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Abstract: A representation of the solutions to the Burgers’ equation by the Wronskiens is
given. For this, we use particular polynomials andwe obtain a very efficient method to construct
solutions to this equation. We deduce rational solutions from the latter equation. We explicitly
build solutions for first orders.
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1. Introduction

The following Burgers’ equation:

ut + uxx + uux = 0 (1)

is considered.
This equation was introduced in 1915 by Bateman [1] as formulated in Equation

(1). The Equation (1) is used in different areas of physics. The article [2] studies the
different methods of statistical analysis and statistical mechanics related to the problem
of turbulent fluid motion. In the paper [3], it is treated of problems of initial value
for the Equation (1). The article [4] gives an algebraic method for solving partial
differential equations including Equation (1) using infinitesimal transformations. In
book [5], the author reports his results about fluid turbulence from 1939 to 1954. In [6],
simple examples have been developed to illustrate some general characteristics of the
interaction between non-linearity and viscosity. The book [7] covers all major ideas
well established in differential equations, but at the same time emphasizes non-linear
theory from the beginning and introduces the very active research areas in this field.

In 1915 Bateman [1] proposed a first resolution of Equation (1). Different types
of methods have been used to solve this equation. Using the exp-function method [8],
exact solutions in particular for the Burgers’ equation are obtained. In the work [9], in
particular solutions to the Burgers’ equation are constructed using the tanh-coth method
and the Cole-Hopf transformation. The group actions on coset bundles are used in [10]
to study families of Burgers’ equations. The Cole-Hopf method is used in the works
[11–13]. In [14], the homotopic perturbation method, the adomian decomposition
method and the differential transformation method are used to obtain solutions of the
Burgers’ equation.

Some recent results in connection with this study have been given in the following
works. The work [15] proposes analytical solutions for the two-dimensional and
three-dimensional Burgers’ equation. In the paper [16], the method of the local
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fractional differential equation of Riccati is used to study a family of Burgers-type
equations. The Burgers’ equation is considered in [17], in dimensions (2 + 1), (3 + 1)
and (4 + 1) where explicit exact solutions are given. In [18] a new semi-analytic method
is given for analytic and bounded series solutions of the Burgers’ equation. In the
paper [19] an initial boundary value problem for the Burgers’ equation on the positive
quarter-plane is investigated. Recent developments of the mathematical modeling of
the Burgers’ equation are discussed in detail in [20]. A new approach for the study of the
Burgers’ equation is given in [21], describing the asymptotic behavior of the solution in
the cauchy problem for a viscous equation with small parameters. A modified Burgers’
type equationwith a quadratically cubic nonlinear term is studied in [22] as a newmodel
of perfectly soluble mathematical physics. The Hopf-Cole transformation is used in
the article [23] to transform the Burgers’ equation into a heat equation and the Fourier
transformation then allows to obtain an exact solution of the Burgers equation.

Recently, deep learning methods [24] especially physics-informed neural
networks, have emerged as a new approach to solving, in particular, the hierarchy
of Burgers’ including the Burgers’ equation. More generally, the bilinear residual
network method [25] can be proposed to solve non-linear evolution equations.

Using some particular polynomials, we get a new representation of these solutions.
The solutions to the Burgers’ equation are given by means of Wronskians. With

this method, we can construct very easily and efficiently some solutions for the first
orders.

2. Solutions to the Burger’s equation by means of Wronskian

Polynomials expressed as

p2k(x, t) =
n∑

l=0

x2l

(2l)!

tk−l

(k − l)!
, for k ≥ 0

p2k+1(x, t) =
n∑

l=0

x2l+1

(2l + 1)!

tk−l

(k − l)!
, for k ≥ 0

pn(x, t) = 0 for n < 0 (2)

are considered.
We use the classical notation W (f1, . . . , fn) for the Wronskian of the functions

f1, . . . , fn defined by
det

(
(∂j−1

x fi)j∈[1,n] i∈[1,n]
)

the notation ∂0
xfi meaning fi.

Then we have the statement:
Theorem 1. vn expressed as

vn(x, t) = 2∂x (lnW (pn, . . . , p1)) (3)
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pn being given by Equation (2), is a solution to Equation (1).

ut + uxx + uux = 0

Remark 1. We will call vn, the solution of order n to the Burgers’ Equation (1).
Remark 2. For example, we give the first expressions of these polynomials for n = 0

to 10.

p0(x, t) = 1

p1(x, t) = x

p2(x, t) =
1

2
x2 + t

p3(x, t) =
1

6
x3 + tx

p4(x, t) =
1

24
x4 +

1

2
tx2 +

1

2
t2

p5(x, t) =
1

120
x5 +

1

6
tx3 +

1

2
t2x

p6(x, t) =
1

720
x6 +

1

24
tx4 +

1

4
t2x2 +

1

6
t3

p7(x, t) =
1

5040
x7 +

1

120
tx5 +

1

12
t2x3 +

1

6
t3x

p8(x, t) =
1

40320
x8 +

1

720
tx6 +

1

48
t2x4 +

1

12
t3x2 +

1

24
t4

p9(x, t) =
1

362880
x9 + 1

5040 tx
7 + 1

240 t
2x5 +

1

36
t3x3 +

1

24
t4x

p10(x, t) =
1

3628800
x10 +

1

40320
tx8 +

1

1440
t2x6 +

1

144
t3x4 +

1

48
t4x2 +

1

120
t5

Proof. For simplicity, we denoteW the WronskianW (pn, . . . , p1).
The function:

vn(x, t) = 2∂x (lnW (pn, . . . , p1))

is a solution to Equation (1) if

A = 2(lnW )xt + 2(lnW )3x + 4(lnW )2x lnW )x = 0

or if
A = (lnW )t + (lnW )2x + (lnW )x)

2 = 0

This can be written as:

A =
Wt

W
+

W2xW −W 2
x

W 2
+

W 2
x

W 2
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Thus, the equality A = 0 is obtained if

Wt +W2x = 0

Taking into account that
(pn)x = pn−1

and
(pn)t = pn−2

we can write
Wt = W (pn, . . . , p3, p0, p1)

and

W2x = (W (pn, . . . , p3, p2, p0))x = W (pn, . . . , p3, p1, p0) = −W (pn, . . . , p3, p0, p1) = −Wt

Thus
Wt +W2x = 0

which give A = 0 and the result. □

3. First order solutions

These rational solutions are all singular. In the following, we see the appearance
of curves of singularities. We observe the patterns of singularities. We get lines or
horseshoe type depending on the order of the solution (as presented in the following
Figures 1–20).

3.1. Case of order 1
Proposition 1. v1 expressed as

v1(x, t) =
2

x
(4)

is a solution to Equation (1).

Figure 1. Modulus of v1.
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3.2. Case of second order
Proposition 2. v2 expressed as

v2(x, t) =
−4x

−x2 + 2 t
(5)

is a solution to Equation (1).

Figure 2. Modulus of v2.

3.3. Case of third order
Proposition 3. v3 expressed as

v3(x, t) = 6
−x2 + 2 t

x (−x2 + 6 t)
(6)

is a solution to Equation (1).

Figure 3. Modulus of v3.

3.4. Case of fourth order
Proposition 4. v4 expressed as

v4(x, t) = −8
x
(
−x2 + 6 t

)
x4 − 12x2t+ 12 t2

(7)

is a solution to Equation (1).
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Figure 4. Modulus of v4.

3.5. Case of fifth order
Proposition 5. v5 expressed as

v5(x, t) = 10
x4 − 12x2t+ 12 t2

x (x4 − 20x2t+ 60 t2)
(8)

is a solution to Equation (1).

Figure 5. Modulus of v5.

3.6. Case of sixth order
Proposition 6. v6 expressed as

v6(x, t) = −12
x
(
x4 − 20x2t+ 60 t2

)
−x6 + 30x4t− 180x2t2 + 120 t3

(9)

is a solution to Equation (1).
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Figure 6. Modulus of v6.

3.7. Case of seventh order
Proposition 7. v7 expressed as

v7(x, t) = 14
−x6 + 30x4t− 180x2t2 + 120 t3

x (−x6 + 42x4t− 420x2t2 + 840 t3)
(10)

is a solution to Equation (1).

Figure 7. Modulus of v7.

3.8. Case of eighth order
Proposition 8. v8 expressed as

v8(x, t) = −16
x
(
−x6 + 42x4t− 420x2t2 + 840 t3

)
x8 − 56x6t+ 840x4t2 − 3360x2t3 + 1680 t4

(11)

is a solution to Equation (1).
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Figure 8. Modulus of v8.

3.9. Case of ninth order
Proposition 9. v9 expressed as

v9(x, t) = 18
x8 − 56x6t+ 840x4t2 − 3360x2t3 + 1680 t4

x (x8 − 72x6t+ 1512x4t2 − 10080x2t3 + 15120 t4)
(12)

is a solution to Equation (1).

Figure 9. Modulus of v9.

3.10. Case of tenth order
Proposition 10. v10 expressed as

v10(x, t) = 20
x
(
x8 − 72x6t+ 1512x4t2 − 10080x2t3 + 15120 t4

)
−x10 + 90x8t− 2520x6t2 + 25200x4t3 − 75600x2t4 + 30240 t5

(13)

is a solution to Equation (1).
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Figure 10. Modulus of v10.

3.11. Case of eleventh order
Proposition 11. v11 expressed as

v11(x, t) = 22
−x10 + 90x8t− 2520x6t2 + 25200x4t3 − 75600x2t4 + 30240 t5

x (−x10 + 110x8t− 3960x6t2 + 55440x4t3 − 277200x2t4 + 332640 t5)
(14)

is a solution to Equation (1).

Figure 11. Modulus of v11.

3.12. Case of twelfth order

Proposition 12. v12 expressed as v12(x, t) =
n12(x, t)

d12(x, t)
,

n12(x, t) = −24x(−x10 + 110x8t− 3960x6t2 + 55440x4t3 − 277200x2t4 + 332640 t5)

d12(x, t) = x12 − 132 tx10 + 5940 t2x8 − 110880 t3x6 + 831600 t4x4 − 1995840 t5x2 + 665280 t6

is a solution to Equation (1).

3.13. Case of thirteenth order

Proposition 13. v13 expressed as v13(x, t) =
n13(x, t)

d13(x, t)
,

n13(x, t) = 26(x12 − 132 tx10 + 5940 t2x8 − 110880 t3x6 + 831600 t4x4 − 1995840 t5x2 + 665280 t6)

d13(x, t) = x(x12 − 156 tx10 + 8580 t2x8 − 205920 t3x6 + 2162160 t4x4 − 8648640 t5x2 + 8648640 t6)
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is a solution to Equation (1).

Figure 12. Modulus of v12.

Figure 13. Modulus of v13.

3.14. Case of fourteenth order

Proposition 14. v14 expressed as v14(x, t) =
n14(x, t)

d14(x, t)
,

n14(x, t) = −28x(x12 − 156 tx10 + 8580 t2x8 − 205920 t3x6 + 2162160 t4x4

− 8648640 t5x2 + 8648640 t6)

d14(x, t) = −x14 + 182 tx12 − 12012 t2x10 + 360360 t3x8 − 5045040 t4x6

+ 30270240 t5x4 − 60540480 t6x2 + 17297280 t7

is a solution to Equation (1).

Figure 14. Modulus of v14.

10



Journal of AppliedMath 2025, 3(1), 2285.

3.15. Case of fifteenth order

Proposition 15. v15 expressed as v15(x, t) =
n15(x, t)

d15(x, t)
,

n15(x, t) = 30(−x14 + 182 tx12 − 12012 t2x10 + 360360 t3x8 − 5045040 t4x6

+ 30270240 t5x4 − 60540480 t6x2 + 17297280 t7)

d15(x, t) = x(−x14 + 210 tx12 − 16380 t2x10 + 600600 t3x8 − 10810800 t4x6

+ 90810720 t5x4 − 302702400 t6x2 + 259459200 t7)

is a solution to Equation (1).

Figure 15. Modulus of v15.

3.16. Case of sixteenth order

Proposition 16. v16 expressed as v16(x, t) =
n16(x, t)

d16(x, t)
,

n16(x, t) = −32x(−x14 + 210 tx12 − 16380 t2x10 + 600600 t3x8 − 10810800 t4x6

+ 90810720 t5x4 − 302702400 t6x2 + 259459200 t7)

d16(x, t) = x16 − 240 tx14 + 21840 t2x12 − 960960 t3x10 + 21621600 t4x8

− 242161920 t5x6 + 1210809600 t6x4 − 2075673600 t7x2 + 518918400 t8

is a solution to Equation (1).

Figure 16. Modulus of v16.
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3.17. Case of seventeenth order

Proposition 17. v17 expressed as v17(x, t) =
n17(x, t)

d17(x, t)
,

n17(x, t) = 34(x16 − 240 tx14 + 21840 t2x12 − 960960 t3x10 + 21621600 t4x8

− 242161920 t5x6 + 1210809600 t6x4 − 2075673600 t7x2

+ 518918400 t8)

d17(x, t) = x(x16 − 272 tx14 + 28560 t2x12 − 1485120 t3x10 + 40840800 t4x8

− 588107520 t5x6 + 4116752640 t6x4 − 11762150400 t7x2

+ 8821612800 t8)

is a solution to Equation (1).

Figure 17. Modulus of v17.

3.18. Case of eighteenth order

Proposition 18. v18 expressed as v18(x, t) =
n18(x, t)

d18(x, t)
,

n18(x, t) = −36x(x16 − 272 tx14 + 28560 t2x12 − 1485120 t3x10 + 40840800 t4x8

− 588107520 t5x6 + 4116752640 t6x4 − 11762150400 t7x2

+ 8821612800 t8)

d18(x, t) = −x18 + 306 tx16 − 36720 t2x14 + 2227680 t3x12 − 73513440 t4x10

+ 1323241920 t5x8 − 12350257920 t6x6 + 52929676800 t7x4

− 79394515200 t8x2 + 17643225600 t9

is a solution to Equation (1).

12



Journal of AppliedMath 2025, 3(1), 2285.

Figure 18. Modulus of v18.

3.19. Case of nineteenth order

Proposition 19. v19 expressed as v19(x, t) =
n19(x, t)

d19(x, t)
,

n19(x, t) = 38(−x18 + 306 tx16 − 36720 t2x14 + 2227680 t3x12 − 73513440 t4x10

+ 1323241920 t5x8 − 12350257920 t6x6 + 52929676800 t7x4

− 79394515200 t8x2 + 17643225600 t9)

d19(x, t) = x(−x18 + 342 tx16 − 46512 t2x14 + 3255840 t3x12 − 126977760 t4x10

+ 2793510720 t5x8 − 33522128640 t6x6 + 201132771840 t7x4

− 502831929600 t8x2 + 335221286400 t9)

is a solution to Equation (1).

Figure 19. Modulus of v19.

3.20. Case of twentieth order

Proposition 20. v20 expressed as v20(x, t) = n20(x,t)
d20(x,t)

,

n(20x, t) = −40x(−x18 + 342 tx16 − 46512 t2x14 + 3255840 t3x12

− 126977760 t4x10 + 2793510720 t5x8 − 33522128640 t6x6

+ 201132771840 t7x4 − 502831929600 t8x2 + 335221286400 t9)

d20(x, t) = x20 − 380 tx18 + 58140 t2x16 − 4651200 t3x14 + 211629600 t4x12

− 5587021440 t5x10 + 83805321600 t6x8 − 670442572800 t7x6

+ 2514159648000 t8x4 − 3352212864000 t9x2 + 670442572800 t10

13
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is a solution to Equation (1).

Figure 20. Modulus of v20.

4. Conclusion

We have given a new formulation of rational solutions to the Burgers’ equation by
means of Wronskians.

Explicit solutions to the Burgers’ equation are constructed for the orders n = 1

until n = 20.
The singularities of these solutions depend on the orders of the solutions.
For odd orders, the singularities of the solutions are always lines x = 0. In the

case of even order solutions n = 2p, the singularities form horseshoe patterns with p

branches.
This method easily gives different solutions to the Burgers’ equation.
We can compare this method with, for example, the exp-function method. This

last one requires performing a change of variable in n dependent on x and t allowing
to transform the given equation dependent on x and t into a differential equation
depending only on the variable n. A solution in the form of a quotient of finite sums of
exponential is sought. This expression is derived and replaced in the different quantities
of the differential equation. By identifying the different terms, a system of equations is
obtained that allows us to determine the various coefficients of the quotient of the sum
of the exponentials. So solutions of the given equation are obtained. But, this method
is unfortunately not straightforward and requires a lot of calculation. The advantage of
the Wronskian method is that it gives a direct expression to all possible orders and that
one single determinant is sufficient to obtain the solution.

Future research should focus on stability analysis and convergence of solutions.
This could involve the use of mathematical techniques such as perturbation analysis or
numerical simulations to study the behavior of solutions under different conditions.

It will be relevant to construct solutions of this equation depending on some real
parameters.

Conflict of interest: The author declares no conflict of interest.
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