , then it can
be seen that the path (vk−4, vk−3, vk−2) is incident to a face of size at six. Then by Lemma 5 we have an
(n− 2)-vertex C4-free Halin graphH ′ such that e(H) = e(H ′) + 3. Thus, by induction, e(H) = e(H ′) + 3 ≤(
5
3 [(n− 2)− 3] + 3

)
+ 3 = 5

3(n− 2) + 1, and we are done by induction. On the other hand, if x is not a leaf
in T , then again it can be seen that the two bounded faces incident to the edge vk−3vk−2 are with size at least 6
and hence by Lemma 6 we have an (n− 1)-vertex C4-free Halin graph H ′ such that e(H) = e(H ′) + 1. This
implies by induction e(H) = e(H ′) + 1 ≤ 5

3 [(n− 1)− 1] + 1 = 5
3(n− 2) + 1 and we are done by induction.

Now we may assume that dT (vk−3) ≥ 4. From Observation 1, we have a branching vertex w ∈ NT (vk−2)

such that the path (vk−1, vk−2, w) is incident to a bounded face in H . Since L is a longest path in T , every
vertex NT (vk−2)\{vk−3} is a branching vertex. Let F1 and F2 be the two bounded faces incident to the edge

7
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vk−3vk−2.

Notice that we have a unique pair of leaves incident to each bounded face inH . Denote vu1 and wu
1 be the

leaves such that the edge vu1wu
1 is incident to F1 and wu

1 is a leaf adjacent to the vertex in N(vk−2)\{vk−3}.
Similarly denote vl1 and wl

1 be leaves such that the edge vl1wl
1 is incident to F2 and wl

1 is a leaf adjacent to the
vertex inN(vk−2)\{vk−3}. Notice that wu

1 and wl
1 could be vk or w1 as discussed in Observation 1. Moreover,

notice that both |F1| and |F2| are at least 5. If both |F1| and |F2| are with size at least 6, then we finish the proof
by induction using Lemma 6 considering the edge vk−3vk−2. So we may assume one of the two faces is with
size 5. Without loss of generality assume |F1| = 5, and hence uu1 ∈ N(vk−3). Let F3 be the bounded face in
H incident to the path (v1, v2, u) as discussed in Observation 1. We perform the following three operations on
H step by step to get a new and equivalent Halin graphH ′ to H , i.e., e(H ′) = e(H).

(1) Delete the edges vk−3vk−2, vu1wu
1 and vl1w

l
1 from H . The resulting disconnected graph has two com-

ponents and let C1 and C2 be the components containing vk−3 and vk−2 respectively.

(2) Place the component C2 in F3 keeping its shape. Apply rigid motions on C2 so that the pair of vertices
{v2, vk−2}, {v′0, wu

1} and {wl
1, u1} are joined by an edge after deleting the edge v′0u1 in C1.

(3) Join the pair of vertices {vu1 , vl1} with an edge and denote the resulting graph byH ′.

Since dT (vk−3) ≥ 4 we have, dH′(vk−3) ≥ 3. Moreover v(H ′) = v(H) and all the leaves of T form the
outer face of H ′. Thus, H ′ is a Halin graph equivalent to H . However, it may happen that H ′ may contain a
C4. If a 4-cycle exists in H ′, then it must contain an edges in {v′0wu

1 , w
l
1u1, v2vk−2, v

u
1v

l
1}. Since the two

faces incident to the edge v2vk−2 inH ′ are of size at least 6, then using Lemma 3 for any cycle C containing an
edge in {v′0wu

1 , w
l
1u1, v2vk−2} we have, |C| ≥ 6. This implies, if the Halin graph H ′ contains a 4-cycle, then

it must contain the edge vu1vl1.

IfH ′ is C4-free graph, then we can finish the proof by induction using Lemma 6. Indeed, the two bounded
faces incident to the edge v2vk−2 inH ′ are of size at least 6. From Lemma 6 we have e(H ′) = e(H ′′)+1, where
H ′′ is an (n− 1)-vertex C4-free Halin graph associated to H ′ in the lemma. Therefore, e(H) = e(H ′) + 1 ≤
5
3 [(n− 1)− 1] + 1 = 5

3(n− 2) + 1.

Now we assume H ′ contains a 4-cycle. As explained earlier, the cycle contains vu1vl1. Such a 4-cycle
happens when vl1 ∈ N(v), where v is in NH(vk−3), or vl1 ∈ NH(vk−4) or vl1 ∈ NH(vk−3) and at least one
of the edges in {vk−3v

u
1 , vk−3v

l
1} is incident to a 3-face in H . Let the face, other than the F1, and incident

to vk−3v
u
1 be F4. Denote the associated leaf by vu2 such that vu2vu1 is incident to F4. We distinguish the three

situations separately to complete the proof.

2.1. Case 1: When vl1 ∈ NH(v), where v ∈ NH(vk−3) and v is a branching vertex

Notice that F4 may or may not be a 3-face. We finish the proof by induction. Indeed, if F4 is not a 3-face,
then from Lemma 4 using the semi-branching vertex vk−3 and then applying Lemma 6 using the edge vk−3vk−2,
we get an (n−2)-vertex C4-free Halin graph,H∗ such that e(H) = e(H∗)+3 ≤

(
5
3 [(n− 2)− 3] + 3

)
+3 =

5
3(n − 2) + 1. On the other hand, if F4 is a 3-face, then applying Lemma 4 on the the semi-branching vertex
vk−3 twice and then using Lemma 6 on the edge vk−3vk−2 we get an (n − 3)-vertex C4-free Halin graph H∗.
Moreover we have e(H) = e(H∗) + 5 ≤

(
5
3 [(n− 3)− 2] + 1

)
+ 5 = 5

3(n − 2) + 1, and we are done by
induction.
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2.2. Case 2: When vl1 ∈ NH(vk−4)

Actually, this may happen when k ≥ 7. If F4 is not a 3-face, then we can still finish the proof by induc-
tion using Lemma 4 considering vk−3 as a semi-branching vertex and then applying Lemma 6 using the edge
vk−3vk−2 as the two faces incident to the edge are with size at least 6. Observe that the resulting graph is an
(n − 2)-vertex C4-free Halin graph which only miss 3 edges. The same argument holds to finish the proof by
induction if F4 is a 3-face and dT (vk−3) ≥ 5. In this case the resulting graph is an (n− 3)-vertex C4-free Halin
graph which only miss 5 edges. On the other hand, if dT (vk−3) = 4 and F4 is a 3-face, then we apply Lemma 4
on H using the vu2 and then Lemma 5 using the leaf vu1 , so that we get an (n − 3)-vertex C4-free Halin graph
which only miss 5 edges. This we can finish the proof by induction as shown in Case 1 above.

2.3. Case 3: When vl1 ∈ NH(vk−3) and at least one of the edges in {vk−3v
u
1 , vk−3v

l
1} is incident

to a 3-face in H .

Let the face other than the F2 and incident to vk−3v
l
1 be F5. Let vl2 be a leaf in H such that the edge vl1vl2

is incident to F5. F5 may or may not be a 3-face. If both F4 and F5 are 3-faces, then dH′(vk−3) ≥ 5. In this
case, delete the vertices vu1 and vl1 from H ′ and then add the edge vu2vl2. This leaves an (n− 2)-vertex C4-free
Halin graph, say H∗, with 4 edges reduced. Next apply Lemma 6 on the edge v2vk−2 on H∗, the resulting
graph becomes an (n − 3)-vertex C4-free Halin graph missing only 5 edges from the original graph H . With
this, we can complete the proof by induction as given in Case 1 above. Finally, assume F4 is a 3-face but not
F5. In this case, dH′(vk−3) ≥ 4. It can be checked that deleting vu1 and adding the edge vu2v

l
1 in H ′ leaves

an (n − 1)-vertex C4-free Halin graph which misses only two edges. Applying Lemma 6 on the edge v2vk−2

results an (n − 2)-vertex C4-free Halin graph which loses only 3 edges from the original graph H . Again in
this case we can finish the induction as stated in Case 1. This completes the proof of Lemma 8.

3. Basis of the induction steps
To finish the proof by induction, we verify the bound when n = 16, 17, and 18. The following lemmas

give the details.

Lemma 9. For a 16-vertex C4-free Halin graph H , e(H) ≤ 25, i.e., e(H) ≤ 5
3(n− 1) where n = 16.

Proof. We prove the statement addressing different situations for which the length of the longest path a charac-
teristic tree may possibly contain. Let T be the characteristic tree of H . Let L be a longest path in T and k be
its length. It is very trivial to check that there is noH when k ≤ 3.

Claim 4. k is at most 6.

Proof. Let k = 7. FromObservation 1we have,L = (v0, v1, v2, . . . , v7) andS = {v0, v′0, v1, v2, u, u1, u2, v7, v′7, v6, v5, w, w1, w2}.
However, such vertex assignment leaves the non-leaf vertices v3 and v4 in the characteristic tree with degree 2,
which is a contradiction to the definition of a Halin graph. Hence the maximum possible choice of k is 6. This
completes the proof of Claim 4.

Claim 5. If k = 6, then e(H) = 24.

Proof. Denote L = (v0, v1, v2, v3, v4, v5, v6). Based on the notations Observation 1 we have, S =

{v0, v′0, v1, v2, u, u1, u2, v6, v′6, v5, v4, w, w1, w2}. Since v3 is a non-leaf in T , it must be adjacent with a vertex,
say v′3. Since |S∪{v3, v′3}| = 16, then every vertex ofT is now labeled. ClearlyP = {v0, v′0, u1, u2, v′3, w1, w2, v6, v

′
6}

is the set of all pendant vertices of T . Therefore, e(H) = e(T ) + |P | = 15+ 9 = 24. This completes the proof

9
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of Claim 5. It is easy to see that Figure 4 is the only characteristic tree T meeting the case.

Figure 4. The characteristic tree of a Halin graph on 16 vertices.

Claim 6. There is no H when k = 5.

Proof. DenoteL = (v0, v1, v2, v3, v4, v5). From the discussion inObservation 1,S = {v0, v′0, v1, v2, u, u1, u2, v5, v′5, v4, v3, w, w1, w2}.
There are two remaining vertices which are not assigned yet. Let this vertex be labeled as x1 and x2. For a clear
reason, the vertices are adjacent to either v2 or v3. Without loss of generality suppose v2 is such a vertex. In
this case, there is a vertex in {x1, x2}, say x1, is adjacent to v2 such that xv2 and uu2 are incident to the same
4-face inH . But this is a contradiction to the fact thatH is a C4-free Halin graph. This completes the proof of
Claim 6.

Claim 7. If k = 4, then e(H) = 25.

Proof. Let L = (v0, v1, v2, v3. v4). By Observation 1, S = {v0, v′0, v1, v2, u, u1, u2, v4, v′4, v3}. There
are 6 vertices remaining, and label the vertices as x1, x2, . . . , x6. Let x1 be adjacent to v2, and suppose for
contradiction x1 be a leaf in T . It can be checked that the two faces incident to the edge v2x1 in H are of size
4 or 3. Moreover, non of the faces are of size 4. On the other hand, if both faces are with size 3, then again
a 4-cycle will be obtained as the two 3-cycles sharing an edge forms a 4-cycle. This is again a contradiction.
Thus, each vertex in R = {x1, x2, . . . , x6} adjacent to v2 is not pendant, and a vertex in R adjacent to v2 is
again adjacent to two pendant vertices in R. Therefore, T is obtained by identifying the dark-spotted vertex of
three stars shown in Figure 2 with the vertex v2. The resulting graph is T16 which is shown in Figure 1. It can
be calculated that e(H) = e(T ) + 10 = 25. This completes the proof of Claim 7 and Lemma 9.

Lemma 10. For a 17-vertex C4-free Halin graph H , e(H) ≤ 26, i.e., e(H) ≤ 5
3(n− 2) + 1 where n = 17.

Proof. We give similar proof to the one given in Lemma 1. LetH be a C4-free Halin graph on 17 vertices, and
T denote its corresponding characteristic tree. Let L be a longest path in T with length k. It can be checked
that k ≥ 4.

Claim 8. k is at most 6.

Proof. By Observation 1 we have, S = {v0, v′0, v1, v2, u, u1, u2, vk, v′k, vk−1, vk−2, w, w1, w2}. Since T has
17 vertices and |S| = 14, three vertices are still not used. It can be seen that if k ≥ 7, there exists a non-leaf
vertex in L with degree 2, and this violates the definition of Halin graphs. Therefore k ≤ 6. This completes the
proof of Claim 8.

Claim 9. If k = 6, then e(H) = 26.

Proof. In this case S = {v0, v′0, v1, v2, u, u1, u2, v6, v′6, v5, v4, w, w1, w2}. Notice that the vertex v3 in L is a
non-leaf in T , and there are two vertices in T , say x1 and x2, that are not in L. It is easy to check that non of
the vertices is incident to v2 or v4, and both vertices are pendant and incident to v3. Clearly H is C4-free and
e(H) = e(T ) + 10 = 26 = 5

3(n− 2) + 1 where n = 17. There are two possible non-isomorphic characteristic

10
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trees, see Figure 5. This completes the proof of Claim 10.

Figure 5. Characteristic tree of a 17-vertex Halin graphs.

Claim 10. If k = 5, then e(H) = 26.

Proof. By Observation 1, S = {v0, v′0, v1, v2, u, u1, u2, v5, v′5, v4, v3, w, w1, w2}. There are three vertices in
T which are not labeled yet. Denote the vertices as x1, x2 and x3, If one of the three vertices is adjacent to v2

(similarly v3) and is a pendant vertex in T , then all the remaining two vertices are pendant vertices and adjacent
to v2 or v3. One of the three edges forms a 4-face containing the edge in {v1v0, v2u, v3w, v4v5}. But this results
in a contradiction, asH isC4-free. Therefore, the only possible situation that T exists is when the three vertices
are connected to the L by identifying the black-spotted vertex of the star, see Figure 2, with either v2 or v3.
In this case, we get T isomorphic to T17, which is shown in Figure 1. It can be seen that T is C4-free and
e(H) = 26.

Claim 11. There is no H when k = 4.

Proof. In this case S = {v0, v′0, v1, v2, u, u1, u2, v4, v′4, v3}. |S| = 10. There are 7 vertices, say x1, x2 . . . , x7

not not labeled in T . None of these vertices is adjacent to v1 or v3. In other words, if any of the seven vertices
is adjacent to a vertex in L, then it is with v2. It can be seen that there is a vertex in {x1, x2, . . . , x7}, which is
adjacent to v2 and is a pendant in T . Suppose x1 is such a vertex. By the choice of the path L, x1v2 can not
be incident to a face of size at least 5. In other words, the two faces incident to the edge are either a 3-face or a
4-face. But in any possibility,H contains a C4, which is a contradiction. This completes the proof of Claim 11
and Lemma 10.

Lemma 11. For an 18-vertex C4-free Halin graph H , e(H) ≤ 28, i.e., e(H) ≤ 5
3(n− 3) + 3 where n = 18.

Proof. Let T be the characteristic tree of H , and L = (v0, v1, v2, . . . , vk) be a longest path in T . It can be
checked that k ≥ 4.

Claim 12. k is at most 7.

Proof. By Observation 1, |S| = 14. We remain four vertices that are not labeled yet. If three of the vertices
are already in L, then at least two vertices, which are non-leaf, become degree-2. This is a contradiction and
therefore k ≤ 7. This completes the proof of Claim 12.

Claim 13. If k = 7, e(H) = 27.

Proof. HereS = {v0, v′0, v1, v2, u, u1, u2, v7, v′7, v6, v5, w, w1, w2}. Observe that v3 and v4 are vertices inL but
not addressed yet, as the vertices are degree-2 and should be with the degree at least 3. There are two remaining
vertices, say x1 and x2, which are not on L but in T . From the degree condition of a Halin graph, v3 and v4 are
adjacent to only one vertex in {x1, x2}. Let x1 ∈ NT (v3), and x2 ∈ NT (v4). Notice that the two edges can
not be incident to the same face. Otherwise, the x1x2 ∈ E(H) and we get 4-cycle (v4, v3, x1, x2, v4), which
is a contradiction. Therefore the two edges must be on opposite sides of L in the planar embedding of H . H
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which is shown in Figure 6 is the only Halin graph with such property. It can be seen that H is C4-free and
e(H) = e(T ) + 10 = 27. This completes the proof of Claim 13.

Figure 6. Characteristic tree of an 18-vertex Halin graph.

Claim 14. If k = 6, e(H) ≤ 28.

Proof. S = {v0, v′0, v1, v2, u, u1, u2, v6, v′6, v5, v4, w, w1, w2} and v3 is a non-leaf in L. Moreover, there are
three vertices, say x1, x2, and x3 which are not in L. Thus, v3 must be adjacent to one of the three vertices.
If any of the remaining three vertices is adjacent to a vertex in {v2, v4}, it is easy to get a 4-cycle, which is a
contradiction. We have two possible graphs.

The first graph is when all the three vertices, x1, x2, and x3 are adjacent to v3. It is easy to see that, not
all edges, x1v3, x2v3, and x3v3, are on the same side of L. Otherwise, H contains a C4. In this case, the
characteristic tree is T18 and is shown in Figure 1. Clearly e(h) = e(T ) + 11 = 28.

The second graph is obtained by identifying the dark-spotted vertex of the star with the v3. The graph is
shown in Figure 7. Here e(H) = e(T ) + 10 = 27. This completes the proof of Claim 14.

Figure 7. Characteristic tree of an 18-vertex Halin graph.

Claim 15. There is no H when k = 4 or 5.

Proof. Let k = 5. In this case we have, S = {v0, v′0, v1, v2, u, u1, u2, v5, v′5, v4, v3, w, w1, w2}. and there are
four vertices, say x1, x2, x3 and x4, which are not in L. If any of the vertices is incident to L, then it must be
adjacent to either v2 or v3. Without loss of generality let x1 be adjacent to v2. Then the two faces which are
incident to the edge x1v2 are either both 3-face or both 4-face or a mix of the two. But in all three cases, H
contains a 4-cycle, which is a contradiction. Therefore, x1 must be adjacent to two pendant vertices, say x2 and
x3. However, this results in a vertex x4 which is not incident to any of the vertex in L. Which is a contradiction
as T is a tree.

A similar argument can be given to show that we do not have an 18-vertex C4-free Halin graph such that
the characteristic tree has the longest path of length 4. This completes the proof of Claim 15 and Lemma 11.
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4. Conjectures and concluding remarks
As mentioned earlier in the beginning, Bondy and Lovász proved that a Halin graph is pancyclic if every

non-leaf in its characteristic tree is of degree at least 4. It is also remarked that, if the characteristic tree contains
a vertex of degree three, cycles of all lengths will still be in the graph with a possible exception of an even-
length cycle. The following is our conjecture concerning the sharp upper bound of the Halin Turán number of
the 6-cycle.

Conjecture 1. For n ≥ 21,

exH(n,C6) ≤
8

5
(n− 1).
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