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Abstract: In this paper, we have considered normal paracontact metric space forms ad-
mitting (α, β)−type almost η−Ricci-Yamabe solitons by means of some curvature ten-
sors. Ricci pseudosymmetry concepts of normal paracontact metric space forms admit-
ting (α, β)−type almost η−Ricci-Yamabe soliton have introduced according to choos-
ing of some special curvature tensors such as Riemann, concircular, projective, W1

curvature tensor. After that, according to choosing of the curvature tensors, necessary
conditions are given for normal paracontact metric space form admitting (α, β)−type
almost η−Ricci-Yamabe soliton to be Ricci semisymmetric. Then some characteriza-
tions are obtained and some classifications are made under the some conditions.
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1. Introduction

In differential geometry, an interesting problem is whether a compact connected
Riemannian manifold is conformally equivalent to a manifold of constant scalar cur-
vature. This problem was formulated by Yamabe in 1960. Yamabe himself gave the
affirmative answer, though there were some lacuna in his arguments.

In the past twenty years, the theory of geometric flows has been the most signifi-
cant geometrical tool to explain the geometric structures in Riemannian geometry. A
certain section of solutions on which the metric evolves by dilations and diffeomor-
phisms plays an important part in the study of singularities of the flows as they appear
as possible singularity models. They are often called soliton solutions.

Another important topic of differential geometry is Ricci flow which was devel-
oped by Richerd Hamilton in order to solve the century long open problem “Poincare
conjecture”. The notion of Yamabe flow also arose parallelly from the work of Hamil-
ton [1].

Hamilton first time introduced the concept of Ricci flow and Yamabe flow simul-
taneously in 1988. Ricci soliton and Yamabe soliton emerge as the limit of the solutions
of the Ricci flow and Yamabe flow, respectively. The notion of Yamabe flow was intro-
duced by Hamilton as a tool for constructing metrics of constant scalar curvature in a
given conformal class of Riemannian metrics on Riemannian manifold (Φ, g) , n ≥ 3.

The Yamabe flow is an evolution equation for metrics on a Riemannian manifolds as
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follows:
∂

∂t
g (t) = −r (t) g (t) , (1)

where r (t) denotes the scalar curvature of the metric g (t) . Yamabe solitons correspond 
to self-similar solutions of the Yamabe flow. In dimension n = 2 the Yamabe soliton 
is equivalent to Ricci soliton. However, in dimension n > 2, the Yamabe and Ricci 
solitons do not agree, as the first preserves the conformal class of the metric but the 
Ricci solitons do not in general.

Over the past twenty years, the theory of geometric flows, such as Ricci flow and 
Yamabe flow has been the focus of attraction for many geometers. Recently, in 2019, 
Güler and Crasmareanu introduced the study of a new geometric flow which is a scalar 
combination of Ricci and Yamabe flow under the name Ricci-Yamabe map [2]. This is 
also called the Ricci-Yamabe flow of type (α, β) . The Ricci-Yamabe flow is an 
evolution of the metrics on the Riemannian or semi-Riemannian manifolds, defined as

∂

∂t
g (t) = −2αRic (t) + βr (t) g (t) , g0 = g (0) . (2)

Due to the sign of involved scalars, the Ricci-Yamabe flow can also be a 
Riemannian, semi-Riemannian, or singular Riemannian flow. This kind of multiple 
choice can be useful in some geometrical or physical models, for example, relativistic 
theories. Therefore, naturally, the Ricci-Yamabe soliton emerges as the limit of the 
soliton of Ricci-Yamabe flow. This is a strong inspiration for initiating the study of 
Ricci-Yamabe solitons because although Ricci solitons and Yamabe solitons are the 
same in two dimensional spaces, there are essentially differences in higher 
dimensions. An interpolation soliton between Ricci and Yamabe soliton is considered, 
where the name Ricci-Bourguignon soliton corresponds to Ricci-Bourguignon flow 
but it depends on a single scalar in [3]. A soliton to the Ricci-Yamabe flow is called a 
Ricci-Yamabe soliton if it moves only by one parameter group of diffeomorphism and 
scaling. To be precise, a Ricci-Yamabe soliton on a Riemannian manifold (Φ, g) in [4] 
is a data set (g, V, λ, α, β) satisfying

LV g + 2αS + (2λ− βr) g = 0, (3)
where S is the Ricci tensor, r is the scalar curvature, and LV is the Lie-derivative along 

the vector field. If λ > 0, λ < 0, or λ = 0, then the (Φ, g) is called Ricci-Yamabe 
expander, Ricci-Yamabe shrinker, or Ricci-Yamabe steady soliton, respectively. 
Therefore, Equation (2) is called Ricci-Yamabe soliton of (α, β) −type, which is a 

generalization of Ricci and Yamabe solitons. We note that Ricci-Yamabe soliton of 
type (α, 0) , (0, β) −type are α−Ricci soliton and β−Yamabe soliton respectively.

An advanced extension of Ricci soliton is the concept of η−Ricci soliton, defined 

by Siddiqi and Akyol in [5] and by Cho and Kimura in [6]. Therefore, analogously, 
we can define the new notion by perturbing the Equation (2) that defines the type of 
soliton by a multiple of a certain (0, 2) −tensor field η ⊗ η. We obtain a slightly more 
general notion, namely, η−Ricci-Yamabe soliton of type (α, β) defined as:

LV g + 2αS + (2λ− βr) g + 2µη ⊗ η = 0. (4)
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Again, let us remark that η−Ricci-Yamabe soliton of type (α, 0) or (1, 0) , (0, β) 
or (0, 1) −type are α−η−Ricci soliton (or η−Ricci soliton) and β−η−Yamabe 
soliton (or η−Yamabe soliton) respectively for more details about these particular 
cases [7–11].

In particular, if µ = 0 then the notion of η−Ricci-Yamabe soliton (g, V, λ, µ, α, β) 
is reduced to the notion of Ricci-Yamabe soliton (g, V, λ, α, β) . If µ ≠ 0, then the 
η−Ricci-Yamabe soliton is named proper η−Ricci-Yamabe soliton.

According to Pigola et al. if we replace the constant λ in (3) with a smooth function
λ ∈ C∞ (Φ) , called soliton function, then we say (Φ, g) is an almost Ricci soliton.

The study of paracontact geometry was initiated by Kenayuki and Williams [12]. 
Zamkovoy studied paracontact metric manifolds and their subclasses [13,14]. Recently 
Welyczko studied curvature and torsion of Frenet Legendre curves in 3-dimensional 
normal paracontact metric manifolds [15,16]. In recent years, contact metric manifolds 
and their curvature properties have been studied by many authors in [16–18].

In this paper, we have considered normal paracontact metric space forms admit-
ting (α, β) −type almost η−Ricci-Yamabe solitons by means of some curvature tensors. 

Ricci pseudosymmetry concepts of normal paracontact metric space forms admitting 
(α, β) −type almost η−Ricci-Yamabe soliton have introduced according to choice of 

some special curvature tensors such as Riemann, concircular, projective, W1 curva-ture 
tensor. After that, according to choosing of the curvature tensors, necessary condi-tions 
are given for normal paracontact metric space form admitting (α, β) −type almost η
−Ricci-Yamabe soliton to be Ricci semisymmetric. Then some characterizations are 

obtained, and some classifications are made under some conditions.
For simplicity’s sake, the normal paracontact metric space form expression will 

be expressed as NPMS-form after this part of the article. Similarly, for brevity, after 
this part of the article, η−Ricci-Yamabe soliton expressions will be shown as η −RY S, 
Ricci pseudosymmetric as Ricci − P , and Ricci semisymetric as Ricci − S.

2. Preliminaries
Let’s take an n−dimensional differentiable Φ manifold. If it admits a tensor field 

ϕ of type (1, 1), a contravariant vector field ξ, and a 1-form η satisfying the following 
conditions:

ϕ2ϵ1 = ϵ1 − η (ϵ1) ξ, ϕξ = 0, η (ϕϵ1) = 0, η(ξ) = 1, (5)

and
g (ϕϵ1, ϕϵ2) = g (ϵ1, ϵ2)− η (ϵ1) η (ϵ2) , g (ϵ1, ξ) = η (ϵ1) , (6)

for all ϵ1, ϵ2, ξ ∈ χ (Φ), (ϕ, ξ, η) is called almost paracontact structure and (Φ, ϕ, ξ, η)
is called almost paracontact metric manifold. If the covariant derivative of ϕ satisfies

(∇ϵ1ϕ) ϵ2 = −g (ϵ1, ϵ2) ξ − η (ϵ2) ϵ1 + 2η (ϵ1) η (ϵ2) ξ, (7)
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then, Φ is called a normal paracontact metric manifold, where ∇ is Levi-Civita 
connec-tion. From Equation (7) , we can easily see that

ϕϵ1 = ∇ϵ1ξ, (8)

for any ϵ1 ∈ χ (Φ) [12].
Moreover, if such a manifold has a constant sectional curvature equal to c, then 

the Riemannian curvature tensor R is given by

R (ϵ1, ϵ2) ϵ3 =
c+3
4 [g (ϵ2, ϵ3) ϵ1 − g (ϵ1, ϵ3) ϵ2] +

c−1
4 [η (ϵ1) η (ϵ3) ϵ2

−η (ϵ2) η (ϵ3) ϵ1 + g (ϵ1, ϵ3) η (ϵ2) ξ − g (ϵ2, ϵ3) η (ϵ1) ξ + g (ϕϵ2, ϵ3)ϕϵ1

−g (ϕϵ1, ϵ3)ϕϵ2 − 2g (ϕϵ1, ϵ2)ϕϵ3] ,

(9)

for any vector fields ϵ1, ϵ2, ϵ3 ∈ χ (Φ) [16].
In a NPMS−form by direct calculations, we can easily see that

S (ϵ1, ϵ2) =
c (n− 5) + 3n+ 1

4
g (ϵ1, ϵ2) +

(c− 1) (5− n)

4
η (ϵ1) η (ϵ2) , (10)

from which

Qϵ1 =
c (n− 5) + 4n+ 1

4
ϵ1 +

(c− 1) (5− n)

4
η (ϵ1) ξ, (11)

for any ϵ1, ϵ2 ∈ χ (Φ) , where Q is the Ricci operator and S is the Ricci tensor of Φ.
Lemma 1. Let Φ be an n-dimensional NPMS−forms. In this case, the following
equations are obtained.

R (ξ, ϵ1) ϵ2 = g (ϵ1, ϵ2) ξ − η (ϵ2) ϵ1, (12)

R (ϵ1, ξ) ϵ2 = −g (ϵ1, ϵ2) ξ + η (ϵ2) ϵ1, (13)

R (ϵ1, ϵ2) ξ = η (ϵ2) ϵ1 − η (ϵ1) ϵ2, (14)

η (R (ϵ1, ϵ2) ϵ3) = g (η (ϵ1) ϵ2 − η (ϵ2) ϵ1, ϵ3) (15)

S (ϵ1, ξ) = (n− 1) η (ϵ1) , (16)

Qξ = (n− 1) ξ, (17)

where R,S, and Q are Riemann curvature tensor, Ricci curvature tensor, and Ricci
operator, respectively.

LetΦ be aRiemannianmanifold, T is (0, k)−type tensor field andA is (0, 2)−type
tensor field. In this case, Tachibana tensor field Q (A, T ) is defined as

Q (A, T ) (X1, ..., Xk; ϵ1, ϵ2) = −T ((ϵ1 ∧A ϵ2)X1, ..., Xk)−

...− T (X1, ..., Xk−1, (ϵ1 ∧A ϵ2)Xk) ,

(18)

4



Journal of AppliedMath 2024, 2(2), 231.

where,
(ϵ1 ∧A ϵ2) ϵ3 = A (ϵ2, ϵ3) ϵ1 −A (ϵ1, ϵ3) ϵ2, (19)

k ≥ 1, X1, X2, ..., Xk, ϵ1, ϵ2 ∈ Γ (TΦ).

3. (α, β)−type almost η−Ricci-Yamabe solitons on ricci pseudosym-
metric and ricci semisymmetric normal paracontact metric space
forms

Now let (g, ξ, λ, µ, α, β) be (α, β)-type almost η−RY S onNPMS−form. Then
we have

(Lξg) (ϵ1, ϵ2) = Lξg (ϵ1, ϵ2)− g (Lξϵ1, ϵ2)− g (ϵ1, Lξϵ2)

= ξg (ϵ1, ϵ2)− g ([ξ, ϵ1] , ϵ2)− g (ϵ1, [ξ, ϵ2])

= g (∇ξϵ1, ϵ2) + g (ϵ1,∇ξϵ2)− g (∇ξϵ1, ϵ2)

+g (∇ϵ1ξ, ϵ2)− g (∇ξϵ2, ϵ1) + g (ϵ1,∇ϵ2ξ) ,

for all ϵ1, ϵ2 ∈ Γ (TΦ) . By using ϕ is symmetric, we have

(Lξg) (ϵ1, ϵ2) = 2g (ϕϵ1, ϵ2) . (20)

Thus, in a NPMS−forms, from (4) and (20) , we have

2αS (ϵ1, ϵ2) + 2g (ϕϵ1, ϵ2) + (2λ− βr) g (ϵ1, ϵ2) + 2µη (ϵ1) η (ϵ2) = 0. (21)

For ϵ2 = ξ in (21) , this implies that

2αS (ξ, ϵ1) = (βr − 2λ− 2α) η (ϵ1) . (22)

Taking into account of (16) and (22) , we conclude that

2nα = βr − 2λ. (23)

Definition 1. LetΦ be an n−dimensionalNPMS−form. If there exists a functionH1

on Φ such that
R · S = H1Q (g, S) ,

then the Φ is called Ricci− P .
Also, ifH1 = 0, the Φ is called Ricci− S.

Theorem 1. Let Φ be a NPMS−form and (g, ξ, λ, µ, α, β) be (α, β)−type almost
η −RY S on Φ. If Φ is a Ricci− P , then we get

H1 =
2λ− α+ 1

1− α
or H1 =

α− 2λ+ 1

1 + α
.

Proof. Let’s assume that NPMS−form Φ be Ricci − P and (g, ξ, λ, µ, α, β) be
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(α, β)−type almost η −RY S on Φ. That’s mean

(R (ϵ1, ϵ2) · S) (ϵ4, ϵ5) = H1Q (g, S) (ϵ4, ϵ5; ϵ1, ϵ2) ,

for all ϵ1, ϵ2, ϵ4, ϵ5 ∈ Γ (TΦ) . From the last equation, we can easily write

S (R (ϵ1, ϵ2) ϵ4, ϵ5) + S (ϵ4, R (ϵ1, ϵ2) ϵ5)

= H1 {S ((ϵ1 ∧g ϵ2) ϵ4, ϵ5) + S (ϵ4, (ϵ1 ∧g ϵ2) ϵ5)} .
(24)

Setting ϵ5 = ξ in (24) , we get

S (R (ϵ1, ϵ2) ϵ4, ξ) + S (ϵ4, R (ϵ1, ϵ2) ξ)

= H1 {S (g (ϵ2, ϵ4) ϵ1 − g (ϵ1, ϵ4) ϵ2, ξ)

+S (ϵ4, η (ϵ2) ϵ1 − η (ϵ1) ϵ2)} .

(25)

Making use of (14) and (22) in (25) , we have

S (ϵ4, η (ϵ2) ϵ1 − η (ϵ1) ϵ2)

+βr−2λ−2α
2α η (R (ϵ1, ϵ2) ϵ4)

= H1 {(βr − 2λ− 2α) /2ag (η (ϵ1) ϵ2 − η (ϵ2) ϵ1, ϵ4)

+S (ϵ4, η (ϵ2) ϵ1 − η (ϵ1) ϵ2)} .

(26)

By using (15) in (26), we get

βr−2λ−2α
2α g (η (ϵ1) ϵ2 − η (ϵ2) ϵ1, ϵ4)

+S (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4)

= H1 {(βr − 2λ− 2α) /2ag (η (ϵ1) ϵ2 − η (ϵ2) ϵ1, ϵ4)

+S (ϵ4, η (ϵ2) ϵ1 − η (ϵ1) ϵ2)} .

(27)

If we use (21) in the (27), we can write[(
1− 2λ

α

)
−H1

]
g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4) +

1

α
(H1 − 1) g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϕϵ4) = 0. (28)

If we write ϕϵ4 instead of ϵ4 in (28) and make use of (1) , we obtain

1

α
(H1 − 1) g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4) +

[(
1− 2λ

α

)
−H1

]
g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϕϵ4) = 0. (29)
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It is clear from (28) and (29) , we get{[
1

α
(H1 − 1)

]2
−
[(

1− 2λ

α

)
−H1

]2}
g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4) = 0.

This completes the proof of Theorem.
Corollary 1. Let Φ be NPMS−form and (g, ξ, λ, µ, α, β) be (α, β)−type almost
η −RY S on Φ. If Φ is a Ricci− S, then we observe the following.
i) Φ is Ricci-Yamabe expander soliton if α ∈ (1,∞) .

ii) Φ is Ricci-Yamabe steady soliton if α = 1 or α = −1.

iii) Φ is Ricci-Yamabe shrinker soliton if α ∈ (−∞,−1) .

Specifically, if α = 1 and β = 0, the (α, β)−type almost η −RY S is reduced to
a α− η−Ricci soliton. In this case, we can state the following theorem.
Theorem 2. Let Φ be NPMS−form and (g, ξ, λ, µ, α, β) be α− η−Ricci soliton on
Φ. If Φ is a Ricci− P , then Φ is either a Ricci-Yamabe steady soliton or H1 = 1− λ.

Corollary 2. Let Φ beNPMS−form and (g, ξ, λ, µ, α, β) be α− η−Ricci soliton on
Φ. IfΦ is aRicci−S, thenΦ is either a Ricci-Yamabe steady soliton or a Ricci-Yamabe
expander soliton.

For ann−dimensional semi-RiemannmanifoldΦ, the concircular curvature tensor
is defined as

C (ϵ1, ϵ2) ϵ3 = R (ϵ1, ϵ2) ϵ3 −
r

n (n− 1)
[g (ϵ2, ϵ3) ϵ1 − g (ϵ1, ϵ3) ϵ2] . (30)

For an n−dimensionalNPMS−form, if we choose ϵ3 = ξ in (28) , we can write

C (ϵ1, ϵ2) ξ =

[
1− r

n (n− 1)

]
[η (ϵ2) ϵ1 − η (ϵ1) ϵ2] , (31)

For an n−dimensionalNPMS−form, if we choose ϵ3 = ξ in (28) , we can write

η (C (ϵ1, ϵ2) ϵ3) =

[
1− r

n (n− 1)

]
g (η (ϵ1) ϵ2 − η (ϵ2) ϵ1, ϵ3) . (32)

Definition 2. Let Φ be an n−dimensional NPMS−form. If there exists a function
H2 on Φ such that

C · S = H2Q (g, S) ,

then the Φ is called concircular Ricci− P .
Also, ifH2 = 0, the Φ is called concircular Ricci− S.

Theorem 3. Let Φ be a NPMS−form and (g, ξ, λ, µ, α, β) be (α, β)−type almost

η−RY S onΦ. IfΦ is a concircularRicci−P , thenH2 =
n (n− 1)− r

n (n− 1)
or α = ±1.

Proof. Let’s assume thatNPMS−formΦ be concircularRicci−P and (g, ξ, λ, µ, α, β)
be (α, β)−type almost η −RY S on Φ. That’s mean

(C (ϵ1, ϵ2) · S) (ϵ4, ϵ5) = H2Q (g, S) (ϵ4, ϵ5; ϵ1, ϵ2) ,

7
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for all ϵ1, ϵ2, ϵ4, ϵ5 ∈ Γ (TΦ) . From the last equation, we can easily write

S (C (ϵ1, ϵ2) ϵ4, ϵ5) + S (ϵ4, C (ϵ1, ϵ2) ϵ5)

= H2 {S ((ϵ1 ∧g ϵ2) ϵ4, ϵ5) + S (ϵ4, (ϵ1 ∧g ϵ2) ϵ5)} .
(33)

If we choose ϵ5 = ξ in (33) , we get

S (C (ϵ1, ϵ2) ϵ4, ξ) + S (ϵ4, C (ϵ1, ϵ2) ξ)

= H2 {S (g (ϵ2, ϵ4) ϵ1 − g (ϵ1, ϵ4) ϵ2, ξ)

+S (ϵ4, η (ϵ2) ϵ1 − η (ϵ1) ϵ2)} .

(34)

By using of (22) and (31) in (34) , we have

AS (ϵ4, η (ϵ2) ϵ1 − η (ϵ1) ϵ2)

+
βr − 2λ− 2α

2α
η (C (ϵ1, ϵ2) ϵ4)

= H2 {(βr − 2λ− 2α) /2ag (η (ϵ1) ϵ2 − η (ϵ2) ϵ1, ϵ4)

+S (ϵ4, η (ϵ2) ϵ1 − η (ϵ1) ϵ2)} ,

(35)

where A = 1− r
n(n−1) . Substituting (32) into (35), we have

A (βr − 2λ− 2α)

2α
g (η (ϵ1) ϵ2 − η (ϵ2) ϵ1, ϵ4)

+AS (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4)

= H2 {(βr − 2λ− 2α) /2ag (η (ϵ1) ϵ2 − η (ϵ2) ϵ1, ϵ4)

+S (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4)} .

(36)

If we use (21) in the (36), we can write

(A−H2) g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4) +

(
H2 −A

α

)
g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϕϵ4) = 0. (37)

If we write ϕϵ4 instead of ϵ4 in (37) and make use of (1) , we obtain(
H2 −A

α

)
g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4) + (A−H2) g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϕϵ4) = 0. (38)

By means of (37) and (38) , we conclude{[
H2 −A

α

]2
− (A−H2)

2

}
g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4) = 0,
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and so we get

(H2 −A)2
(
1− α2

)
g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4) = 0.

This completes the proof of Theorem.
Corollary 3. Let Φ be a NPMS−forms and (g, ξ, λ, µ, α, β) be (α, β)−type almost
η − RY S on Φ. If Φ is a concircular Ricci − S, then Φ is either constant scalar
curvature r = n (n− 1) or α = ±1.

Corollary 4. Let Φ be aNPMS−forms and (g, ξ, λ, µ, α, β) be α−η−Ricci- soliton

on Φ. If Φ is a concircular Ricci− P , then H2 =
n (n− 1)− r

n (n− 1)
.

For an n−dimensional semi-Riemann manifold Φ, the projective curvature tensor
is defined as

P (ϵ1, ϵ2) ϵ3 = R (ϵ1, ϵ2) ϵ3 −
1

n− 1
[S (ϵ2, ϵ3) ϵ1 − S (ϵ1, ϵ3) ϵ2] . (39)

For an n−dimensionalNPMS−form, if we choose ϵ3 = ξ in (37) , we can write

P (ϵ1, ϵ2) ξ = 0, (40)

and similarly, if we take the inner product of both sides of (37) by ξ, we get

η (P (ϵ1, ϵ2) ϵ3) = 0. (41)

Definition 3. Let Φ be an n−dimensional NPMS−form. If there exists a function
H3 on Φ such that

P · S = H3Q (g, S) ,

then the Φ is said to be projective Ricci− P .
Also, ifH3 = 0, the Φ is called projective Ricci− S.

Theorem 4. Let Φ be a NPMS−form and (g, ξ, λ, µ, α, β) be (α, β)−type almost
η − RY S on Φ. If Φ is a projective Ricci − P , then Φ is a projective Ricci − S or
α = ±1.

Proof. Let’s assume thatNPMS−formΦ be projectiveRicci−P and (g, ξ, λ, µ, α, β)
be (α, β)−type almost η −RY S on Φ. That’s mean

(P (ϵ1, ϵ2) · S) (ϵ4, ϵ5) = H3Q (g, S) (ϵ4, ϵ5; ϵ1, ϵ2) ,

for all ϵ1, ϵ2, ϵ4, ϵ5 ∈ Γ (TΦ) . From the last equation, we can easily write

S (P (ϵ1, ϵ2) ϵ4, ϵ5) + S (ϵ4, P (ϵ1, ϵ2) ϵ5)

= H3 {S ((ϵ1 ∧g ϵ2) ϵ4, ϵ5) + S (ϵ4, (ϵ1 ∧g ϵ2) ϵ5)} .
(42)
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If we choose ϵ5 = ξ in (42) , we get

S (P (ϵ1, ϵ2) ϵ4, ξ) + S (ϵ4, P (ϵ1, ϵ2) ξ)

= H3 {S (g (ϵ2, ϵ4) ϵ1 − g (ϵ1, ϵ4) ϵ2, ξ)

+S (ϵ4, η (ϵ2) ϵ1 − η (ϵ1) ϵ2)} .

(43)

If we make use of (22) and (40) in (43) , we have

βr−2λ−2α
2α η (P (ϵ1, ϵ2) ϵ4)

= H3 {(βr − 2λ− 2α) /2ag (η (ϵ1) ϵ2 − η (ϵ2) ϵ1, ϵ4)

+S (ϵ4, η (ϵ2) ϵ1 − η (ϵ1) ϵ2)} .

(44)

If we use (41) in the (44), we get

H3 {(βr − 2λ− 2α) /2ag (η (ϵ1) ϵ2 − η (ϵ2) ϵ1, ϵ4)

+S (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4)} = 0.

(45)

If we use (21) in the (45), we can write

H3

[
g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4)−

1

α
g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϕϵ4)

]
= 0. (46)

If we write ϕϵ4 instead of ϵ4 in (46) and make use of (1) , we obtain

H3

[
−1

α
g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4) + g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϕϵ4)

]
= 0. (47)

It is clear from (46) and (47) , we obtain

H3

(
1− 1

α2

)
g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4) = 0.

This completes the proof of Theorem.
Corollary 5. Let Φ be a NPMS−form and (g, ξ, λ, µ, α, β) be (α, β)−type almost
η−RY S on Φ. If Φ is a projective Ricci−P , then Φ is a projective Ricci−S or the
following results are observed depending on the state of α.
i) Let α = 1.

a) Φ is Ricci-Yamabe expander soliton if βr > 2n.

b) Φ is Ricci-Yamabe steady soliton if βr = 2n.

c) Φ is Ricci-Yamabe shrinker soliton if βr < 2n.

ii) Let α = −1.

a) Φ is Ricci-Yamabe expander soliton if βr > −2n.

b) Φ is Ricci-Yamabe steady soliton if βr = −2n.

c) Φ is Ricci-Yamabe shrinker soliton if βr < −2n.
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For an n−dimensional semi-Riemann manifold Φ, the W1−curvature tensor is
defined as

W1 (ϵ1, ϵ2) ϵ3 = R (ϵ1, ϵ2) ϵ3 +
1

n− 1
[S (ϵ2, ϵ3) ϵ1 − S (ϵ1, ϵ3) ϵ2] . (48)

For an n−dimensionalNPMS−form, if we choose ϵ3 = ξ in (48) , we can write

W1 (ϵ1, ϵ2) ξ = 2 [η (ϵ2) ϵ1 − η (ϵ1) ϵ2] , (49)

and similarly, if we take the inner product of both of sides of (48) by ξ, we get

η (W1 (ϵ1, ϵ2) ϵ3) = 2g (η (ϵ1) ϵ2 − η (ϵ2) ϵ1, ϵ3) . (50)

Definition 4. LetΦ be an n−dimensionalNPMS−form. If there exists a functionH4

on Φ such that
W1 · S = H4Q (g, S) ,

then the Φ is called W1−Ricci− P .
Also, ifH4 = 0, the Φ is calledW1−Ricci− S.

Theorem 5. Let Φ be a NPMS−form and (g, ξ, λ, µ, α, β) be (α, β)−type almost
η −RY S on Φ. If Φ is a W1 −Ricci− P , then H4 = 2, α = ±1.

Proof. Let’s assume that NPMS−form Φ be W1 − Ricci − P and (g, ξ, λ, µ, α, β)

be (α, β)−type almost η −RY S on Φ. That’s mean

(W1 (ϵ1, ϵ2) · S) (ϵ4, ϵ5) = H4Q (g, S) (ϵ4, ϵ5; ϵ1, ϵ2) ,

for all ϵ1, ϵ2, ϵ4, ϵ5 ∈ Γ (TΦ) . From the last equation, we can easily write

S (W1 (ϵ1, ϵ2) ϵ4, ϵ5) + S (ϵ4,W1 (ϵ1, ϵ2) ϵ5)

= H4 {S ((ϵ1 ∧g ϵ2) ϵ4, ϵ5) + S (ϵ4, (ϵ1 ∧g ϵ2) ϵ5)} .
(51)

If we choose ϵ5 = ξ in (51) , we get

S (W1 (ϵ1, ϵ2) ϵ4, ξ) + S (ϵ4,W1 (ϵ1, ϵ2) ξ)

= H4 {S (g (ϵ2, ϵ4) ϵ1 − g (ϵ1, ϵ4) ϵ2, ξ)

+S (ϵ4, η (ϵ1) ϵ2 − η (ϵ2) ϵ1)} .

(52)
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By means of (22) and (49) in (52) , we have

2S (ϵ4, η (ϵ2) ϵ1 − η (ϵ1) ϵ2)

+βr−2λ−2α
2α η (W1 (ϵ1, ϵ2) ϵ4)

= H4 {(βr − 2λ− 2α) /2ag (η (ϵ1) ϵ2 − η (ϵ2) ϵ1, ϵ4)

+S (ϵ4, η (ϵ2) ϵ1 − η (ϵ1) ϵ2)} .

(53)

If we use (50) in the (53), we get

βr−2λ−2α
α g (η (ϵ1) ϵ2 − η (ϵ2) ϵ1, ϵ4)

+2S (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4)

= H4 {(βr − 2λ− 2α) /2ag (η (ϵ1) ϵ2 − η (ϵ2) ϵ1, ϵ4)

+S (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4)} .

(54)

If we use (21) in the (54), we can write

(2−H4) g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4) +
1

α
(H4 − 2) g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϕϵ4) = 0. (55)

If we write ϕϵ4 instead of ϵ4 in (55) and make use of (1) , we obtain

1

α
(H4 − 2) g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4) + (2−H4) g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϕϵ4) = 0. (56)

It is clear from (55) and (56) , we get{[
1

α
(H4 − 2)

]2
− (2−H4)

2

}
g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4) = 0,

and so we have

(
α2 − 1

)
(H4 − 2)2 g (η (ϵ2) ϵ1 − η (ϵ1) ϵ2, ϵ4) = 0.

This completes the proof of Theorem. 
Corollary 6. Let Φ be a NPMS−forms and (g, ξ, λ, µ, α, β) be (α, β)−type almost
η−RY S onΦ. IfΦ is aW1−Ricci−S, then α = ±1, that is, ifΦ isW1−Ricci−S,
then the following results are observed depending on the state of α.
i) Let α = 1.

a) Φ is Ricci-Yamabe expander soliton if βr > 2n.

b) Φ is Ricci-Yamabe steady soliton if βr = 2n.

c) Φ is Ricci-Yamabe shrinker soliton if βr < 2n.

ii) Let α = −1.

a) Φ is Ricci-Yamabe expander soliton if βr > −2n.
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b) Φ is Ricci-Yamabe steady soliton if βr = −2n.

c) Φ is Ricci-Yamabe shrinker soliton if βr < −2n.
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